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Abstract. We consider depth-2 and 3 circuits over the basis consisting
of all Boolean functions. For depth-3 circuits, we prove a lower bound
Ω(n log n) for the size of any circuit computing the cyclic convolution.
For depth-2 circuits, a lower bound Ω(n3/2) for the same function was
obtained in our previous paper [10]. Here we present an improved proof
of this bound. Both lower bounds are the best known for depth-3 and
depth-2 circuits, respectively.
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1 Introduction

Proving circuit lower bounds is one of the central mathematical problem in
Computer Science. A considerable progress in this area has been made only
for weak types of circuits, i.e. circuits satisfying certain strong restrictions, like
monotone circuits or circuits of bounded depth over weak bases. For such circuits,
exponential lower bounds are known.

For more traditional models, which have structural (and not computational)
constraints, like formulas over the full basis, or switching and switching-and-
rectifier networks, only polynomial lower bounds are known. We classify such
circuits as medium strength circuits.

For the most practical model, namely, for unrestricted circuits over the full
basis, only linear lower bounds are known. We classify this model as the strong
one.

According to this classification, the circuits we consider in this paper are of
medium strength. Specifically, we consider bounded depth circuits having arbi-
trary gates. In this model, the size of a circuit is defined as the number of wires
in it. For every fixed depth d, there are explicit Boolean multi-output functions1

that require circuits of superlinear size (in the maximum of the number of inputs
and the number of outputs).

For d = 2, the best known lower bound is of the order n3/2. It was obtained in
our previous paper [10]. For d > 2, all known lower bounds are “almost” linear,

1 A Boolean multi-output function is a mapping from {0, 1}n to {0, 1}k (for certain
n, k).
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that is, they are of the order nf(n) where f(n) is a function that grows slower
than any function of the form nε. For d = 3, the function f(n) is of order log n,
and for other d > 3 it is even smaller.

Note that every Boolean function of n variables is computed in our model by
a circuit of size n and depth 1 (recall that we allow arbitrary gates). Likewise,
any k-output Boolean function of n input variables can be computed by a circuit
of size nk and depth 1. Thus superlinear lower bounds could be obtained only
for k being an unbounded function of n. And there are no exponential lower
bounds (in max{n, k}) in our model.

In this paper, we present a slightly modified proof from the paper [10] of
Ω(n3/2) lower bound for the size of depth-2 circuits. The new result in this
paper is Ω(n log n) lower bound for the size of depth-3 circuits. The best lower
bound for depth-3 circuits known before was of the order n log log n [6]. To prove
the new lower bound we reduce depth-3 circuits to depth-2 circuits and then we
use a method similar to that of [10].

We obtain our lower bounds for the cyclic convolution function (see the defini-
tion below). The same function was used in [10]. Our method applies also to other
“multiplicative” functions, namely, to matrix multiplication (for depth-2 cir-
cuits) and to multiplication of polynomials over the field ZZ2. For multiplication-
of-matrices-n × n function, for depth-2 circuits, we are able to prove the lower
bound Ω(n3), which matches the (trivial) upper bound O(n3); see also new
paper [11].

2 Previous Results and Proof Methods

In all the previous papers known to the author, the proof of a circuit lower bound
(in the considered model) is based on a property of the graph underlying the cir-
cuit. Specifically, one defines a graph property such that any circuit computing
the given function has that property. Then one proves that the number of edges in
any graph having that property must exceed the lower bound one wants to show.

The graph property that is mostly used in this context is the following. A
circuit (with n input nodes and n output nodes) has the property if it is a
superconcentrator, that is, for every k � n every set of k inputs is connected to
every set of k outputs by a family of k vertex disjoint paths. For instance, every
circuit computing the convolution function must be a superconcentrator [1]. It
is known that the number of edges in every superconcentrator of constant depth
is superlinear in n, which implies superlinear lower bounds for the size of any
circuit of constant depth computing the convolution.

The first superlinear lower bound for superconcentrators of constant depth
(depth 2) is due to Pippenger [2]. His result was improved and generalized to
larger depths in a series of papers [3,5,6,8]. Now we know minimal size of a
superconcentrator for every specific depth (up to a multiplicative constant). For
the survey of these results, we refer to the paper [8].

For depth 2, the minimal number of edges in a superconcentrator is
Θ(n log2 n

log log n ), and for depth 3 it is Θ(n log log n). These bounds were also the
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best known lower bounds for depth-2 and 3 circuits in our model. The papers
[4,7,9] use even weaker graph properties than being a superconcentrator. Thus
the lower bounds in those papers are weaker than the above ones.

Our method also uses a property of the graph underlying the circuit. We do
not state that property explicitly, as we think that the property is not interesting
in its own right, at least not as much, as being a superconcentrator. The idea of
the proof (for depth-2 circuits) is the following. The function we consider (the
cyclic convolution) depends on two groups of variables, x̃ and ỹ. We pick a subset
I of the first group x̃ and a subset O of output variables. For every evaluation
of variables ỹ and remaining variables in x̃, we obtain a function from {0, 1}I to
{0, 1}O.

For cyclic convolution, there are many functions (for all choices of values of
ỹ and remaining variables from x̃) obtained in this way. Therefore, there must
be many edges in the circuit between inputs in I and outputs in O (to transmit
the controlling information from the inputs ỹ and remaining inputs from x̃). As
the depth equals 2, those edges are incident either to inputs, or to outputs. We
obtain our lower bound by summing the number of such edges over all choices
of I and O and taking into account the cyclic shifts.

Then we reduce depth-3 circuits to depth-2 circuits by modifying the under-
lying graph.

3 Basic Definitions and Main Results

A Boolean function of n variables is a function f : {0, 1}n → {0, 1}. A multi-
output Boolean function is a function f : {0, 1}n → {0, 1}k.

We define, for each integer n, an n-output Boolean function Hn = (h1, . . . , hn)
of 2n input variables. Each hj is a Boolean function of 2n variables that are the
same variables for all hj and are called x1, . . . , xn, y1, . . . , yn. The function hj

computes the value of the j-th output of Hn:

hj(x1, . . . , xn, y1, . . . , yn) = x1yj ⊕ x2yj+1 ⊕ . . . ⊕ xnyj−1 . (1)

We call Hn the cyclic convolution.
Now we are going to define the notion of a Boolean circuit of depth d with

arbitrary gates that has 2n inputs and n outputs (and that computes Hn). Such
circuit is identified by a triple (G, g, ≺) satisfying the following conditions.

1) G is a finite directed graph.
2) The graph G has 2n inputs and n outputs . A node is called an input if it

has no in-going edges. A node is called an output if it has no outgoing edges.
3) g is a mapping that assigns to each node v (which is not an input) a Boolean

function which is locally computed in v; let g[v] denote that function. The fan-in
of g[v] must be equal to the in-degree of v.

4) ≺ is a linear ordering on the nodes of G that has the following property: if
there is an edge from a node v to a node w then v ≺ w. This property implies
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that G has no directed cycles. We also assume that the maximal length of a
directed path in G is at most d.

Using the ordering ≺, we identify the edges going to a node v and the ar-
guments of g[v]: the in-going edges are ordered according to the order on their
origins.

Besides, using the ordering ≺ on inputs and outputs of the circuit, we identify
the inputs with variables x1, . . . , xn, y1, . . . , yn and the outputs with variables
z1, . . . , zn.

5) For every j = 1, . . . , n the function “globally” computed by output zj must
coincide with hj . In the following two paragraphs we define formally the notion
of the function f [v] that is globally computed in a node v.

If v is an input then we let f [v] be equal to the value of the variable identified
with that input.

Assume that v is not an input and let v1, . . . , vk be all nodes such that there
is an edge from vi to v. Number them so that v1 ≺ . . . ≺ vk (where ≺ is the
ordering in the definition of the circuit). Reasoning by induction (on the ordinal
number of v in the order ≺), we may assume that f [v1], . . . , f [vk] are defined.
Let

f [v](x̃) ≡ g[v](f [v1](x̃), . . . , f [vk](x̃)) , (2)

where x̃ = (x1, . . . , xn, y1, . . . , yn).
The number of edges in G is called the size of S; we use the notation L(S)

for the size of a circuit S.
In this paper, we prove the following theorems.

Theorem 1. If d = 2 then L(S) = Ω(n3/2).

Theorem 2. If d = 3 then L(S) = Ω(n log n).

In the rest of the paper, we prove these theorems. First we prove Lemma 1 (in
Section 4), which is the main complexity-theoretic ingredient in our method.
Then we derive certain its corollaries, and Theorem 1 is one of them. The other
one is used in the proof of Theorem 2. In Section 5, we present a general Lemma 2,
which generalizes a lemma from [5]. Finally, we prove Theorem 2 in Section 6.

We conclude this section by a remark. The set of nodes in a circuit can be
partitioned into levels . A node v is on the level k if k is the maximal length of
a directed path from an input to v. For instance, all inputs belong to level 0.
By our assumptions, the number of levels in the circuit S is at most d. With-
out loss of generality we may assume that, in the circuit S, all outputs be-
long to level d and every edge goes from a level i to the level i + 1 (for some
i < d).

Indeed, we can insert fictitious nodes into every edge going from a level i to
level j > i + 1. This transformation increases the number of edges at most d
times. As d is constant and the bounds of Theorems 1 and 2 are asymptotic, we
can afford such increase.
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4 Depth-2 Circuits. Lemma 1 and Its Corollaries

Assume that f and f1, . . . , fk are Boolean functions of variables ỹ = (y1, . . . , yn).
We say that f is expressible through f1, . . . , fk if for some Boolean function Φ
of k variables we have

f(ỹ) ≡ Φ(f1(ỹ), . . . , fk(ỹ)) .

As there are 22k

different functions Φ of k variables, there are at most that
much functions expressible through f1, . . . , fk. On the other hand, if f1, . . . , fk

are different variables, that bound is attained — we can express every of 22k

different functions of k variables through f1 = y1, . . . , fk = yk.
In this section, we assume that S is a circuit of depth d = 2. Recall that we

assume that every edge in S goes from a level i − 1 to the level i, for some i. In
this case we say that the edge belongs to level i. We number levels in S by 0,1,2,
where 0 is the bottom level (containing inputs) and 2 is the top level (containing
outputs). Let Li denote the number of edges in the i-th level. Some of the nodes
of the middle (i.e., first) level connected to all inputs will be called special. Let
L∗

2 stand for the number of edges in the second level that are not incident to
special nodes (that is, edges connecting outputs with non-special nodes). The
number L∗

2 depends on the choice of special nodes. The following Lemma holds
for every choice of special nodes, satisfying the above constraint.

Lemma 1. Let k and l be natural numbers and kl � n. Then we have

kL1 + lL∗
2 � nkl .

Proof. Let v be a vertex in G. Consider the function f [v] of the input vari-
ables that is globally computed in v. Define functions f0[v], f1[v], . . . , fn[v] of
variables y1, . . . , yn as follows. The function f0[v] is obtained by substituting
zeroes for all variables x1, . . . , xn in f [v]. The function fi[v] is obtained by sub-
stituting 1 for xi and zeroes for the remaining variables x1, . . . , xn in f [v]. Thus
f0[v], f1[v], . . . , fn[v] are sub-functions of f [v].

Let J be the set of the first l natural numbers that are congruent to 1 modulo
k, that is, J = {1, k + 1, . . . , lk − k + 1}. Let zj be j-th output node and F the
set of all functions fi[zj ], for 1 � i � k and j ∈ J . As j-th output of S computes
hj , the equality (1) implies that fi[zj ] is equal to yi+j−1. Note i + j − 1 takes all
values in the range 1, . . . , kl, as i ranges over 1, . . . , k, and j over J . Hence the
set F consists of independent variables y1, . . . , ykl.

Let Xi stand for the set of all nodes in the middle level that are connected
to the input xi and let Zj denote the set of nodes in the middle level connected
to the output zj. Note that by (2) the function f [zj] is expressible through the
functions f [v] for v ∈ Zj . Then the function fi[zj ] is expressible through the
functions fi[v] for v ∈ Zj, since substitutions of constants for variables preserve
equalities and thus the expressibility property.
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Let G denote the set of all the functions fi[v], where 1 � i � k, v ∈ Zj

and j ∈ J . It is easy to see that all functions from the set F are expressible
through the functions from G. However, F consists of kl independent variables.
Thus, there are 22kl

functions expressible through F . However, every function
expressible through F is also expressible through G (since the expressibility
property is transitive). Thus there are at least 22kl

functions expressible through
G, and hence

|G| � kl . (3)

We now come to the central point of the proof. If node v of the middle level
is not connected to the input xi, then the function f [v] does not depend on xi,
hence, fi[v] = f0[v]. Let us thus replace fi[v] by f0[v] everywhere in G where it
is possible. Now the set G contains only those functions fi[v] for which the node
v is connected to the input xi, i.e., v ∈ Xi. In addition, the set G contains the
functions f0[v] such that v ∈ Zj, j ∈ J , and the node v is not connected to at
least one of the inputs x1, . . . , xk.

Recall that every special node is connected to all inputs. Therefore, the set G
contains only the functions fi[v] for v ∈ Xi, 1 � i � k, and the functions f0[v]
for non-special v ∈ Zj and j ∈ J . Let Z∗

j be the set of non-special nodes from
Zj . Then

|G| �
k∑

i=1

|Xi| +
∑

j∈J

|Z∗
j | .

Together with (3) it yields

kl �
k∑

i=1

|Xi| +
∑

j∈J

|Z∗
j | . (4)

Note that the proof above does not change when i ranges not over 1, 2, . . . , k,
but over any other set obtained from it by a cyclic shift modulo n. Similarly,
we can change the range of j (i.e., the set J). For simplicity, we will shift i and
j synchronously. For each of the resulting n shifts an inequality similar to (4)
holds. Summing all these inequalities, we get

nkl � k
n∑

i=1

|Xi| + l
n∑

j=1

|Z∗
j | . (5)

To conclude the proof, we note that the first sum in (5) equals L1, and the
second one is L∗

2. �

Corollary 1 (Theorem 1). L(S) = Ω(n3/2).

Proof. Choose special nodes in an arbitrary way so that the above constraint is
satisfied (say, declare all nodes non-special). Applying the lemma to k = l = [

√
n]

we get

[
√

n]L(S) = [
√

n](L1+L2) � [
√

n](L1+L∗
2) � n·[

√
n]2 . �
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A by-product of the lemma is the following corollary that will be used in the
proof of our second theorem.

Corollary 2. If there are at most n
2 special nodes, then L1 · L∗

2 � n3

16 .

Proof. Note that there are at least n nodes in the middle level. It follows from
the information transmission between the inputs and the outputs. Namely, the
functions f1[z1], . . . , f1[zn] are in fact different variables; however, they are ex-
pressible through the functions f1[v] for nodes v from the middle level. Thus,
the middle level contains at least n nodes.

Therefore, by the assumption of our corollary there are at least n
2 non-special

nodes in the middle level. Every node of the middle level has an outgoing edge
(since they are not outputs), thus L∗

2 � n
2 . Furthermore, every input also has an

outgoing edge, thus L1 � n.
Let us distinguish three cases:

1. L1 � n2

2 ;
2. L∗

2 � n2;
3. L1 < n2

2 and L∗
2 < n2.

Case 1: We thus have L1 · L∗
2 � n2

2 · n
2 = n3

4 .
Case 2: Similarly, L1 · L∗

2 � n · n2 = n3.
Case 3: Choose k and l as follows:

k =

[(
n · L∗

2

L1

)1/2
]

, l =

[(
n · L1

L∗
2

)1/2
]

.

The condition of this case implies that nL1 � n2 > L∗
2 and nL∗

2 � n2

2 > L1.
Thus, both k and l are positive integer numbers.

Furthermore, kl � n. Applying lemma 1 and using the inequality [x] � x
2 for

x � 1, we get

n � L1

l
+

L∗
2

k
=

L1[(
n · L1

L∗
2

)1/2
] +

L∗
2[(

n · L∗
2

L1

)1/2
] �

� 2L1
(
n · L1

L∗
2

)1/2 +
2L∗

2(
n · L∗

2
L1

)1/2 = 4
(

L1L
∗
2

n

)1/2

.

Thus, L1L
∗
2 � n3

16 . �

5 Lemma 2

The following lemma is a generalization of a lemma by Pudlák [5, Lemma 4].
Its original proof was simplified by an anonymous referee.
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Lemma 2. Assume a1, . . . , an, b1, . . . , bn are nonnegative real numbers such
that a1 � . . . � an and

a1 + a2 + . . . + an � b1 + b2 + . . . + bn ,

a2 + . . . + an � b2 + . . . + bn ,

. . . (6)
an � bn .

Let ϕ: IR+ → IR+ be an increasing concave function. Then

ϕ(a1) + . . . + ϕ(an) � ϕ(b1) + . . . + ϕ(bn) .

Note that the requirement that ai’s and bi’s are nonnegative is redundant if these
numbers are in the domain of ϕ. We state this requirement since we will apply
this lemma just to the function

√
x, which is defined on nonnegative numbers.

Proof. First we prove that if a � b � ε > 0, then

ϕ(a) + ϕ(b) � ϕ(a + ε) + ϕ(b − ε) . (7)

In words: if the largest of the numbers of a, b is increased by ε, and the smallest
one is decreased by ε, then the sum ϕ(a) + ϕ(b) does not increase.

Indeed, denote δ = ε
a−b+2ε . Then by Jensen’s inequality

δϕ(b − ε) + (1 − δ)ϕ(a + ε) � ϕ(δ(b − ε) + (1 − δ)(a + ε)) =
ϕ(a + ε − δ(a − b + 2ε)) = ϕ(a) .

Similarly,
(1 − δ)ϕ(b − ε) + δϕ(a + ε) � ϕ(b) .

Summing the last two inequalities we get (7).
We prove this lemma by induction on n. The base is n = 1. In this case the

claim follows from (6) and the assumption that ϕ is increasing.
We now prove the induction step (n � 2). Increase a1 and decrease an by ε,

where ε is the maximum possible number such that all the inequalities (6) are
satisfied after this change. The sum ϕ(a1) + . . . + ϕ(an) does not increase due
to this change. This follows from the inequality a1 � an and the inequality (7).
Hence, if we are able to prove the claim for the new numbers a1, . . . , an, the
claim for the former numbers will follow.

We now prove the claim for the new numbers a1, . . . , an. By the maximality
of ε, at least one of the inequalities (6) (except for the first one) becomes an
equality. Indeed, increasing a1 by ε and decreasing an by ε does not change the
sum a1 + . . . + an. Thus the first inequality of the system (6) remains intact.
However, the left-hand side of all subsequent inequalities decreases. Thus the
maximality of ε implies that one of the subsequent inequalities has become an
equality.
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Thus, for some k � 2 we have

ak + . . . + an = bk + . . . + bn . (8)

Denote the system (6) by Φ(a1, . . . , an; b1, . . . , bn). Subtract the equality (8)
from the first k − 1 inequalities of this system. Then the system (6) splits into
two independent systems of the same type, namely,

Φ(a1, . . . , ak−1; b1, . . . , bk−1) ,

Φ(ak, . . . , an; bk, . . . , bn) .

Applying the induction hypothesis to these two systems, we get

ϕ(a1) + . . . + ϕ(ak−1) � ϕ(b1) + . . . + ϕ(bk−1) ,

ϕ(ak) + . . . + ϕ(an) � ϕ(bk) + . . . + ϕ(bn) .

Finally, summing the two last inequalities we get the desired claim. �

6 Circuits of Depth 3. Proof of Theorem 2

In this section we assume that d = 3. Denote the nodes of the second level (i.e.,
the level preceding the outputs) by v1, . . . , vt. Let d+(vi) be the number of edges
going into vi, and d−(vi) the number of edges going out vi. Define the number
ai as

ai = d+(vi) · d−(vi) , i = 1, . . . , t .

Re-numbering vi if needed, we can assume that a1 � a2 � . . . � at.
Let m = [n/2]. For each p = 1, 2, . . . , m, we transform the circuit S into a new

depth-2 circuit Sp that implements the same function Hn. Namely, we move the
nodes v1, . . . , vp−1 to the first level of the circuit and connect each input to each
such node (and we change the gates in v1, . . . , vp−1 so that the function globally
computed in vi is preserved).

Then we remove the nodes vp, . . . , vt from the circuit. To preserve the func-
tionality, we add new edges when eliminating vi. Namely, if there is an edge from
node w of the first level to node vi and an edge from vi to an output zj , then
we add a new edge directly from w to zj . We proceed this way for each pair
(w, zj). Thus eliminating vi results in adding ai new edges to the circuit. Then
we change the gates in each output w so that the function globally computed in
w is preserved. The resulting circuit is denoted by Sp.

The nodes v1, . . . , vp−1 will be special for Sp (recall the notion of a special node
from Sect. 4). The number of special nodes is at most n/2, thus we can apply
Corollary 2. Recall that Li denotes the number of edges of the i-th level, and L∗

2
denotes the number of edges of the second level leaving non-special nodes. We
specify the circuit for which we count the number of these edges in parentheses
(for example, L∗

2(Sp)). Corollary 2 yields

L1(Sp) · L∗
2(Sp) � n3

16
. (9)
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We now compute L1(Sp) and L∗
2(Sp). Every edge of the first level of Sp either

was there in S or was added. Since we have added edges connecting the 2n
inputs and the nodes v1, . . . , vp−1 the number of additional edges is 2n(p − 1).
Therefore,

L1(Sp) = L1(S) + 2n(p − 1) .

The edges of the second level that leave non-special nodes are exactly the edges
that we added to Sp when eliminating the nodes vp, . . . , vt, i.e.,

L∗
2(Sp) =

t∑

i=p

ai .

Denote θ = L1(S)
2n . By substituting the values for L1(Sp) and L∗

2(Sp) into the
inequality (9) we get

t∑

i=p

ai � n3

16(L1(S) + 2(p − 1)n)
=

n2

32(θ + p − 1)
. (10)

To apply Lemma 2, we introduce the numbers b1, . . . , bt as follows:

bp = n2

32

(
1

θ+p−1 − 1
θ+p

)
, p = 1, . . . , m − 1 ,

bm = n2

32

(
1

θ+m−1

)
, bm+1 = . . . = bt = 0 .

Note that the system (6) now follows from the inequalities (10) for different
values of p. Indeed, bi is defined as the difference between the two numbers from
the right-hand side of (10). Thus, after intermediate terms cancel in bp + . . .+bt,
we are left with the first number, which is on the right in (10). Note also that
the last inequalities of the system (6) that do not have matching inequalities
in (10) hold since bm+1 = . . . = bt = 0 and ai � 0.

Applying Lemma 2 to the function ϕ(x) =
√

x we get

t∑

i=1

√
ai �

m∑

i=1

(
n2

32

(
1

θ + i − 1
− 1

θ + i

))1/2

=
m∑

i=1

n

(32(θ + i − 1)(θ + i))1/2 �

n

4
√

2

m∑

i=1

1
θ + i

=
n

4
√

2
(ln(θ + m) − ln θ + O(1)) . (11)

On the other hand, by the definition of ai’s, we have

√
ai =

(
d+(vi) · d−(vi)

)1/2 � d+(vi) + d−(vi)
2

. (12)

Finally, note that the edges of the second level of S are exactly the edges
entering the nodes v1, . . . , vt, and the edges of the third level are the edges
leaving these nodes. Hence,

L2(S) =
t∑

i=1

d+(vi) , L3(S) =
t∑

i=1

d−(vi) .
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In total, by summing the inequalities (12) we get

t∑

i=1

√
ai � 1

2

t∑

i=1

(
d+(vi) + d−(vi)

)
=

1
2

(L2(S) + L3(S)) . (13)

To conclude, we consider the two possible cases: if θ � ln n, then L(S) �
L1(S) = 2θn � 2n lnn; otherwise (11) and (13) imply

L(S) � L2(S) + L3(S) = Ω
(

n

2
√

2
ln

(
1 +

m

θ

))
= Ω(n ln n) .

Therefore, in both cases L(S) = Ω(n log n), which proves Theorem 2.

7 Conclusion

We have a feeling that, using a more elaborate graph transformations, it is
possible to improve the known lower bounds for every fixed depth. The first step
in this direction would be a transformation of a depth-4 circuit into a depth-2
circuit. On the other hand, it is also interesting to generalize our method for
depth-2 circuits to circuits of larger depth.
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