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Abstract. We consider bounded depth circuits over an arbitrary field
K. If the field K is finite, then we allow arbitrary gates Kn → K. For
instance, in the case of field GF (2) we allow any Boolean gates. If the
field K is infinite, then we allow only polinomials.

For every fixed depth d, we prove a lower bound Ω(nλd−1(n)) for
the size (i.e. the number of wires) of any circuit for computing the cyclic
convolution over the field K. In particular, for d = 2, 3, 4, our bounds are
Ω(n1.5), Ω(n logn) and Ω(n log logn) respectively; for d > 5, the function
λd−1(n) is slowly growing. On the Boolean model, our bounds are the
best known for all even d and for d = 3. For d = 2, 3, we prove these
bounds in previous papers [11, 13].

Key words: Boolean function, circuit, complexity, depth, lower bound,
cyclic convolution.

1 Introduction

This paper concerns the problem of proving high lower bounds of complexity
for explicitly given functions. At the present time, we don’t know any explicit
function (or a multi-output function) which has superlinear complexity in the
model of unrestricted Boolean circuits, i.e. we can’t prove that a computation
of a given function require superlinear number of steps. That’s why we consider
restricted models of computation.

In this paper, we consider circuits with bounded depth and unbounded fan-in
of each gate. Also, we consider several functional systems. In the Boolean case,
we allow all Boolean functions as gates. We classify such circuits as medium
strength circuits (like formulas over a complete basis). Size of a circuit is defined
as the number of edges (i.e. wires) in it.

For every depth d, there are explicit Boolean multi-output functions that
require circuits of superlinear size. For depth 2, the first superlinear lower bound
was obtained in the paper [2]. The best known lower bound before our series of
papers was Ω( n log2 n

log log n ) [9]. In the paper [11] we prove a lower bound Ω(n1.5).
Recall that depth-2 circuits are interesting because of Valiant’s reduction [1].

Namely, a lower bound ω( n2

log log n ) for depth-2 model implies superlinear lower
bound for log-depth model. Note that the upper bound for any n-output function
of n inputs is n2.
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For depth 3, the first (and also the best known before our papers) superlinear
lower bound Ω(n log log n) was obtained in the paper [6]. In the paper [13] we
prove a lower bound Ω(n log n).

For even d > 4, the first and the best known lower bound Ω(nλd(n)) was
proved in [3]. Here function λd(n) is slowly growing. We improve this bound.
Namely, we obtain a bound Ω(nλd−1(n)) for any d > 2. Our bound generalizes
our previous bounds because λ1(n) = Θ(n1.5) and λ2(n) = Θ(n log n). Our
bound is also the best known for any even d > 4. In particular, for d = 4 our
bound is Ω(n log log n).

Note, that for odd d > 5, the first and still the best known lower bound
Ω(nλd(n)) was proved in [5]. Our result doesn’t improve this bound because
λd−1(n) = Θ(λd(n)) for any odd d > 5. Other lower bounds were obtained
in papers [4, 7, 10, 14]. They does not exceed the best known bounds, but they
applies to simplier or more interesting functions such as shift function and matrix
multiplication.

2 Proof methods

Our lower bound is valid for cyclic convolution over an arbitrary field K. One
can split our proof into two parts (Lemmas 1 and 2 respectively). In the first
part we use a complexity-theoretic technique for the depth-2 circuits. We have
introduced this technique in the paper [11]. Then, slight improves were done in
papers [13, 14].

Here is a ”sketch” of Lemma 1. Let I be a subset of inputs and J be a subset
of outputs. Suppose there are a lot of connections between variables from I and
functions computed at J . Precisely, we substitute variables from I by constants
and count entropy of the set of all such subfunctions computed at J . Let this
entropy be high (for the cyclic convolution, an entropy is high for many pairs
(I, J)). Let V be a subset of nodes such that any output from J is computed
using only nodes V . Then, there must be either many nodes in V (hence, many
paths between sets J and V ), or many paths between sets I and V .

The entropy of a multi-output function was introduced in the paper [14]. We
consider a similar notion of entropy, however, we use an axiomatic definition of
entropy (as in our paper [12]). This approach allows us to deal with many models
of computations: both finite functions and arithmetic functions over an infinite
field. For arithmetic circuits over an infinite field, there are higher lower bounds
(see [10]) than for the Boolean circuits. So, our bounds are not the best known.

In the second part of our proof we use the graph-theoretic lemma from [10]
(papers [3, 5] contain a similar technique). This lemma allows us to reduce a
circuit from depth d to depth 2. Precisely, we reduce the bottom part of circuit
(which has depth d− 1) to circuit of depth 1. After this reduction we apply our
Lemma 1.

Note, that previous authors, using the same graph-theoretic technique, have
proved weaker bounds. This is because they only considered the functions com-
puted at the nodes, not their subfunctions when counting the size of information
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transferred from I to J . This approach leads to the well-known superconcentra-
tion property of graph [1–3, 5, 6, 9].

3 Functional systems and circuits

Let K be a set (may be, with an algebraic structure) and let F consists of some
functions of a form Kn → K. We say that F is a functional system if F is closed
with respect to superposition and variable substitution. In other words, for any
functions f, g from F (where f has n variables and g has k variables) and any
indexes i1, . . . , in+k−1, the function

f(g(xi1 , . . . , xik
), xik+1 , . . . , xin+k−1)

must be in F .
We consider the following functional systems:
(I) K is a finite set, |K| > 2 and F consists of all functions of a form Kn → K;
(II) K is a field and F consists of all linear functions Kn → K;
(III) K is an infinite field and F consists of all multi-variable polinomials

over K.
Note, that if field K is infinite and two polinomials are equal at each point,

then coefficients of these polinomials are equal too. For a finite field, it is not
true (for example, x ≡ x2 over GF (2)). That’s why we allow only infinite fields
in the system (III).

Now we are going to define the notion of a circuit over a functional system
F . Let us consider a finite directed acyclic graph. A node is called an input if it
has no ingoing edges; a node is called an output if it has no outgoing edges. Let
our graph has n inputs, identifying with variables x1, . . . , xn, and m outputs,
identifying with variables z1, . . . , zm. Let to each non-input node v be assigned
a function gv ∈ F , and let the ingoing edges of the node v are identifying with
the arguments of gv. Then the object constructed above is called a circuit over
F .

The size of a circuit is the number of edges in it; the depth of a circuit is the
maximal length of directed path in it. In this paper (except for Lemma 1) we
assume that depth of a circuit is at most d. The set of nodes in a circuit can be
partitioned into levels. We number level by 0, 1, . . . , d. For instance, all inputs
belong to level 0. Without loss of generality we may assume that all outputs
belong to level d and every edge goes from a level i to the level i+ 1 for some i.

For each node v there is a function fv: Kn → K computed at the node v;
fv depends on input variables x1, . . . , xn. One can simply define the function
fv by induction. Note, that fv is a superposition of functions gv′ ; thus, fv ∈ F .
Consider the m-output function F = (fz1 , . . . , fzm

), where z1, . . . , zm are outputs
of the circuit. We say that the function F is computed by the circuit.

Suppose a fieldK. IfK is finite, then let F be the functional system (I); ifK is
infinite, then let F be the system (III). We define, for each integer n, an n-output
function Hn: K2n → Kn, named cyclic convolution. Let Hn = (h1, . . . , hn) and
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variables of each hj are called x1, . . . , xn, y1, . . . , yn. By definition, put

hj(x1, . . . , xn, y1, . . . , yn) = x1yj + x2yj+1 + . . .+ xnyj−1.

The main result of this paper (Theorem 1) is the following. For every d > 2
and every field K, any depth-d circuit for computing the cyclic convolution has
at least Ω(nλd−1(n)) edges, where the function λd(n) is defined in section 6.

4 Expressibility and entropy

Assume that f, f1, . . . , fm are functions from a functional system F and they
depend on variables ỹ = (y1, . . . , yn). We say that f is expressible through
f1, . . . , fm if for some function Φ ∈ F of m variables we have

f(ỹ) ≡ Φ(f1(ỹ), . . . , fm(ỹ)).

Let E(·) be a nonnegative-valued functional defined on each finite set of func-
tions {f1, . . . , fm} ⊆ F . The functional E(·) is called an entropy if the following
conditions hold:

(a) the entropy of any single function is at most 1;
(b) the entropy of a set consisting of k independent variables (from the set

y1, . . . , yn) equals k;
(c) if any function from a set F is expressible through a set G, then E(F ) 6

E(G);
(d) subadditivity : for any sets F and G

E(F ) + E(G) > E(F ∪G).

Now we define the entropy for each of our functional systems.
System (II). The entropy is the rank of a set of linear functions. It is clear

that conditions (a)–(d) hold.
System (III). We define the entropy as the rank of the set of linear parts

of given polinomials. Then conditions (a), (b) and (d) follow from matching
conditions for the system (II). Condition (c) holds because the field K is infinite.
Indeed, a linear part of product of two polinomials is linearly expressible through
linear parts of these polinomials. Hence, if a polinomial f is expressible through
polinomials f1, . . . , fm then the linear part of f is expressible (in the sense of
system (II)) through linear parts of f1, . . . , fm. Thus, the condition (c) follows
from the matching condition for the system (II).

System (I). For a given set of functions {f1, . . . , fm}, let us consider the
following equivalence relation on the set Kn. Two points from Kn are equivalent
iff any function fi takes equal values at these points. Let N be the number of
equivalence classes for this relation. By definition, put

E({f1, . . . , fm}) = log|K|N. (1)

This entropy functional was used in the paper [14].
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Since every function Kn → K takes at most |K| different values, it follows
that condition (a) holds. Condition (b) holds because an ordered set of k different
variables takes all |K|k possible values. If every function from F is expressible
through G, then any equivalence class for F consists of some equivalence classes
for G. Hence, condition (c) holds. Finally, if there are N equivalence classes for
F and M equivalence classes for G, then there are at most NM equivalence
classes for F ∪G. Thus, condition (d) holds.

5 The complexity-theoretic lemma

The following lemma is the main complexity-theoretic ingredient in our result.
The same technique was introduced in the paper [11]. Then, some slight im-
provements were done in papers [13, 14]. In this paper we make once more slight
improvement.

We assume that a functional system F contains constants 0 and 1. Consider
a circuit over the system F computing a multi-output function F : K2n → Kn of
variables x1, . . . , xn, y1, . . . , yn. Let F = (f1, . . . , fn). Let f i

j denote the function
obtained by substituting 1 for xi and zeroes for the remaining variables x1, . . . , xn

in fj . Let I be a subset of inputs x1, . . . , xn and let J be a subset of outputs
z1, . . . , zn. For any node v, denote by I(v) the set of all inputs from I such that
there is a directed path from this input to the node v.

Lemma 1. Let V be a subset of nodes such that any directed path from any input
to the set J passes through a node from V . Then for any entropy functional E(·),
we have ∑

v∈V

(|I(v)|+ 1) > E({f i
j | xi ∈ I, zj ∈ J}).

Proof. Recall, that a function fv is computed at a node v, and fv depends on
variables x1, . . . , xn, y1, . . . , yn. Let f i

v denote the function obtained by substi-
tuting 1 for xi and zeroes for the remaining variables x1, . . . , xn in fv; let f0

v

denote the function obtained by substituting zeroes for all variables x1, . . . , xn

in fv.
Since any directed path from any input to the set J passes through the set

V , we have that any function fj , zj ∈ J , is expressible through the functions
fv, v ∈ V . Then for any i, the function f i

j is expressible through the functions
f i

v, v ∈ V . Hence, it follows from the entropy condition (c) that

E({f i
j | xi ∈ I, zj ∈ J}) 6 E({f i

v | xi ∈ I, v ∈ V }). (2)

Conditions (d) and (a) yield

E({f i
v | xi ∈ I, v ∈ V }) 6

∑
v∈V

E({f i
v | xi ∈ I}) 6

∑
v∈V

|{f i
v | xi ∈ I}|. (3)

Note that if xi /∈ I(v), then a function fv does not depend on a variable xi,
and hence f i

v = f0
v . Therefore

{f i
v | xi ∈ I} = {f i

v | xi ∈ I(v)} ∪ {f0
v }.
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Hence
|{f i

v | xi ∈ I}| 6 |I(v)|+ 1. (4)

The lemma follows from (2)–(4). �
Now we derive the corollary for the cyclic convolution. Consider a field K,

the corresponding functional system F and any circuit over F for computing the
cyclic convolution Hn = (h1, . . . , hn). Let k, l are positive integers and kl 6 n.

Let Ik
p denote the following subset of inputs x1, . . . , xn: it begins with xp and

consists of k inputs one after the other, i.e. Ik
p = {xp, xp+1, . . . , xp+k−1}. We

assume that the order of inputs x1, . . . , xn is cyclic, i.e. xn is followed by x1. Let
Jk,l

q denote the following subset of outputs: it begins with zq and consists of l
outputs one after the other with the step k, i.e. Jk,l

q = {zq, zq+k, . . . , zq+kl−k}
(the order is cyclic too).

Recall that hi
j = yi+j−1. Note that i+ j − 1 takes kl subsequent values as i

ranges over p, p+1, . . . , p+k−1 and j over q, q+k, . . . , q+kl−k. Hence the set
{hi

j | xi ∈ Ik
p , zj ∈ Jk,l

q } consists of kl independent variables. Thus, the entropy
condition (b) implies

E({hi
j | xi ∈ Ik

p , zj ∈ Jk,l
q }) = kl.

Combining this with Lemma 1 we get the following.

Corollary 1. Let V be a subset of nodes such that any directed path from any
input to the set Jk,l

q passes through a node from V . Then∑
v∈V

(|Ik
p (v)|+ 1) > kl.

6 Slowly growing functions and the graph technique

This section contains a material (including definitions and claims) taken from
the paper [10]. The similar technique was used in papers [3, 5].

Let a function f takes each natural number to a nonnegative integer, and for
any n > 2, f(n) < n. Let f (k) denote the k-th degree of f under the composition,
i.e. f (k) = f ◦ f ◦ . . . ◦ f , where f is repeated k times. We define a function f∗

as follows:
f∗(n) = min{k | f (k)(n) 6 1}.

Now we define functions λd(n):

λ1(n) = b
√
nc, λ2(n) = dlog2 ne, λd(n) = λ∗d−2(n), d = 3, 4, . . .

The following claim contains properties of functions λd(n). It implies that
our bounds Ω(nλd−1(n)) are superlinear (item 1), the bound for depth 4 is
Ω(n log log n) (item 2), and for even d > 4, our bound is better than the previous
bound Ω(nλd(n)) (item 3).
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Claim. 1) For any d, λd(n) is a monotone increasing function tending to infinity
on n→∞;

2) λ3(n) = Θ(log log n);
3) if d is even or d = 3, then λd−1(n) = Ω(λd(n));
4) if d is odd and d > 5, then λd−1(n) = Θ(λd(n)).

Proof. Items 1, 2 and 4 were proved in ([10], Claim 2.4). Item 3 is obvious for
d = 2, 3. Let d is even and d > 4. We claim that if f is increasing function
tending to infinity and f(n) = o(n), then f∗(n) = o(f(n)). Indeed, f(n) = o(n)
and f(n)→∞ implies f (2)(n) = o(f(n)). Moreover, f∗(n) 6 f (2)(n)+1 because
each iteration of f decreases the number by at least 1. Thus, f∗(n) = o(f(n)).
In particular, for d > 6, λd−1(n) = Θ(λd−2(n)) = Ω(λd(n)). For d = 4, the proof
is similar but it uses relation f∗(n) = o(f (2)(n)) because λ3(n) = Θ(λ(2)

2 (n)). �
The following lemma is a graph-theoretic ingredient of out result. It says that

if a depth-d graph has less than Ω(nλd(n)) edges, then one can remove small
sets of it’s inputs, outputs and intermediate nodes so that there remains a little
number of paths between inputs and outputs. This lemma helps us to reduce a
depth-d graph to a depth-1 graph: paths mentioned above become an edges in
the depth-1 graph.

Lemma 2. ([10], Lemma 1.1) If 0 < ε < 1/400 and if a depth-d graph consists
of more than n nodes and less than εnλd(n) edges, then there are subsets I, J,W
in sets of inputs, outputs and all nodes of the graph (respectively) such that

a) |I| 6 5εdn, |J | 6 5εdn,
√
n 6 |W | = o(n);

b) the number of directed paths from inputs to outputs which does not pass
through the set I ∪ J ∪W is at most εn2/|W |.

7 The main result

Theorem 1. If d > 2, K is an arbitrary field and F is the corresponding func-
tional system of the type (I) or (III), then any depth-d circuit over F for com-
puting the cyclic convolution Hn has Ω(nλd−1(n)) edges.

Proof. Assume the converse. Let L be the number of edges in the circuit. Then
there exists ε such that 0 < ε < 1/400 and L < εnλd−1(n). Let G be the graph
consisting of all edges which are not outgoing edges of inputs, i.e. edges of second,
third etc levels. The graph G has depth d− 1. Applying Lemma 2 to the graph
G, we find sets I, J and W . Denote l = 4|W | and k = bn/lc. Then kl 6 n, and
the restriction

√
n 6 |W | = o(n) yields kl = n(1− o(1)).

Here is a ”sketch” of the following proof. For particular p and q, we consider
the set of inputs Ik

p and the set of outputs Jk,l
q of the original circuit (see section

5 for their definition). For applying Lemma 1, we need to define the subset V of
nodes such that any path from any input to the set Jk,l

q passes through V . We
shall say that any path from any input to the set Jk,l

q is ”bad”. So, we need to
cut off all bad paths. The set I ∪ J ∪W cuts off a lot of bad paths; we include
this set to the set V (note that we only need to include the set J ∩ Jk,l

q instead
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of J). By Lemma 2, the number of the remaining paths in the graph G is small.
So, we can cut the remaining bad paths by a small subset V ′1 of the first-level
nodes (which are the inputs for the graph G).

By Lemma 1, the sum of |Ik
p (v)|+ 1, where v ranges over V , must be at least

kl i.e. n(1−o(1)). This contradicts the following estimate of the sum. Recall that
the size of the set Ik

p (v) is at most k (because Ik
p (v) is a subset of Ik

p ). Since the
set J is of size ε′n for some small ε′, then for particular q, the set J ∩ Jk,l

q is of
size ε′l. By definition of l, the set W is of size l/4. Hence, the sum of |Ik

p (v)|+ 1,
where v ranges over (J ∩ Jk,l

q ) ∪W , is smaller than n. It remains to show that
this sum, where v ranges over I ∪V ′1 , is smaller than n too. For particular p, the
sum of |Ik

p (v)| over the set I ∪ V ′1 is small because the number of edges on the
first level is small (note that the set I ∪V ′1 consists of first-level nodes). And the
sum of 1’s over the set I ∪ V ′1 (i.e. the size of this set) is small by Lemma 2.

Now we define p and q more precisely. Let p be an index such that the total
number of outgoing edges for the set Ik

p is minimal. Since the total number of
outgoing edges for the set of all inputs does not exceed L, it follows that (for the
choosed p) the total number of outgoing edges for Ik

p is at most kL/n. Indeed,
summing all these total numbers over all p we obtain at most kL (because we
count each input k times). Thus, the average value is kL/n, and the minimal
value not exceeds the average value.

Denote the set of all first-level nodes by V1. Recall that for each v ∈ V1, the
set Ik

p (v) consists of all inputs from Ik
p connected with the node v by a directed

path. Since v is at the first level, any such path consists of one edge. Hence,
summing sizes of sets Ik

p (v) over v ∈ V1, we obtain the number of outgoing edges
for the set Ik

p . Thus,∑
v∈V1

|Ik
p (v)| 6 kL

n
<
k · εnλd−1(n)

n
= εkλd−1(n).

Note that λd−1(n) 6
√
n (for any d), and since l/4 = |W | >

√
n, it follows that

k 6 1
4

√
n(1 + o(1)). Therefore,∑

v∈V1

|Ik
p (v)| 6 ε

√
n · 1

4
√
n(1 + o(1)) = 0.25εn(1 + o(1)). (5)

Let q be an index such that both following conditions hold:
a’) |Jk,l

q ∩ J | 6 2l
n · 5εdn;

b’) the number of directed paths from the set V1 to the set Jk,l
q which does

not pass through the set I ∪ J ∪W , is at most 2l
n · εn

2/|W |.
Since |J | 6 5εdn, it follows that the part of sets Jk,l

q not satisfying the
condition a’) is less than 1/2 (the proof is similar to the above one where we
choose p). Since the number of paths from V1 to the set of all outputs is at most
εn2/|W |, it follows that the part of sets Jk,l

q not satisfying the condition b’) is
less than 1/2. Hence, there are the set Jk,l

q satisfying both conditions.
Let V ′1 be the set of all first-level nodes connected with the set Jk,l

q by directed
paths which does not pass through the set I ∪ J ∪W (the set V ′1 cuts off the
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remaining ”bad” paths). Since the number of paths does not exceed the number
of their starting points, we have

|V ′1 | 6
2l
n
· εn

2

|W |
=

2εln
l/4

= 8εn. (6)

Finally, applying Lemma 1 to the set V = V ′1 ∪ I ∪ (Jk,l
q ∩ J)∪W , we obtain

kl 6
∑
v∈V

(|Ik
p (v)|+1) =

∑
v∈V ′1∪I

|Ik
p (v)|+|V ′1 |+|I|+

∑
v∈(J∩Jk,l

q )∪W

(|Ik
p (v)|+1). (7)

Let us estimate each of the four summands at the right hand of (7). Since
V ′1 ∩ I ⊆ V1, the first summand is majorized by (5). Estimates for the second
and third summands are (6) and item a) of Lemma 2 respectively. Let us estimate
the fourth summand. Using inequality |Ik

p (v)| 6 k and the condition a’), we have∑
v∈(J∩Jk,l

q )∪W

(|Ik
p (v)|+ 1) 6 (k + 1)(|J ∩ Jk,l

q |+ |W |) 6

2k
(

2
l

n
· 5εdn+

l

4

)
= (0.5 + 20εd)kl.

Thus, (7) implies

kl 6 0.25εn(1 + o(1)) + 8εn+ 5εdn+ (0.5 + 20εd)kl.

Since ε is small, we have a contradiction. �

8 Conclusion

Note 1. Since our bound is uniform for all depths (specifically, Ω(nλd−1(n))),
then one can raise the following question. Is it the limit of our capacities or
can our bound be improved at least for a particular d? We suppose that if it is
possible to derive a bound Ω(n1.5+ε) for depth-2 circuits, then one can obtain a
superlinear bound for log-depth circuits using a similar technique.

Here is the explanation. Let us consider a depth-2 circuit. Denote the number
of edges in the first level by L1 and the number of edges in the second level
by L2. We have an observation (see Corollary 2 in [13]) that the complexity
measure

√
L1L2 is more representative (for depth-2 circuits) than L1 +L2. But,

for Valiant’s circuits of depth 2, we have L1 = O( n2

log log n ) and L2 = o(n1+ε),
hence

√
L1L2 = o(n1.5+ε). So, a lower bound Ω(n1.5+ε) seems to be interesting.

Note 2. For the functional system (I), one can use another entropy functional,
namely, the Shannon entropy. Recall the equivalence relation on the set Kn (see
the paragraph before (1)). Let K1, . . . ,KN are the equivalence classes of this
relation, and pi = |Ki|/|K|n. By definition, put

E ′({f1, . . . , fm}) =
N∑

i=1

pi log|K|
1
pi
.
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We use the entropy E ′(·) instead of E(·) in the paper [12] because the first holds
the strong subadditivity: E ′(F )+E ′(G) > E ′(F ∪G)+E ′(F ∩G). For the entropy
E ′(·), there are inequalities which does not follow from the strong subadditivity;
an example of such inequality was given in the paper [8]. So, one can try to
improve our bound using the strong subadditivity or these stronger inequalities.
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7. Pudlák P., Rödl V., Sgall J.: Boolean circuits, tensor ranks and communication
complexity. SIAM J. on Computing 26:3 (1997) 605–633

8. Zhang Z., Yeung R. W.: On characterization of entropy function via information
inequalities. IEEE Transactions on Information Theory. 44 (1998) 1440–1450

9. Radhakrishnan J., Ta-Shma A.: Bounds for dispersers, extractors and depth-two
superconcentrators. SIAM J. of Discrete Mathematics 13:1 (2000) 2–24

10. Raz R., Shpilka A.: Lower Bounds for Matrix Product, in Bounded Depth Circuits
with Arbitrary Gates. SIAM J. Comput. 32:2 (2003) 488–513

11. Cherukhin D. Yu.: The lower estimate of complexity in the class of schemes of
depth 2 without restrictions on a basis. Moscow Univ. Math. Bull. 60:4 (2005)
42–44

12. Cherukhin D. Yu.: On complexity of informational networks. Manuscript, available
at http://cherukhin.narod.ru/research/research.htm (2007), in Russian

13. Cherukhin D. Yu.: Lower Bounds for Depth-2 and Depth-3 Boolean Circuits with
Arbitrary Gates. Proc. 3rd Int. Comput Sci Symposium in Russia (CSR-2008), to
appear.

14. Jukna S.: Entropy of operators or why matrix multiplication is hard for small
depth circuits. Electronic Colloquium on Computational Complexity, Report Nr.
TR08-019, 2008


