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Preface

Computational complexity theory is the study of the inherent hardness or easiness
of computational tasks. Research in this theory has two main strands.

One of these strands—called also structural complexity—deals with "high level"
complexity questions: is space a more powerful resource than time? Does randomness
enhance the power of efficient computation? Is it easier to verify a proof than to
construct one? So far we do not know the answers to any of these questions; thus most
results in "high level" complexity are conditional results that rely on various unproven
assumptions, like P 6= NP. While many interesting connections have been established
between different computational problems and computational resources, and many
beautiful and important results have been achieved, the major open problems here
remain widely open.

The second strand of research in complexity theory—called also concrete complex-

ity or circuit complexity—deals with establishing concrete lower bounds, that is, lower
bounds on the computational complexity of specific problems, like multiplication of
numbers or their factorization. This is essentially a "low level" study of computation;
it typically centers around particular models of computation such as decision trees,
boolean formulas, restricted classes of boolean circuits, and the like. In this line of
research unconditional lower bounds are established which rely on no unproven as-
sumptions.

Research in circuit complexity began about 60 years ago starting from a seminal
work of Claude Shannon. A burst of activity in circuit complexity exploded about 25
years ago with first exponential lower bounds for some circuit models, like bounded
depth circuits, monotone circuits, restricted branching programs, etc. Since then there
has been steady progress made over the years using a range of techniques from com-
binatorics, algebra, analysis, and other branches of mathematics. In fact, circuit com-
plexity is the “most combinatorial” part of the whole computer science.

The focus of this book1 is on the second stream: concrete, "low-level" complexity,
with a special focus on lower bounds. I give self-contained proofs of a wide range
of unconditional lower bounds for interesting and important models of computation,
covering many of the "gems" of the field that have been discovered over the past several
decades, right up to results from the last year or two.

The book is not an all-inclusive historical survey—bibliographical references are
only given for results that are actually described here. Instead, the book is an almost
all-inclusive survey of known lower bounds techniques with full proofs.

The reason to write this book was threefold.
First, 20 years passed since the well known books on circuit complexity of Savage

(1976), Nigmatullin (1983), Wegener (1987) and Dunne (1988), as well as a famous

1This is a draft version. Any critics, detected errors in proofs, missing references, comments on topics
worth to be discussed, etc. are more than welcome!

viii



PREFACE ix

survey paper of Boppana and Sipser (1990), were written. It came the time to summa-
rize the development in circuit complexity during these two decades.

Second, newly written nice books on computational complexity are mainly de-
voted to research in the first direction—structural complexity and, quite naturally, the
treatment of “low level” complexity is there only fragmentary.

Finally, the discovery of “natural proofs” waked an impression that almost noth-
ing is possible in this field. Roughly speaking, this result says that it is (apparently)
impossible to separate complexity classes like P and NP using properties of boolean
functions that are easily verifiable and are shared by random functions. As such, this
is a serious warning: circuit lower bounds are indeed very hard to prove. It also says
that, like in other in other fields of mathematics, too general and too constructive ideas
cannot solve too difficult problems. But separating P from NP is not the main goal of
circuit complexity—this will be probably done by a cute diagonalization.

Circuits and Turing machines are very different models: the former is non-uniform,
and hence, much stronger. According to Leonid Levin, the co-founder of NP-completeness
phenomenon, Andrey Nikolaevich Kolmogorov, one of the greatest mathematicians of
the last century, even suspected that all NP can be apparently done by linear size
circuits! Decades passed, and this belief ist still not refuted. There are even some in-
dications that this prediction (or something similar) could be indeed true. Say, Mayer
auf der Heide (1984) shows that, for each n, the n–dimensional knapsack problem is
solvable in n4 log n time. Another indication is given by Allender and Koucky (2008):
in a class of constant-depth threshold circuits, some boolean functions cannot have
circuits of polynomial size, if they do not have such circuits of size n1+ε for an ar-
bitrary small constant ε > 0. These (and some other) indications show that circuits
of superlinear size may indeed accumulate an unexpected power. So large that cur-
rent mathematics is unable to engage such circuits. So, the goals of circuit complex-
ity are much more “pragmatic:” prove lower bounds in—restricted, but practically
important—circuit models. When trying to do this for harder and harder models many
nice mathematical ideas emerged, and my goal was to describe some of them here.

Just like proving lower bounds is a self-defeating task—prove that this was hard
to prove—the goals of this book are somewhat self-defeating as well. My goal was:

◦ to cover main developments in circuit complexity during the last two decades,
but also to be fairly compact;
◦ to give full proofs of core results, but also to be as concise and as intuitive as

possible.
◦ to write a text which can be relatively easily grasped by graduate students, but

remains of some interest for researchers, as well.

I’ve done my best to achieve a fair balance between these contradicting goals. The seek
for the balance has also influenced the choice of the material: the focus is on classical
models of circuits—results on their randomized, quantum or algebraic versions receive
less attention here. My goal was to give a “big picture” of existing most powerful lower
bound methods for classical circuit models, in a hope that the reader will be motivated
to find a new one. Many open problems, marked as “Research Problem”, are mentioned
along the way.

The text is self-contained. It assumes a certain mathematical maturity at an under-
graduate level but no special knowledge in theory of computing. Like in combinatorics
or in number theory, the problems here are usually quite easy to state and explain,
even for the layman. Their solutions often require a cute idea, but rarely an involved
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mathematics. The book may be used for a graduate course on circuit complexity or
as a supplement material in a more general course on computational complexity. The
material is split into mostly independent chapters, each devoted to a particular model
for computing boolean functions, so that the reader can choose her/his own order to
follow the book. The order of chapter has nothing to do with the “importance” of the
circuit model and/or techniques dealt with in them—it just reflects the chronological
order in which the results about these models were achieved. Say, the last chapter
“Propositional Proof Complexity” (Chapter 18) is nowadays one of the “hottest” places
of action.

Some features of the book (as I see them) include:

◦ It is the first book covering the happening in circuit complexity during the
past 20 years. A part of this happening—the communication complexity—was
already covered in an excelent book by Nisan and Kushilevitz (1997).
◦ It includes some topics, like graph complexity or method of finite limits, that

are not known well enough even for specialists.
◦ Gives full and intuitive proofs of basic lower bounds.
◦ Gives new proofs of classical results, like lower bounds for monotone and for

constant-depth circuits.
◦ Presents some topics never touched in existing books, like circuits with arbi-

trary boolean functions as gates.
◦ Relates the circuit complexity with one of the “hottest” nowadays topics – the

proof complexity.

Two apologies may be in order. The first of them goes to students: although an
attempt is made to keep the exposition as simple as possible, some proofs will still
require a considerable effort to get them. But remember: original proofs were even
more complicated. The second apology goes to purists: many of the estimations in our
arguments can be numerically improved by making more careful computations. The
reason for my carelessness was the desire to make the exposition as simple as possible.
So, my stress is on arguments and ideas used in the lower bound proofs rather than on
the numerical form of resulting bounds, unless the jump in the rate of growth is really
important, like linear to quadratic, polynomial to super-polynomial.

............. to be finished ............

Frankfurt/Vilnius, Juli, 2009 Stasys Jukna



CHAPTER 1

Our Adversary – The Circuit

Boolean or switching functions f : {0,1}n→ {0,1} map each sequence of bits to a
single bit 0 or 1. Simplest of such functions are the product x · y , sum x ⊕ y mod 2,
non-exclusive Or x ∨ y , negation ¬x = x ⊕ 1. The central problem of Boolean func-
tion complexity—the lower bounds problem—is: Given a boolean function how many
these simplest operations do we need to compute the function on all input vectors?
This is an extremal problem per se: how large boolean circuits for a given function
must be? The problem lies on the border between mathematics and computer sci-
ence: lower bounds themselves are of great importance for computer science but their
proofs require techniques from combinatorics, algebra, analysis, and other branches of
mathematics.

Mathematics is full of non-existence results. Circuit lower bounds are also non-
existence results, only on a “low level.” We restrict our world by circuits of reasonable
(say, linear or polynomial) size, and ask if a given boolean function belongs to this
world.

But is proving lower bounds important at all? Would it not be better to invest
our energy into proving good upper bounds, that is, into the design of efficient cir-
cuits? Yes and no. Yes, because cute algorithms detect some “singularity” in a given
problem making it efficiently solvable by a circuit. No, because lower bounds do just
the same! They detect singularities making the problem unsolvable by any circuit.
That is, proving upper bounds is a cooperative game with algorithms, whereas proving
lower bounds is an adversary game against algorithms. A progress in any direction is a
step towards the solution of the main problem of computer Science: understand what
algorithms can and what they can not.

1.1. Circuit models

Before we start with proving lower bounds, let us first recall the most fundamental
models for computing boolean functions.

Let Ω be a set of some boolean functions (elementary or basis operations). A circuit

(or a stright line program) over the basis Ω is just a sequence g1, . . . , gm of boolean
functions such that the first n functions are input variables g1 = x1, . . . , gn = xn, and
each subsequent gi is an application gi = ϕ(gi1

, . . . , gid
) of some basis function ϕ ∈ Ω

(called the gate of gi) to some previous functions.
That is, the value gi(a) of the ith gate gi on a given input a ∈ {0,1}n is the

value of the boolean function ϕ applied to the values gi1
(a), . . . , gid

(a) computed at the
previous gates. A circuit computes a boolean function (or a set of boolean functions)
if it (or they) are among the gi .

1
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FIGURE 1. A circuit with five gates over the basis {∧,∨,⊕} computing
the sum x⊕ y⊕c of three bits modulo 2, and a carry bit Ma j(x , y, c) =

1 iff at least two of there input bits are 1’s.

Each circuit can be looked at as a directed acyclic graph 1 whose fanin-0 nodes
(those of zero in-degree) correspond to variables, and each other node v corresponds
to a function ϕ from Ω. One (or more) nodes are distinguished as outputs. The value
at a node is computed by applying the corresponding function to the values of the
preceding nodes (see Fig. 1). The size of the circuit is the total number of its gates.

A formula is a circuit whose all gates have fanout at most 1. Hence, the underlying
graph of a formula is a tree. The leafsize of a formula is the number of input gates,
that is, the number of leaves in its tree, and the depth of a formula is the depth of its
tree. Note that the only (but crucial) difference of formulas from circuits is that, in the
later model, a result computed at some gate can be used many times with no need to
recompute it again and again, as in the case of formulas.

A DeMorgan circuit is a circuit whose inputs a variables and their negation, and
gates are fanin-2 AND and OR functions. That is, these are the circuits over the basis
{∧,∨,¬} where NOT gates are only applied to input variables. Such circuits are also
called circuits with tight negations. It can be easily shown (do this!) that any circuits
over {∧,∨,¬} can be reduced to this form by at most doubling the total number of
gates.

Circuits and formulas are “parallel” models: given an input vector x , we process
some pieces of x in parallel and join the results by AND or OR gates. The oldest
“sequential” model for computing boolean functions, introduced already in pioneer-
ing work of Shannon (1949) and extensively studied in the Russian literature since
about 1950, is that of switching networks; a “modern” name for these networks is
nondeterministic branching programs.

A nondeterministic branching program (or a switching-and-rectifair network) is a
directed graph G = (V, E) with two specified vertices s, t ∈ V , some of whose edges are
labeled by variables x i or their negations ¬x i . A labeled edge is also called a contact.
The graph may have multiple edges, i.e., several edges may have the same endpoints.
The size of G is defined as the number of contacts (labeled edges).

Each input a = (a1, . . . , an) ∈ {0,1}n switches the labeled edges on or off by the
following rule: the edge, labeled by x i , is switched on if ai = 1 and is switched off if
ai = 0; the edge, labeled by ¬x i , is switched on if ai = 0 and is switched off if ai = 1.

1The graphs of circuits are often drawn starting from the output gate(s) and going down to inputs. But
then we must let trees grow from sky to the earth. I will therefore sometimes use a more “nature friendly”
way in pictures, and will draw circuits starting from inputs.
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FIGURE 2. A switching network for the threshold-2 function
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FIGURE 3. Sequential connection corresponds to AND, and parallel
connection to OR.

A switching network G computes a boolean function in a natural way: it accepts the
input a if and only if there is a path from s to t along which all edges are switched
on by a. That is, each input switches the edges on or off, and we accept that input if
and only if after that there is a nonzero conductivity between the vertices s and t (see
Fig. 2).

It is important to note that switching networks include DeMorgan formulas as
their special case. Namely, it can be easily shown that DeMorgan formulas correspond
to a very special type of switching networks—so called Π-schemes—whose underlying
graph consists of parallel-sequential components.

PROPOSITION 1.1. Every DeMorgan formula can be simulated by a Π-scheme of the

same size, and vice versa.

PROOF. This can be shown by induction on the leafsize of a DeMorgan formula F .
If F is a variable x i or its negation ¬x i , then F is equivalent to a switching network
consisting of just one contact. If F = F1∧ F2 then, having switching networks S1 and S2

for subformulas F1 and F2, we can obtain a switching network for F by just identifying
the target node of S1 with the source node of S2. If F = F1 ∨ F2 then, having switching
networks S1 and S2 for subformulas F1 and F2, we can obtain a switching network
for F by placing these two networks in parallel by gluing their source nodes and their
target nodes (see Fig. 3). □

Another special version of switching networks is the model of “deterministic branch-
ing programs”. In the past decades, this model deserved much more attention than
switching networks. The reason for this interest is that the logarithm of the number of
nodes in such programs captures the space of deterministic Turing machines, and the
model itself is easier to analyze.

A deterministic branching program for a given boolean function f in n variables
x1, . . . , xn is a directed acyclic graph with one source node and two sinks, i.e., nodes
of out-degree 0. The sinks are labeled by 1 (accept) and by 0 (reject). Each non-sink
node has out-degree 2, and the two outgoing edges are labeled by the tests x i = 0
and x i = 1 for some i ∈ {1, . . . , n}. Such a program computes a boolean function
f : {0,1}n → {0,1} in a natural way: given an input vector a ∈ {0,1}n, we start
in the source node and follow the unique path whose tests are consistent with the
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FIGURE 4. A deterministic branching program computing x1 ⊕ x2 ⊕
x3 ⊕ x4. Each node is labeled by a variable x i . Dashed arrows corre-
spond to tests x i = 0 and the remaining arrows to test x i = 1. This
program is very specific: along every path each variable is tested only
once, and the variables are tested in the same order. Programs with
these two restrictions are known as ordered binary decision diagrams

(OBDDs).

corresponding bits of a; this path is the computation on a. This way we reach a sink,
and the input a is accepted iff this is the 1-sink (see Fig. 4).

Thus, if we remove the 0-sink (together with all edges entering it) in a determin-
istic branching program, we obtain a switching network with two restrictions:

a. every node has fanout at most 2, and
b. the two edges leaving the same node must be labeled by a variable and its

negation.

It is the second condition which makes such a network deterministic: every input
vector has a unique computation path. By the same reason, general switching networks
are also called “nondeterministic” branching programs: here one accepted input may
have many accepting paths from s to t.

A parity branching program is a nondeterministic branching program with the
“counting” mode of acceptance: an input vector a is accepted iff the number s-t paths
consistent with a is odd.

Branching programs are also called in the literature binary decision diagrams or shortly
BDDs. This term is especially often used in the circuit design theory as well as in other
fields where branching programs are used to represent boolean functions. Be how-
ever warned that the term “BDD” in such papers is often used to denote much weaker
model—that of OBDD, meaning oblivious read-once branching programs. These are de-
terministic branching programs of a very restricted structure as shown in Fig. 4: along
every computation path all variables are tested in the same order, and no variable is
tested more than once.

1.2. Random functions are complex

As mentioned above, we still cannot prove super-linear lower bounds for circuits
with AND, OR and NOT gates. This is in sharp contrast with the fact, proved 60 years
ago by Claude Elwood Shannon (1949), that most boolean functions require about
2n/n elementary operations. His argument was the first application of counting ar-
guments in boolean function complexity: count how many different boolean functions
in n variables can be computed using a given number of elementary operations, and
compare this number with the total number 22n

of all boolean functions.
Most of lower bounds in circuit complexity are asymptotic, that is, ignore the constant
multiplicative factors. Moreover, boolean function f : {0, 1}n → {0, 1} are parameter-
ized by their number of variables n. Hence, under a boolean function f we actually
understand an infinite sequence { fn | n = 1, 2, . . .} of boolean functions. So, the claim
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“ f requires Ω(ϕ(n)) gates” means that there is an absolute constant ε > 0 such that,
for infinitely many values of n, the function fn cannot be computed using fewer than
ε ·ϕ(n) gates.

THEOREM 1.2 (Circuits). Almost every Boolean function of n variables requires De-

Morgan circuits of size Ω(2n/n).

PROOF. Let F(n, t) be the number of circuits with n variables which have size ≤ t.
We will first show that

F(n, t)≤ ((2(t + 2n)2)t . (1.1)

Indeed, each gate in a circuit is assigned an AND or OR operator (2 possibilities) that
acts on two previous nodes, and each previous node can either be a previous gate (≤ t

choices), or a variable or its negation (≤ 2n choices) Thus each gate in a circuit has at
most 2(t + 2n)2 choices. Since we have t gates, (1.1) follows.

Notice that for t = 2n/(10n), the right-hand of (1.1) is approximately 22n/5 which
is � 22n

. Since there are exactly 22n

Boolean functions of n variables, almost every
Boolean function requires circuits of size large than 2n/(10n). □

By this theorem, the average circuit complexity of boolean function in n variables
is exponential in n. But, so far, nobody was able to prove that some specific boolean
function requires more than 5n gates!

In the class of formulas (fanout-1 circuits) some boolean function require even
more that 2n/n leaves.

THEOREM 1.3 (Formulas). Almost every boolean function of n variables requires De-

Morgan formulas of leafsize Ω
�
2n/ log n
�
.

PROOF. There are at most 2O(t) binary trees with at most t leaves, and for each
such tree, there are at most (2n+ 2)t possibilities to turn it into a DeMorgan formula
(2n input literals and two types of gates, AND and OR). Hence, the number of different
formulas of leafsize at most t is at most nO(t). Since, we have 22n

different boolean
functions, the lower bound t = Ω

�
2n/ log n
�

follows. □

THEOREM 1.4 (Switching Networks). Almost every boolean function of n variables

requires switching networks with Ω(2n/n) contacts.

PROOF. Every set of t edges is incident with at most 2t nodes. Using these nodes,
at most r = (2t)2 their pairs (potential contacts) can be built. Hence, the number of
switching networks with t edges is at most

�r+t

t

�
= O(t)t . Since there are at most (2n)t

ways to turn a graph with t edges into a switching network, at most (nt)O(t) different
boolean functions can be computed by switching networks with at most t contacts.
Comparing this number with the total number of all boolean functions, yields the
result. □

It is also known that all three lower bounds above are optimal up to constant
factors. These results, however, do not solve the problem: we know that almost all
boolean functions are complex, but no specific complex function is known. The highest
known lower bounds for circuits computing explicit boolean functions in n variables
have the form:

- 4n− 4 for circuits over {∧,∨,¬} computing x1⊕ x2⊕ · · · ⊕ xn, Redkin (1973);
- 5n− o(n) for circuits over the basis with all fanin-2 gates, except the parity

and its negation, Iwama et al. (2001);
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- 3n−o(n) for general circuits over the basis with all fanin-2 gates, Blum (1984);
- n3−o(1) for DeMorgan formulas, Hastad (1993);
- Ω(n2/ log2 n) for deterministic and Ω(n3/2/ log n) for nondeterministic branch-

ing programs, Nechiporuk (1966).

We have only listed highest bounds we currently have. The bounds for circuits and
formulas were obtained by gradually increasing previous lower bounds. A lower bound
2n for general circuits was first proved by Schnorr (1974). Then Paul (1977) proved
a 2.5n lower bound, Stockmayer (1977) gave the same 2.5n lower bound for a larger
family of boolean functions, and finally Blum (1984) proved the lower bound 3n−o(n).
For circuits over the basis with all fanin-2 gates, except the parity and its negation, a
lower bound of 4n was earlier obtained by Zwick (1991b). For formulas, the first
nontrivial lower bound Ω(n3/2) was proved by Subbotovskaya (1961), then a lower
bound Ω(n2) was proved by Khrapchenko (1971), and a lower bound of Ω(n5/2) by
Andreev (1985).

All the lower bounds for general circuits were proved using the so-called “gate-
elimination” argument. The proofs themselves consist of a rather involved case analy-
sis, and we will not present them here. Instead of that we will demonstrate the main
idea by proving weaker lower bounds.

1.3. A 3n lower bound for circuits

The gate-elimination argument does the following. Given a circuit for the func-
tion in question, we first argue that some variable (or set of variables) must fan out
to several gates. Setting this variable to a constant will eliminate several gates. By
repeatedly applying this process, we conclude that the original circuit must have had
many gates.

To illustrate the basic idea, we apply the gate-elimination argument to threshold
functions

Thn
k
(x1, . . . , xn) = 1 iff x1 + x2 + · · ·+ xn ≥ k .

THEOREM 1.5. Even if all boolean functions in at most two variables are allowed as

gates, the function Thn
2 requires at least 2n− 4 gates.

PROOF. The proof is by induction on n.
For n= 2 and n= 3 the bound is trivial.
For the inductions step, take an optimal circuit for Thn

2, and suppose w.l.o.g. that
the bottom-most gate g acts on variables x i and x j (where i 6= j), i.e. that this gate has
the form g = ϕ(x i, x j) for some ϕ : {0,1}2 → {0,1}. Notice that under the four pos-
sible settings of these two variables, the function Thn

k
has three different subfunctions

Thn−2
0 , Thn−2

1 and Thn−2
2 . It follows that either x i or x j fans out to another gate h, for

otherwise our circuit would have only two inequivalent sub-circuits under the settings
of x i and x j . Why? Just because the gate g = ϕ(x i , x j) can only take two values, 0
and 1.

Suppose now that it is x j that fans out to h. Setting x j to 0 eliminates the need
of both gates g and h. The resulting circuit computes Thn−1

2 , and by induction, has at
least 2(n− 1)− 4 gates. Adding the two eliminated gates to this bound shows that the
original circuit has at least 2n− 4 gates, as desired. □

Theorem 1.5 holds for circuits whose gates are any boolean functions in at most
two variables. For circuits over the basis {∧,∨,¬} one can prove a slightly higher lower
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FIGURE 5. The two cases in the proof of Theorem 1.6.

bound. For this we consider the parity function

⊕n(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn .

THEOREM 1.6. The minimal number of AND and OR gates in a circuit over {∧,∨,¬}
computing ⊕n is 3(n− 1).

PROOF. The upper bound follows since x ⊕ y is equal to (x ∧¬y)∨ (¬x ∧ y). For
the lower bound we prove the existence of some x i whose replacement by a suitable
constant eliminates 3 gates. This implies the assertion for n= 1 directly and for n≥ 3
by induction.

Let g be the first gate of an optimal circuit for ⊕n(x). Its inputs are different
variables x i and x j (see Fig. 5). If x i would have fanout 1, that is, if g would be
the only gate which x i is feeding in, then we could replace x j by a constant so that
gate g would be replaced by a constant. This would imply that the output became
independent of the ith variable x i in contradiction to the definition of parity. Hence, x i

must have fanout at least 2. Let g ′ be the other gate feeded in by x i . We now replace
x i by such a constant that g becomes replaced by a constant. Since under this setting
of x i the parity is not replaced by a constant, the gate g cannot be an output gate. Let
h be a successor of g. We only have two possibilities: either h coincides with g ′ or not.

Case (a): g ′ 6= h. Then we can set x i to a constant so that g will become set to a
constant. This will eliminate the need of all three gates g, g ′ and h.

Case (b): g ′ = h. In this case g has fanout 1. We can set x i to a constant so that
g ′ will become set to a constant. This will eliminate the need of all three gates g, g ′

and p.
In either case we eliminate at least 3 gates. □

1.4. Coin-flipping in circuits is useless

Probabilistic circuits have, besides standard inputs x1, . . . , xn, some specially de-
signed inputs r1, . . . , rm called random inputs. When these random inputs are chosen
from a uniform distribution on {0,1}, the output of the circuit is a random variable. A
probabilistic circuit C(x) computes a boolean function f (x) if

Pr[C(x) = f (x)]≥ 3/4 for each x ∈ {0,1}n .

There is nothing special about using the constant 3/4 here—one can take any constant
> 1/2 instead.

Can probabilistic circuits have much smaller size than usual (deterministic) cir-
cuits? A negative answer is given by the following
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THEOREM 1.7 (Adleman 1977). If a boolean function f in n variables can be com-

puted by a probabilistic circuit of size `, then f can be computed by a deterministic circuit

of size O(n`).

PROOF. Let C be a probabilistic circuit that computes f (x). Take k independent
copies of this circuit (each with its own random inputs), and consider the probabilistic
circuit Ck that computes the majority of the outputs of these k circuits. Since each
of these outputs is correct with probability p ≥ 3/4, Chernoff inequality yields that
Pr[Ck(x) 6= f (x)] ≤ e−Ω(k) for each x ∈ {0,1}n. Therefore, for k = Θ(n), there is a
setting of the random inputs, which always gives the correct answer. □

1.5. Recap: Normal forms and restrictions

A boolean function can be represented in several manners. The most commonly
used one is by means of a boolean (or propositional) formula in conjunctive (CNF) or
disjunctive (DNF) normal form. Let us shortly recall these concepts.

A literal is a boolean variable x i or its negation ¬x i; a negated variable is also
written as x i instead of ¬x i . Literals are also denoted as xσ

i
where x1

i
stands for x i and

x0
i

stands for ¬x i .
A clause is an OR of literals, whereas a monomial is an AND of literals. Clauses c

and monomials m containing a contradicting pair of literals are trivial: for them we
have c ≡ 1 and m ≡ 0. We will often identify clauses and monomials with the sets of
their literals. The length of a clause or a monomial is the number of literals in it.

A conjunctive normal form or CNF is an AND of clauses, whereas a disjunctive

normal form or DNF is an OR of monomials. A CNF is a k-CNF if each its clause
has length at most k.

Let f be a boolean function, and X = {x1, . . . , xn} the set of its variables. A partial

assignment (or restriction) is a function % : X → {0,1,∗}, where we understand ∗ to
mean that the corresponding variable is unassigned. Each such partial assignment %
yields a restriction (or a subfunction) f ↾% of f in a natural way:

f ↾%= f (%(x1), . . . ,%(xn)) .

Note that f ↾% is a function of the variables x i for which %(x i) = ∗. For example, if

f = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2)∧ (x1 ∨ x3)

and %(x1) = 1, %(x2) = %(x3) = ∗ then f ↾%= x2.
A 1-term of f is a partial assignment % such that f ↾%≡ 1. That is, a 1-term of f is

a consistent set of literals such that evaluating these literals to 1 forces the function to
output 1 independent on the values of the (possibly) remaining free variables. 0-terms

of f are defined dually: such are all partial assignments % such that f ↾%≡ 0. Minimal
under set inclusion 1-terms (resp., 0-terms) are called minterms (resp., maxterms)
of f .

Namely, a minterm of f is a restriction % such that f ↾%≡ 1 and which is minimal
in the sense that un-specifying every single value %(x i) ∈ {0,1} already violates this
property. The length of a minterm is the number n−|%−1(∗)| of assigned variables. Each
restriction % can be looked at as monomial. For example, the restriction %(x1) = 0,
%(x3) = 1 can be looked at as a monomial m = x1 ∧ x3. Hence, minterms of f are
monomials m such that m(a) ≤ f (a) for all input vectors a ∈ {0,1}n, but this does
not hold anymore if we remove at least one literal from m. Minterms of ¬ f are called
maxterms of f .
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FIGURE 6. Two DNF-trees of the same CNF f = (x1 ∨ x2 ∨ x3)(x1 ∨
x2 ∨ x4)(x2 ∨ x4). The second tree is obtained by parsing the clauses
of f in the inverse order.

If all the minterms of f have length at most k then, clearly, f has a k-DNF (take
the Or of all these minterms). But the opposite is false! Namely, f can have a k-DNF
even though some of its minterms are much longer than k, see Exercise 1.5.

In some lower bound arguments—like those for monotone circuits or constant
depth circuits—we need a way to switch between k-CNFs and k-DNFs; this is done by
so-called “switching lemmas.” A useful way to visualize this “switching” is via transver-
sal trees.

Let f = c1∧· · ·∧c` be a CNF. It will be convenient to identify clauses and monomials
with the sets of their literals. The DNF-tree T f of a CNF f is defined inductively as
follows (see Fig. 6).

a. The first node of T f corresponds to the first clause c1, and the outgoing |c1|
edges are labeled by the literals of c1.

b. Suppose we have reached a node v, and let m be the monomial consisting of
the labels of edges from the root to v.
- If m∩ ci 6= ; for all clauses ci of F , then v is a leaf.
- Otherwise, let ci be the first clause such that m∩ ci = ;. Remove from ci all

literals whose negations belong to m (if there are any) to obtain a clause c′
i
.

Then the node v has |c′
i
| outgoing edges labeled by the literals in c′

i
.

Each path from the root to a leaf of T f corresponds to a monomial of f (since each such
path intersects all its clauses). Hence, the OR over all paths gives us a DNF formula
for f . Note, however, that different orderings of clauses in a given CNF may lead to
DNF-trees of entirely different form (cf. Fig. 6).

Using such a tree representation we can, for example, immediately show that every
k-CNF f can be represented as DNF containing at most ki (instead of all 2i

�n
i

�
possible)

monomials of length i, for each i. This holds just because a DNF-tree of every k-CNF
has fanout at most k.

A boolean function f : {0,1}n → {0,1} is monotone if x ≤ y implies f (x) ≤ f (y),
where x ≤ y means that x i ≤ yi for all positions i (see Fig. 7).

Note that a minterm of a monotone boolean function is a minimal set of variables
which, if assigned the value 1, forces the function to take the value 1 regardless of the
values assigned to the remaining variables. Similarly, a maxterm of such a function is
a minimal set of variables which, if assigned the value 0, forces the function to take
the value 0 regardless of the values assigned to the remaining variables.

Note also that one set S can be both minterm and maxterm of the same function!
For example, if f (x1, x2, x3) outputs 1 iff x1 + x2 + x3 ≥ 2, then S = {1,2} is both a
minterm and a maxterm of f , because f (1,1, x3) = 1 and f (0,0, x3) = 0.
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n
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1

f = 1

f = 0

n

FIGURE 7. A distribution of the values of a monotone boolean function
in the binary n-cube {0,1}n. Along any path (or chain) from the all-0
vector 0n to the all-1 vector 1n, the function can only change its value
from 0 to 1 (not from 1 to 0), and can do this at most once.

Yet another special property of monotone functions, not shared by other boolean
functions, is that each such function f can be written as a monotone CNF f = c1 ∧
· · · ∧ cs as well as a monotone DNF f = m1 ∨ · · · ∨mt in a unique way. Here c1, . . . , c2

are all maxterms of f , and m1, . . . , mt are all minterms of f ; all they are monotone
(have no negated variables). Moreover, if we look at clauses/monomials as sets of
their variables, then these two families have the following cross-intersection property:
ci ∩m j 6= ; for all i, j: Would we have ci ∩m j = ; for some i and j, then we could set
all variables of ci to 0 and all remaining variables to 1 so that the resulting input vector
a ∈ {0,1}n would be forced to satisfy f (a) = 0, because ci(a) = 0, as well as f (a) = 1,
because m j(a) = 1, a contradiction.

Finally, note that there is a 1-to-1 correspondence between monotone boolean
functions f : {0,1}n → {0,1} and anti-chains in [n], that is, families F of subsets of
[n] no member of which is contained in another. Namely, given such an anti-chain F ,
we can associate with each its member S ∈ F a monomial m=

∧
i∈S x i , and the OR of

all these monomials gives a DNF of a monotone boolean function. The other direction
follows from the uniqueness of DNFs.

1.6. Combinatorial rectangles

Important objects when analyzing boolean circuits are so-called “combinatorial
rectangles.” These are special subsets of {0,1}n × {0,1}n, and are important when
dealing with formula size and circuit depth. We will use this concept quite often.

An n-dimensional combinatorial rectangle, or just a rectangle, is a non-empty Carte-
sian product S = S0 × S1 of two disjoint subsets S0 and S1 of vectors in {0,1}n. Vector
pairs e = (x , y) with x 6= y will be referred to as edges. A subrectangle of S is a subset
R ⊆ S which itself forms a rectangle. A boolean function f : {0,1}n → {0,1} separates

the rectangle S = S0 × S1 if

f (x) =

¨
0 for x ∈ S0,

1 for x ∈ S1.

If the sets S0 and S1 form a partition of {0,1}n, then the rectangle S = S0×S1 is called
a full rectangle. Note that every boolean function f : {0,1}n → {0,1} defines a unique
full rectangle

S f := f −1(0)× f −1(1) ,
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FIGURE 8. The rectangle S f of f when f = g ∧ h, and when f = g ∨ h.

which we will call the rectangle of f . Note also that we have much more rectangles
than boolean functions.

Having rectangles Sg := g−1(0)× g−1(1) and Sh := h−1(0)×h−1(1) of two boolean
functions g and h, we can compute the rectangle S f := f −1(0)× f −1(1) of their AND
f = g ∧ h by (see Fig. 8):

S0
f
= S0

g
∪ S0

h
and S1

f
= S1

g
∩ S1

h
, (1.2)

as well as of their OR f = g ∨ h by:

S0
f
= S0

g
∩ S0

h
and S1

f
= S1

g
∪ S1

h
. (1.3)

Important class of rectangles are monochromatic rectangles which are the rectan-
gles that can be separated by a single variable x i or by a negated variable ¬x i . That is,
a rectangle M = M0 ×M1 is monochromatic, if there exists an i ∈ {1, . . . , n} such that
x i 6= yi for all edges (x , y) ∈ M ; here x i is the i-th bit in x .

The partition numberD(S) of a rectangle S is the smallest number t such that S can
be decomposed into t disjoint monochromatic rectangles. Note that D(S) is monotone
under taking subrectangles: if R⊆ S is a subrectangle of S then D(R)≤D(S).

The following lemma reduces the (computational) problem of proving a lower
bound on the formula size to a (combinatorial) problem about decomposition of rect-
angles.

Let L( f ) be the smallest leafsize of a DeMorgan formula computing f .

LEMMA 1.8 (Rychkov 1985). For every boolean function f we have that

L( f )≥D(S f ) .

PROOF. Our goal is to show that the full rectangle S f of f can be decomposed into
at most L( f ) disjoint monochromatic rectangles. We argue by the induction on L( f ).

Base case. If L( f ) = 1 then f is just a single variable x i or its negation. In this
case S f itself is a monochromatic rectangle.

Induction step. Let t = L( f ) and assume that the theorem holds for all boolean
functions g with L(g) ≤ t − 1. Take a minimal formula for f , and assume that its
last gate is an And gate (the case of an Or gate is similar). Then f = g ∧ h for some
boolean functions g and h such that L(g) + L(h) = L( f ). On the other hand, the
rectangle S f of f can be computed from the rectangles Sg and Sh for functions g and
h using (1.2). By the induction hypothesis, the rectangle Sg can be covered by at most
L(g) disjoint monochromatic rectangles, and Sh can be also covered by at most L(h)

such rectangles. By restricting these coverings to S f , we obtain a covering of S f by at
most L(g) + L(h) = L( f ) disjoint monochromatic rectangles, as desired. □

It is not known whether some polynomial inverse of Rychkov’s lemma holds.
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RESEARCH PROBLEM 1.9. Does L( f )≤ D(S f )
O(1)?

What we know is only a “quasi-polynomial” inverse

L( f )≤D(S f )
2 log2D(S f )

which we will prove later in the part devoted to communication complexity (see
Lemma 8.9). Still, the latter inequality implies that boolean functions f in n vari-
ables such that D(S f ) ≥ 2(1−o(1))

p
n exist. Hence, in principle, the partition numberD(S) can also achieve super-polynomial lower bounds on the formula size.

1.7. Matrix complexity

As pointed by Sipser (1992), one of the impediments in the lower bounds area
is a shortage of problems of intermediate difficulty which lend insight into the harder
problems. Most of known problems (boolean functions) are either “easy” (parity, ma-
jority, etc.) or are “very hard” (clique problem, satisfiability of CNFs, and all other
NP-hard problems). On the other hand, there are fields—like graph theory or matrix
theory—with much richer spectrum of known objects. It makes therefore sense to look
more carefully at the graph structure of boolean functions. That is, to move from a “bit
level” to a more global one and look at a boolean function as a matrix or as a bipartite
graph. This results into a concept of “graph complexity.”

We can look at every boolean function f (u, v) in 2m variables as an n× n (0,1)
matrix M f with n= 2m whose rows and columns are indexed by vectors in {0,1}m and
entries are the values of f : M f [u, v] = f (u, v). We call M f the truth matrix of f ; such
a matrix is also called in the literature the “communication matrix of f .”

The truth matrix M f of f (x , y) should not be mixed with the rectangle S f of f !
The first is a mapping

M f : {0,1}m × {0,1}m→ {0,1} ,
whereas the second is a subset

S f = f −1(0)× f −1(1)⊆ {0,1}2m ×{0,1}2m .

Now, instead of computing a boolean function f starting from input literals, we can
consider the computation of its truth matrix M f starting from some “simplest” matrices.
As these simplest matrices we take “rectangular” matrices .

A rectangular matrix is a (0,1)matrix of rank 1. Each such matrix can be described
by a Cartesian product I × J corresponding to its all-1 submatrix. Boolean operation
on (0,1) matrices are computed component-wise.

The relation between boolean functions and matrices is given by the following
simple lemma. Here by a circuit we mean an arbitrary boolean circuit with literals—
variables and their negations—as inputs.

LEMMA 1.10 (Magnification Lemma for Matrices). In every circuit computing f (x , y)

it is possible to replace its input literals by rectangular matrices so that the resulting circuit

computes the matrix M f .

PROOF. Take an arbitrary circuit C(x , y) computing f . Replace each input literal
xσ

i
with σ ∈ {0,1} by the rectangular |I |×2m matrix, where I = {u ∈ {0,1}m | ui = σ},

and replace each input literal yσ
i

by the rectangular 2m × |J | matrix, where J = {v ∈
{0,1}m | vi = σ}. That the resulting circuit computes the matrix M f can be shown by
induction on the size c of our circuit.
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FIGURE 9. The adjacency matrix of a bipartite graph represented by
an OR function g =

∨
v∈A∪B zv , and the adjacency matrix of a bipartite

graph represented by a Parity function g =
⊕

v∈A∪B zv .

If c = 0 then f itself is a literal, and M f in this case is one of the rectangular
matrices we just defined. The induction step follows from the fact that all boolean
operations (this time gates) operate on matrices component-wise. □

REMARK 1.11. Note that rectangular matrices used in the proof are very special:
we only have 4m such matrices, and each of them either consists of a half of rows and
all columns, or of a half of columns and all rows. Namely, each of them is just the truth
matrix of a corresponding input literal, if we view literals as boolean functions of all
2m variables. Would we allow only these 4m rectangular matrices as inputs, then we
would also have a converse.

1.8. Graph complexity

In a similar way one can consider computations of graphs when inputs are some
simplest graphs, like stars or cliques.

Let G = (V, E) be an n-vertex graph, and let Z = {zv | v ∈ V } be a set of boolean
variables, one for each vertex. For two vertices u 6= v ∈ V , let au,v ∈ {0,1}n be a vector
with exactly two 1’s in positions u and v.

Say that a boolean function g(Z) in these variables represents the graph G if, for
every two vertices u 6= v ∈ V , we have that g(auv) = 1 iff u and v are adjacent. If the
graph is bipartite then we only require that this must hold for vertices u and v from
different color classes. Note that in both cases (bipartite or not), on input vectors with
fewer that two 1’s as well as on vectors with more than two 1’s the function can take
arbitrary values!

Another way to treat this concept is to look at edges as 2-element sets of ver-
tices, and boolean functions as accepting/rejecting subsets of vertices. Then a boolean
function represents a graph if it accept all edges and rejects all non-edges.

For example, a single variable zv represents a complete star around the vertex v,
that is, the graph consisting of all edges connecting v with the remaining vertices. If
A, B ⊆ V and A∩B = ;, then the boolean functions

�∨
u∈A zu

�
∧
�∨

v∈B zv

�
represents a

complete bipartite graph A× B. In particular, every graph G = (V, E) is represented by
∨

uv∈E

zuzv as well as by
⊕

uv∈E

zuzv .

But these representations of n-vertex graphs are not quite compact: the number of
AND gates in them may be as large as Θ(n2). If we allow unbounded fanin OR gates
then already 2n− 1 AND gates are enough:

∨

u∈S

zu ∧
� ∨

v:uv∈E

zv

�
,
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where S ⊆ V is an arbitrary vertex cover of G, that is, a set of vertices such that every
edge of G has is endpoint in S.

Now, given a model of boolean circuits, we can ask how many gates do we need to
represent a given graph? It turns out that in the case of bipartite graphs, this question
is related the circuit complexity of boolean functions. Namely, each boolean function
f (x , y) in 2m variables can be looked at as a bipartite graph G f = (V1 ∪ V2, E) with
color classes V1 = V2 = {0,1}m, in which two vertices (vectors) x and y are adjacent
iff f (x , y) = 1. Similarly, by fixing an encoding of vertices of a bipartite 2m×2m graph
G by binary vectors, we obtain a boolean function fG in 2m variables, a characteristic

function of this graph defined by: fG(x , y) = 1 iff x and y are adjacent in G.
Magnification Lemma!for graphs

LEMMA 1.12 (Magnification Lemma for Graphs). In every circuit computing f (x , y)

it is possible to replace its input literals by ORs of new variables so that the resulting circuit

represents the graph G f .

Instead of ORs one can take other boolean functions g(Z). We only need that
g computes 0 on the all-0 vector, and computes 1 on any input vector with exactly
one 1. In particular, parity functions also have this property, as well as any function
g(Z) = ϕ(
∑

w∈S zw) with ϕ : N→ {0,1}, ϕ(0) = 0 and ϕ(1) = 1 does.

PROOF. Just replace input literals in the circuit computing f (x , y) by ORs as fol-
lows:

xσ
i
7→
∨

u∈V1,ui=σ

zu and yσ
i
7→
∨

v∈V2,vi=σ

zu .

Observe that the adjacency matrices of the graphs, represented by these ORs, are pre-
cisely the rectangular matrices used in the proof of Lemma 1.10. □

This lemma is particularly appealing when dealing with circuits containing un-

bounded fanin OR (or unbounded fanin Parity gates) on the bottom, next to the inputs
layer. In this case the total number of gates in the circuit computing f and in the
obtained circuit representing the graph G f is just the same! Thus, if we could prove
that some explicit bipartite n× n graph with n = 2m cannot be represented by a such
circuit of size nε , then this would immediately imply that the corresponding boolean
function f (x , y) in 2m variables cannot be computed by a (non-monotone!) circuit of
size nε = 2εm, which is already exponential in the number of variables of f . This is
where the term “magnification” comes from.

We will use Lemma 1.12 in Section 10.4.1 to prove truly exponential lower bounds
for unbounded fanin depth-3 circuits with parity gates on the bottom layer. Now we
show that, even in the class of monotone circuits with fanin-2 AND and OR gates, any
lower bound larger than 12n for graphs would yield an exponential (in the number
of their variables) lower bound for boolean functions in the class of non-monotone
circuits with AND, OR and NOT gates.

1.9. Monotone 12n lower bound for graphs implies P 6= NP

Recall that a DeMorgan circuit consist of fanin-2 AND and OR gates, and has
all variables as well as their negations as inputs. A circuit is monotone if it has no
negated inputs. For a graph G let C+(G) be the smallest number of gates in a monotone
DeMorgan circuit representing G.
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PROPOSITION 1.13. For almost all bipartite n× n graphs G, we have

C+(G) = Ω

�
n2

log n

�
.

PROOF. Easy counting (as in the proof of Theorem 1.2) shows that there are at
most tO(t) DeMorgan circuits with at most t gates. Since we have 2n2

graphs, and
different graph require different circuit, the lower bound follows. □

Thus, overwhelming majority of graphs requires almost quadratic number of gates
to represent them. On the other hand, we are now going to show (Corollary 1.16
below) that any explicit graph G with C+(G) ≥ 12n+φ(n) would give us an explicit
boolean function f in 2m variables which cannot be computed by a non-monotone(!)
DeMorgan circuit with fewer than φ(2m) gates. That is, linear lower bounds on the
monotone complexity of graphs imply exponential lower bounds on the non-monotone
complexity of boolean functions.

When constructing the circuit for the graph G, as in the Magnification Lemma, we
replace 4m input literals in a circuit for fG by 4m = 4 log2 n disjunctions of 2n = 2m+1

(new) variables. If we compute these disjunctions separately then we need about
mn = n log n fanin-2 OR gates. The disjunctions can, however, be computed much
more efficiently—using only 12n OR gates—if we compute all these disjunctions si-

multaneously.

LEMMA 1.14. Any collection of k disjunctions over n variables can be computed using

at most n+ 2k+1 − k− 2 fanin-2 OR gates.

The proof of this lemma is a bit technical, and we postpone it to the end of this
section. For us is interesting the following its consequence.

COROLLARY 1.15. Let n be a power of two. Then any collection of p log2 n disjunctions

of variables x1, . . . , xn can be simultaneously computed by a circuit consisting solely of at

most 3pn fanin-2 OR gates.

PROOF. We want to compute m = p log2 n disjunctions. Split these disjunctions
into p groups, each containing k = log2 n disjunctions. Applying Lemma 1.14 to each
group separately, we get a circuit of size

p(n+ 2k+1 − k− 2) ≤ pn+ 2p2log2 n = 3pn . □

Let now f (x , y) be a boolean function in 2m variables, and G f = (V1, V2, E) the
corresponding bipartite n× n graph with V1 = V2 = {0,1}m. Let C( f ) be the smallest
size of a DeMorgan circuit computing f , and C+(G) the smallest size of a monotone
DeMorgan circuit representing the graph G.

COROLLARY 1.16. C( f )≥ C+(G f )− 12n.

PROOF. By Magnification Lemma, all 2m = 2 log2 n x-literals are replaced by a
disjunctions on the set {zu | u ∈ V1} of n variables. By Corollary 1.15 (with p = 2), all
these disjunctions can be computed using at most 6n fanin-2 OR gates. Since the same
holds also for y-literals, we are done. □

Hence, proving even linear lower bounds C+(G)≥ cn for graphs is a very difficult
task. Still, Exercise 1.4 shows that at least for c = 2 this can be easily done.
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PROOF OF LEMMA 1.14. Given a collection of k subsets S1, . . . ,Sk of [n] = {1, . . . , n},
our goal is to compute k disjunctions

∨

i∈S1

x i ,
∨

i∈S2

x i , . . .
∨

i∈Sk

x i , (1.4)

by a circuit only containing fanin-2 OR gates. For each 0-1 string w of length2 |w| ≤ k

define an auxiliary set Jw by

Jw = { j | j ∈ Si iff w(i) = 1} .
That is, we look at the first |w| sets S1, . . . ,S|w| and include an element j in Jw iff w is
the indicator vector for the occurrence of j in these sets. The sets Jw have the following
properties:

Jw ∩ Jw′ = ; for w 6= w′ and |w|= |w′|; (1.5)

Jw = Jw0 ∪ Jw1 for |w|< k; (1.6)

Si =
⋃

w:|w|=i−1

Jw1 for i = 1, . . . , k. (1.7)

The first property (1.5) follows from the observation that j ∈ Jw for some w of length
|w| = ` iff w is the indicator vector for the occurrence of j in the first ` sets S1, . . . ,S`,
and no element x can have two such vectors.

The second property (1.6) follows from the observation that an indicator vector w

for an element j of length |w| = i < k can be extended to two vectors w0 and w1 of
length i+ 1, and at least one of them must be an indicator vector for j of length i + 1,
depending on whether j belongs to the (i+ 1)-th set Si+1 or not.

To show the third property (1.7), observe that an element j can only then belong
to Jw1 if it belongs to S|w|+1 = Si . On the other hand, if j ∈ Si then j ∈ Jw1, where w is
the indicator vector for j of length i − 1.

We can now compute our k disjunctions (1.4) as follows. First compute all 2k

disjunctions
∨

i∈Jw
x i with |w| = k. Since, by (1.5), the corresponding sets Jw in this

case are disjoint, this can be done using at most n ORs. Next we use (1.6) to compute
nonempty disjunctions

∨
i∈Jw

x i for strings w of length |w| < k using the (already

computed) disjunctions
∨

i∈Jw0
x i and
∨

i∈Jw1
x i for longer strings:

∨

i∈Jw

x i =
∨

i∈Jw0

x i ∨
∨

i∈Jw1

x i .

This can be done using 2k − 1 additional ORs. Finally, we use (1.7) to compute our
original disjunction (1.4) by the formula

∨

j∈Si

x j =
∨

w:|w|=i−1

∨

j∈Jw1

x j .

This only requires |{w : |w|= i− 1}|− 1 = 2i−1− 1 new ORs, and thus, for i = 1, . . . , k

all together
k∑

i=1

(2i−1 − 1) = 2k − 1− k

2In this proof, |w| denotes the total number of bits in w, not the number of 1’s.
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ORs. The number of ORs used in the entire circuit computing all disjunctions (1.4)
does not exceed

n+ (2k − 1) + (2k − 1− k) = n+ 2k+1 − k− 2 . □

Exercises

EX. 1.1 (Minimal circuits are very unstable). Let F be a circuit over some basis
computing a boolean functions f , and assume that F is minimal, that is, no circuit with
a smaller number of gates can compute f . In particular, minimal circuits are “unstable”
with respect to deletion of its gates: the resulting circuit must make an error. Prove
that, in fact, minimal circuits are unstable in a much stronger sense: we cannot even
replace a gate by another one; the size of the resulting circuit remains the same but,
nevertheless, the function computed by a new circuit differs from that computed by
the original one.

More precisely, write g ≤ h for boolean functions in n variables, if g(v) ≤ h(v) for
all v ∈ {0,1}n. Call a boolean function h a neighbor of a boolean function g if either
(i) g ⊕δ ≤ h⊕δ⊕ 1 for some δ ∈ {0,1}, or g ⊕ x i ≤ g ⊕ h for some i ∈ {1, . . . , n}.
(a) Show that constants 0 and 1 are neighbors of all non-constant functions.
(b) Show that neighbors of the OR gate ∨ are all the two variable boolean functions,

except ⊕ and the function ∨ itself.
(c) Let F be a minimal circuit, e a gate in it of fanin m, and h be a boolean function in

m variables. Let Fe→h be the circuit obtained from F as follows: replace the boolean
function attached to the gate e by h and remove all the gates that become redundant
in the resulting circuit. Prove that Fe→h 6= F .

Hint: Case (i) can be proved as follows. Since F is optimal, we cannot replace the gate e by the

constant δ, i.e. there must be at least one vector v ∈ {0, 1}n such that Fe→δ(v) 6= F(v). This, in particular,

means that g( f1(v), . . . , fm(v)) = δ⊕1, where g is a boolean function attached to the gate e, and f1, . . . , fm

are boolean function computed at its inputs. Since g⊕δ≤ h⊕δ⊕1, we have that h( f1(v), . . . , fm(v)) = δ,

and hence, Fe→h(v) = Fe→δ(v) 6= F(v).

EX. 1.2 (Circuits as linear programs). Show that for every circuit C(x) over
{∧,∨,¬} there is a system L(x , y) of linear constraints (linear inequalities with co-
efficients ±1) such that:

a. For every x ∈ {0,1}n, C(x) = 1 iff there is an y such that all constraints in L(x , y)

are satisfied.
b. The number of constrains in L(x , y) is by only a constant fraction larger than the

number of gates in C .
c. The number of y-variables is at most the number of gates in C .

Hint: Introduce a variable for each gate. For an ∧-gate g = u ∧ v use the constraints 0 ≤ g ≤ u ≤ 1,

0 ≤ g ≤ v ≤ 1, g ≥ u+ v − 1. What constraints to take for ¬-gates and for ∨-gates? For the output gate

g add the constraint g = 1. Show that, if the x-variables have values 0 and 1, then all other variables are

forced to have value 0 or 1 equal to the output value of the corresponding gate.

EX. 1.3. Let G = ([n], E) be an n-vertex graph, and di be the degree of vertex i

in G. Then G can be represented by a monotone formula

F(X ) =
∨

i∈[n]
x i ∧
� ∨

j:{i, j}∈E

x j

�
.

A special property of this formula is that the ith variable occurs at most di + 1 times.
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Prove that, if G has no complete stars, then any minimal formula representing G

must have this property.
Hint: Take a minimal formula F for G, and suppose that some variable xi occurs mi > d + 1 times in

it. Consider the formula

F ′ = Fxi=0 ∨ Fi with Fi = xi ∧
� ∨

j:i j∈E

x j

�
,

where Fxi=0 is the formula obtained from F by setting to 0 all mi occurrences of the variable xi . Show that

F ′ represents G, and compute its leafsize to get a contradiction with the minimality of F .

EX. 1.4. Let Gn = Kn−1+E1 be a complete graph on n−1 vertices 1,2 . . . , n−1 plus
one isolated vertex n. Let F(x1, . . . , xn) be an arbitrary monotone circuit with fanin-2
AND and OR gates representing Gn.

a. Show: If n≥ 3 then every input gate x i for i = 1, . . . , n− 1 has fanout at least 2.
b. Use the previous claim to derive that Gn cannot be represented by a monotone

circuit using fewer than 2n− 6 gates.

EX. 1.5. The storage access function f (x , y) is a boolean function in n+ k vari-
ables x = (x1, . . . , xn) and y = (y1, . . . , yk) where n = 2k, and is defined as follows:
f (x , y) := xbin(y), where bin(y) =

∑k
i=1 yi2

i−1 is the integer whose binary representa-
tion is vector y .

Show that the monomial K = x1 x2 · · · xn is a minterm of f , but still f can be
written as a (k+ 1)-DNF.

Hint: For the second claim, observe that the value of f (x , y) depends only on k+ 1 bits y1, . . . , yk and

xbin(y).

Bibliographic Notes

Theorem 1.6 was proved by Schnorr (1974). The concept of graph complex-
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Formulas and Monotone Circuits



CHAPTER 2

Boolean Formulas: The Classics

If not stated otherwise, by a formula we will understand a DeMorgan formula,
that is, a formula with fanin-2 AND and OR gates whose inputs are variables and their
negations. By L( f )we denote the minimal leafsize and by Depth( f ) the minimal depth
of a DeMorgan formula computing a given boolean function f .

2.1. Size versus depth

Since the underlying graph of a DeMorgan formula is a binary tree, any formula
of depth d can have at most 2d leaves. This implies that, for every boolean function f ,

Depth( f )≥ log2 L( f ).

In fact, we also have a converse inequality:

THEOREM 2.1 (Spira 1971). For any f , Depth( f )≤ 1+ 3.5 log2 L( f ).

PROOF. We will prove a slightly more general claim: any DeMorgan formula of
leafsize m can be transformed into an equivalent formula of depth 1+2 · log3/2 m; two
formulas are equivalent if they compute the same boolean function.

We argue by induction on m. The basis case m = 1 it trivial. So, assume that the
claim holds for all formulas of leafsize at most m− 1, and take an arbitrary formula F

of leafsize m. Recall that the underlying graph of this formula is a binary tree with m

leaves.

CLAIM 2.2. In every binary tree with m leaves, there is a subtree with at least m/3
and at most 2m/3 leaves.

PROOF. Define the weight of a node in a tree as the number of leaves of the subtree
rooted in this node. Start from the root, and each time see whether some of two
successors has weight at most 2m/3. If not, then take any one of them and continue
the walk. Since the weight of a node is at most the sum of the weights of its two
successors, we will eventually find a desired subtree. □

By this claim, there must be a subformula G of F whose leafsize lies between m/3
and 2m/3. Let F0 (resp., F1) be F with the distinguished subformula G replaced by
constant 0 (resp., 1). It is not difficult to verify (do this!) that F is equivalent to

(F0 ∧¬G)∨ (F1 ∧ G) .

By the choice of G, the formulas G and ¬G have at most 2m/3 leaves, and formulas
F0 and F1 also have at most m − m/3 = 2m/3 leaves. By the induction hypothesis,
F0, F1, G,¬G are equivalent to formulas F ′0, F ′1, G′, (¬G)′ all of depth 1 plus two times
the logarithm base 3/2 of their respective leafsizes. Hence, if d(F) denotes the depth
of a formula F , then the formula

(F ′0 ∧ (¬G)′)∨ (F ′1 ∧ G′)

20
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is equivalent to F and has depth

d(F)≤ 2+max{d(F ′0), d(F ′1), d(G′), d(¬G)′)}

≤ 2+ 1+ 2 · log3/2

�2m

3

�

= 1+ 2 · log3/2

�2m

3
·

3

2

�

= 1+ 2 · log3/2 m ≤ 1+ 3.5 log2 m . □

A DeMorgan formula is monotone if it has no negated variables as inputs. Let
L+( f ) and Depth( f ) denote, respectively, the minimal leafsize and the minimal depth
of a monotone DeMorgan formula computing a monotone boolean function f .

THEOREM 2.3. For any monotone f , Depth+( f ) ≤ 1+ 3.5 log2 L+( f ).

PROOF. The proof is almost the same. Just take a formula F0 ∨ (F1 ∧ G) instead of
(F0 ∧¬G)∨ (F1 ∧ G) and use the monotonicity of F(x). □

2.2. The effect of random restrictions

Already in 1961, Subbotovskaya has found an argument to show that some boolean
functions require DeMorgan formulas of super-linear size. Her idea was, given a for-
mula F computing some function f , to set randomly some of the variables to constants
and show that this restriction reduces the size of F considerably whereas the resulting
subfunction of f is not much easier.

Let us recall some notation. Let f be a boolean function, and X = {x1, . . . , xn} the
set of its variables. A partial assignment (or restriction) is a function % : X → {0,1,∗},
where we understand ∗ to mean that the corresponding variable is unassigned. The
function from f by applying the partial assignment % is denoted by f ↾%.

Let Rk be the set of all partial assignments which leave exactly k variables unas-
signed. What we will be interested in is the random restrictions f ↾% that results from
choosing a random partial assignment from Rk.

The probability distribution of restrictions in Rk we will use is the following: ran-
domly assign k variables to be ∗, and assign all other variables to be 0 or 1 randomly
and independently.

The following lemma shows that a random restriction may substantially reduce
the size of a formula.

LEMMA 2.4 (Subbotovskaya 1961). Let f be a boolean function of n variables, and

let % be a random restriction from Rk. Then, with probability at least 3/4,

L( f ↾%)< 4 ·
�

k

n

�3/2
· L( f ) .

PROOF. Let F be an optimal DeMorgan formula for the function f of size s = L( f ).
Construct the restriction % in n− k stages as follows: At any stage, choose a variable
randomly from the remaining ones, and assign it 0 or 1 randomly. We analyse the
effect of this restriction to the formula F , stage-by-stage.

Suppose the first stage chooses the variable x i . When this variable is set to a
constant, then all the input gates e ∈ F , labeled by the literals x i and x i will disappear
from the formula F . By averaging, the expected number of such literals is s/n.

In fact, the formula is likely to be reduced even further. For each of the input gates
e, labeled by x i or x i , consider the gate which e feeds into. For example, suppose the
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gate is e ∧ G for some subformula G. We may assume w.l.o.g. that G does not contain
the literals x i or x i (show this!).

Now, if the variable x i is assigned 0, then the subformula G will disappear from
the formula F , thereby erasing at least one more input gate. Since x i is assigned 0 or
1 randomly (with probability 1/2), we expect at least 1

2
· s

n
input gates to disappear

because of these secondary effects. In total, we thus expect at least

s

n
+

s

2n
=

3s

2n

input gates e ∈ F to disappear in the first stage, yielding a new formula with expected
size at most

s−
3s

2n
= s ·
�

1−
3

2n

�
≤ s ·
�

1−
1

n

�3/2
.

The succeeding stages of the restriction can be analyzed in the same way. After
each stage the number of variables decrements by one. Hence, after n− k stages, the
expected size E

�
L( f ↾%)
�

of the final formula is at most

s ·
�

1−
1

n

�3/2
·
�

1−
1

n− 1

�3/2
· . . . ·
�

1−
1

k+ 1

�3/2
= s ·
�

k

n

�3/2
.

By Markov’s inequality, the probability that the random variable L( f ↾%) is more than 4
times its expected value is less than 1

4
, which completes the proof. □

COROLLARY 2.5. Let f be a boolean function of n variables, and 1 ≤ k ≤ n be an

integer. Then there exists a restriction % ∈Rk such that

L( f ↾%)≤ 4 ·
�

k

n

�3/2
· L( f ) .

EXAMPLE 2.6. Let f = x1 ⊕ x2 ⊕ · · · ⊕ xn. Applying Corollary 2.5 with k = 1 we
have

1≤ L( f ↾%)≤ 4 ·
�

1

n

�3/2
· L( f ) ,

which gives the lower bound L( f ) = Ω(n3/2).

2.3. An n2.5 lower bound

Andreev (1987) used Subbotovskaya’s argument to prove the first super-quadratic
lower bound for formula size.

Let X be a set of n boolean variables, where n is a power of 2. Take b := log2 n

and m= n/b, and arrange the variables in X into a b×m matrix

X =




x11 x12 · · · x1m

x21 x22 · · · x2m

· · ·
xb1 xb2 · · · xbm


 .

Given a boolean function ϕ : {0,1}b → {0,1} on b variables, let fϕ(X ) denote the
following boolean function on n= bm variables X

fϕ(X ) = ϕ

� m⊕

j=1

x1 j ,
m⊕

j=1

x2 j , . . . ,
m⊕

i= j

xb j

�
.
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That is, we compute the parity of bits in each row of X and apply ϕ to these parities.

LEMMA 2.7. Let % be a random restriction from Rk where k = db ln(4b)e. Then with

probability at least 3/4, the restriction % assigns at least one ∗ to each of the b rows of X .

PROOF. Observe that the restriction % assigns a ∗ to each single variable with prob-
ability
�n−1

k−1

���n
k

�
= k

n
. By the union bound, the probability that some of b rows will

get no ∗ is at most

b ·
�

1−
k

n

�m
≤ b · e−

km

n ≤ b · e− ln(4b) = 1/4= 3/4 . □

Let now An be a boolean function in 2n variables defined as follows. The first
n = 2b variables, b = log2 n, specify the truth table of a boolean function ϕ of b

variables. Then, the value of An is defined to be the value of fϕ(X ), where X is the set
of remaining n= bm variables.

THEOREM 2.8. L(An) = Ω
�

n5/2−o(1)
�

.

PROOF. Let f = An and let ϕ be an arbitrary boolean function in b variables. By
Lemma 2.7, we have that with probability at least 3/4, the function ϕ is a subfunction
of fϕ↾%, and hence,

Pr[L( fϕ↾%)≥ L(ϕ)]≥
3

4
.

On the other hand, by Lemma 2.4,

Pr[L( fϕ↾%) ≤ 4 ·
�

k

bm

�3/2
· L( fϕ)] .

Thus, there must be a restriction % ∈Rk for which both these events happen, implying
that

L( fϕ)≥
1

4
·
�

bm

k

�3/2
· L( fϕ↾%)≥

1

4
·
�

bm

k

�3/2
· L(ϕ). (2.1)

We already known (Theorem 1.3) that, for almost all boolean functions ϕ in b vari-
ables,

L(ϕ) = Ω

�
2b

log b

�
.

Taking any of these “most complicated” functions ϕ we get from (2.1) that L( fϕ) is at
least about �

bm

k

�3/2
·

2b

log b
= Ω

�
n5/2

log n · log log n

�
. (2.2)

That is, the function An has a subfunction whose leafsize is at least this number and,
in particular, is at least Ω

�
n5/2−o(1)
�

. □

2.4. Nechiporuk’s theorem

The arguments above only work for DeMorgan formulas, that is, formulas over
the basis {∧,∨,¬}. Nechiporuk (1966) has found another argument which works for
binary formulas (or formulas over universal basis) where all 24 = 16 boolean functions
in two variables as gates are allowed as gates. Actually, his argument works for circuits
using any c-variable boolean functions as gates, as long as c is an absolute constant,
independent of the number n of variables of the boolean function we want to compute.
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Nechiporuk’s idea is a refinement of that used by Shannon: if a function f has
many different subfunctions, then any formula computing f must also have many dif-
ferent sub-formulas, implying that the original formula for f must be large. To realize
this idea, we have only relate the number of different subfunctions with the formula
size.

A subfunction of a boolean function f (X ) on Y ⊆ X is a function obtained from
f by setting all the variables of X − Y to constants. A subfunction of a formula F is
the subfunction of the boolean function it computes. Note that the number of different
subfunctions is at most 2|Y | and at most 2|X−Y |. Intuitively, if f has many subfunctions,
then it is complicated and hence should require large formulas. This intuition was
made precise by Nechiporuk (1966). We will derive his theorem from the following
more general result.

For a boolean function (or a formula) F , let SY (F) be the collection of functions g

on a variable set Y for which either g or ¬g is a subfunction of F . That is, we include
a function g is SY (F) is at least one of g and ¬g is a subfunction of F . Let sizeY (F) be
the number of occurrences of variables of Y in a boolean formula F . A binary formula
is a formula where all boolean functions in at most 2 variables are allowed as gates.

LEMMA 2.9. For every binary formula F and every variable set Y , we have

2|SY (F)|+ 1≤ 5sizeY (F) . (2.3)

PROOF. The lemma is proved by the induction on the leafsize of F . The base case
F = x i of F = ¬x i divides into two sub-cases (i ∈ Y or i 6∈ Y ). Both sub-cases satisfy
the claim, because in both of them we have that |SY (F)| ≤ 2.

Assume now by induction that F = F1 ∗ F2, where F1 and F2 satisfy the claim, and
∗ is a binary operation. For brevity, let S1 = SY (F1) and S2 = SY (F2). Consider the
following two collections of boolean functions on Y :

T = {g1 ∗ g2 : g1 ∈ S1 and g2 ∈ S2} and T ′ = {¬g : g ∈ T} .
Since Si (i = 1,2) contains every subfunction of F together with its negation, we have
that

SY (F)⊆ T ∪ T ′ ∪ S1 ∪ S2 .

Since sizeY (F1) + sizeY (F2) = sizeY (F), we obtain

2|SY ( f )|+ 1≤ 2 · (|T |+ |T ′|+ |S1|+ |S2|) + 1

≤ 4|S1||S2|+ 2|S1|+ 2|S2|+ 1

= (2|S1|+ 1) · (2|S2|+ 1)

≤ 5sizeY (F1) · 5sizeY (F2) = 5sizeY (F). □

We can now give a general lower bound for formula size.
Let f be a boolean function in n variables, and let LU( f ) denote the smallest

leafsize of a binary formula computing f . Fix a partition of the variable set [n] into
m disjoint subsets Y1, . . . , Ym. For every i ∈ [m] let ci( f ) be the number of distinct
subfunctions of f on the variables Yi obtained by fixing the remaining variables to
constants in all possible ways.

THEOREM 2.10 (Nechiporuk 1966).

LU( f )≥
m∑

i=1

log5

�
2ci( f ) + 1
�

.
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PROOF. Take an arbitrary binary formula F for f . Since the Yi ’s are disjoint, the
leafsize of F is equal to

∑m
i=1 sizeYi

(F). Since clearly |SYi
(F)| ≥ ci( f ), the desired lower

bound on this sum follows directly from (2.3). □

A standard example of a function with many subfunctions is the element dis-

tinctness function. This function takes a string s1, . . . , sm of m elements of the set
[m2] = {1, . . . , m2} and outputs 1 iff all the si are distinct. If we encode the elements
of [m2] by binary strings of length 2 log m, then we obtain a boolean version of this
function in n = 2m log m variables. Consider the input vector x ∈ {0,1}n to represent
m strings s1, . . . , sm each of length 2 log m where n = 2m log m. Define the function
EDn so that it is 1 iff all the si are distinct.

THEOREM 2.11 (Element Distinctness Function).

LU(EDn) = Ω
� n2

log n

�
.

PROOF. Let f = EDn and take a partition Y1, . . . , Ym of the variables of f according
to the blocks s1, . . . , sm. We claim that for each of these m blocks we have

N ≥
�

m2

m− 1

�
≥
�

m2

m− 1

�m−1

= 2Θ(m log m)

different subfunctions of our function f . Indeed,
� m2

m−1

�
is the number of ways to chose

a string a = (a2, . . . , am) with all the ai distinct. If b = (b2, . . . , bm) is another such
string, then there must be an ai such that ai 6∈ {b2, . . . , bm}. But for such an ai , the
subfunction defined by a outputs 0 on input ai , whereas that defined by b outputs 1
on the same input ai . Hence, all the subfunctions are distinct.

Since log5 N = Ω(m log2 m) = Ω(n) and m = Ω(n/ log n), Nechiporuk’s theorem
yields the desired lower bound on the leafsize. □

2.5. Khrapchenko’s theorem

For DeMorgan formulas, we have yet another lower bounds argument, due to
Khrapchenko (1971). He used this argument to prove a lower bound n2 for the par-
ity function f (x1, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn. Later, Rychkov (1984) observed that
the essence of Khrapchenko’s argument is more general: it reduces the lower bounds
problem for DeMorgan formulas to a combinatorial problem about the covering of the
rectangle

S f = f −1(0)× f −1(1)

by pairwise disjoint monochromatic rectangles (see Lemma 1.8):

L( f )≥D(S f ) ,

where D(S) is the smallest number t such that S can be decomposed into t disjoint
monochromatic rectangles. We can use Rychkov’s lemma to derive the well-known
lower bound due to Khrapchenko (1971).

The Hamming distance dist(x , y) between two vectors x and y is the number of
positions in which these two vectors differ. Intuitively, if S f contains many edges (x , y)

of distance 1, then every formula separating these edges must be large, since the for-
mula must distinguish many pairs of “very similar” inputs (they differ in just one bit).
The following theorem of Khrapchenko makes this intuition precise.
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THEOREM 2.12 (Khrapchenko 1971). For every boolean function f we have that

L( f )≥D(S f )≥
|Y |2

|S f |
where Y = {(x , y) ∈ S f | dist(x , y) = 1} .

PROOF. The main property of the set Y is accumulated in the following

CLAIM 2.13. If M = M0 ×M1 is a monochromatic subrectangle of S f , then

|M ∩ Y |2 ≤ |M0| · |M1| .
PROOF. Since the rectangle M = M0 ×M1 is monochromatic, each element of M0

differs from each element in M1 in one particular position j, whereas (x , y) is in Y

only if x and y differ in exactly one position. Hence, for any given x ∈ M0, the only
possible y ∈ M1 for which (x , y) ∈ Y is one which differs from x exactly in position j.
As a result, we have |M ∩ Y | ≤ |M0| and |M ∩ Y | ≤ |M1|, and the desired upper bound
on |M ∩ Y |2 follows. □

Consider now a partition M1, . . . , Md of S f into d =D(S f ) disjoint monochromatic
rectangles, as in Rychkov’s lemma. Since the rectangles are disjoint and cover the
whole rectangle S f , we have that |Y |=

∑d
i=1 |Mi ∩ Y | and hence,

|Y |2 =
� d∑

i=1

|Mi ∩ Y |
�2
≤ d

d∑

i=1

|Mi ∩ Y |2

≤ d ·
d∑

i=1

|M0
i
| · |M1

i
|= d ·

d∑

i=1

|Mi |= d · |S f | ,

where the first inequality follows from the Cauchy–Schwarz inequality

(

d∑

i=1

ai bi)
2 ≤ (

d∑

i=1

a2
i
) · (

d∑

i=1

b2
i
) . □

Khrapchenko’s theorem can be used to show that some explicit boolean functions
require formulas of quadratic size. Consider, for example, the parity function f =

x1 ⊕ · · · ⊕ xn, where n is a power of 2. Then |S f | = 2n−1 · 2n−1, whereas |Y | = n2n−1.
Hence,

L(x1⊕ · · · ⊕ xn) ≥
n222(n−1)

22(n−1)
= n2 .

2.6. Complexity is not convex

Khrapchenko’s measure is of the form

µ(R) := |R| ·ϕ
� |Y ∩ R|
|R|

�
(2.4)

where Y = {(x , y) ∈ R | dist(x , y) = 1} and ϕ(x) = x2. Exercise 2.2 shows that
this measure cannot yield larger than Ω(n2) lower bounds. All subsequent attempts to
modify his measure with the goal to brake the "n2 barrier" failed (so far). So, what is
bad with this measure? Perhaps larger lower bounds can be obtained by taking other
subsets Y of special entries and/or using some other functions ϕ(x) instead of x2?

The answer is somewhat disappointing. Namely, it turns out that the reason for the
failure of Khrapchenko-type measures is much deeper than expected: for any choice
of Y ⊆ S and for every convex function ϕ(x), the resulting measure is convex, and
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convex measures cannot yield super-quadratic lower bounds. To show this, we first
define what is meant under a “convex” rectangle measure.

Let R be a rectangle, and M1, . . . , Mt be all monochromatic subrectangles of R. A
fractional partition of R is just a sequence r1, . . . , rt ∈ [0,1] of real numbers such that

∑

i:e∈Mi

ri = 1 for all e ∈ R .

If χS is the characteristic function of a rectange S, that is, χS(e) = 1 iff e ∈ S, then this
condition can be written as

χR =

t∑

i=1

ri ·χMi
.

We will shorten this last condition as

R =

t∑

i=1

ri ·Mi .

Note that every fractional partition with all ri in {0,1} is just a partition of R in a usual
sense.

DEFINITION 2.14 (Convex measures). A rectangle function is a mapping µ that as-
signs to each rectangle R a real number µ(R). Such a function is convex if, for every
sequence r1, . . . , rt of real numbers in [0,1],

R=

t∑

i=1

ri ·Mi implies µ(R)≤
t∑

i=1

ri ·µ(Mi) . (2.5)

A rectangle function µ is a rectangle measure if it is normalized, that is, if µ(M)≤ 1 for
any monochromatic rectangle M .

Hence, if µ(R) is a rectangle measure, then its convexity just means that

µ(R)≤ π(R) ,
where π(R) is the fractional partition number of a rectangle R defined by:

π(R) =min
t∑

i=1

ri ,

where the minimum is over all fractional partitions r1, . . . , rt of R.
The following is an analogon of Khrapchenko’s theorem for fractional partition

number.

THEOREM 2.15. For every rectangle R we have that

π(R)≥
|Y |2

|R| , where Y = {(x , y) ∈ R | dist(x , y) = 1} .

PROOF. Applying the duality for linear programs, one can write the fractional par-
tition number as

π(R) =max
w

∑

e∈S

w(e) ,

where the maximum is over all functions w : R→ R satisfying the constraint
∑

e∈M

w(e)≤ 1
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for all monochromatic rectangles M ⊆ R. Hence, in order to prove a lower bound
π(R) ≥ t it is enough to find at least one weight function w : R → R such that∑

e∈S w(e)≥ t, and the weight of each monochromatic rectangle does not exceed 1.
We define the weight w(e) of each edge e ∈ R by:

w(e) =

�
p−1 if e ∈ Y ,
−p−2 otherwise,

where p > 0 is a parameter to be specified soon. Since only entries of Y have positive
weights, the heaviest rectangles M are the square ones with exactly one entry from Y

in each row and column. For a k× k such square we have
∑

e∈M

w(e) =
k

p
−

k(k− 1)

p2 ≤
k

p

�
1−

k− 1

p

�
≤ 1 .

Indeed, if k ≥ p + 1 then the expression in the parenthesis is at most 0, and if k ≤ p

then both terms are at most 1. Hence, w is a legal weight function, and we obtain

π(R)≥
∑

e∈S f

w(e) =
|Y |
p
−
|R| − |Y |

p2 =
|Y |
p

�
1−
|R| − |Y |

p|Y |
�

.

For p = 2|R|/|Y |, the expression in the parenthesis is at least 1/2, and we obtain

π(R)≥
|Y |2

4|R| . □

Hence, one can obtain quadratic lower bounds using the fractional partition num-
ber, as well. We now show that this is actually all what we can get using any convex
rectangle measure.

THEOREM 2.16. If a rectangle measure µ is convex, then µ(R) = O(n2) for every

n-dimensional rectangle R.

PROOF. Associate with each subset I ⊆ [n] = {1, . . . , n} the following two parity

rectangles.
SI = {x | ⊕i∈I x i = 0} × {y | ⊕i∈I yi = 1}

and
TI = {x | ⊕i∈I x i = 1} × {y | ⊕i∈I yi = 0} .

Hence, monochromatic rectangles correspond to the case when |I | = 1. There are
exactly 2n+1 parity rectangles.

CLAIM 2.17. Every edge (x , y) ∈ {0,1}n × {0,1}n such that x 6= y belongs to 2n−1

parity rectangles.

PROOF. For I ⊆ [n], let vI ∈ {0,1}n be its incidence vector. If x 6= y , then x ⊕ y

is not a zero vector. Since each nonzero vector is orthogonal over GF(2) to exactly
half of the vectors in {0,1}n, this implies that precisely 2n−1 of the vectors vI are non-
orthogonal to x⊕ y . This means that (x , y) belongs to precisely 2n−1 of the sets SI ∪TI .
Since SI ∩ TI = ;, we are done. □

Let now R be an n-dimensional rectangle. LetRpar be the set of all parity rectangles
SI ∩ R and TI ∩ R restricted to R. For counting reasons, we shall understand Rpar as a
multi-set, elements of Rpar corresponding to different parity rectangles are considered
different. Under this provision, Rpar has size 2n+1 and by Claim 2.17 every edge in S

is contained in exactly 2n−1 elements of Rpar.
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It can be shown that, for every I ⊆ [n], each of two I -parity rectangles can be cov-
ered by at most 4|I |2 disjoint monochromatic subrectangles (see, for example, Propo-
sition 8.2 in Section 8). LetMI be the set of all these (at most 8|I |2) monochromatic
rectangles, andM be the union of allMI ’s. Since µ is a rectangle measure, we have
that µ(M)≤ 1 for all M ∈M .

Since the rectangles in eachMI are disjoint, we have that each e ∈ R belongs to
precisely 2n−1 rectangles in M . Hence, we can obtain a fractional partition of R by
setting rM = 2−(n−1) for all rectangles M ∈ M , and rM = 0 for all other rectangles.
Since |MI | ≤ 8|I |2 ≤ 8n2 for each I , the convexity of our measure µ implies that

µ(R)≤
∑

M∈M
rM ·µ(M)≤
∑

M∈M
rM =
∑

I

∑

M∈MI

2−(n−1)

≤ 2−(n−1)
n∑

i=0

�
n

i

�
8n2 = 8n22−(n−1)2n = 16n2 . □

Call a rectangle function µ additive if µ(R) =
∑

e∈Rµ(e). It can be shown (Exer-
cise 2.3) that for such functions we have equality in (2.5). A rectangle function µ is
positive if µ(R)> 0 for every non-empty rectangle R.

Consider now Khrapchenko-type rectangle functions, that is, functions µ of the
form

µ(R) = s(R) ·ϕ
�

w(R)

s(R)

�
, (2.6)

where ϕ : R→ R is convex function, w(R) is some “weight” function of rectangles, and
s(R) is some additive and positive rectangle function, the “size” of rectangles.

THEOREM 2.18. A rectangle function µ defined by (2.6) is convex if either w(R) is

additive, or w(R) is convex and ϕ is nondecreasing.

PROOF. To prove the first claim, assume that both w(R) and s(R) are additive, and
let R1, . . . ,Rm, r1 . . . , rm be a fractional partition of R. Set si = s(Ri) and wi = w(Ri). By
Exercise 2.3, we have that w(R) =

∑
i ri ·wi and s(R) =

∑
i ri · si .

For a real convex function ϕ, numbers x i in its domain, and positive weights ai ,
Jensen’s inequality states that

ϕ

�∑
ai x i∑
ai

�
≤
∑

aiϕ(x i)∑
ai

. (2.7)

Applying this we obtain (where the sums are over all i with ri > 0):

µ(R) = s(R) ·ϕ
�

w(R)

s(R)

�

=

�∑

i

risi

�
·ϕ
�∑

i ri wi∑
i risi

�
Exercise 2.3

≤
∑

i

risi ·ϕ
�

wi

si

�
(2.7) with ai = risi and x i = wi/si

=
∑

i

riµ(Ri) .

If w(R) is convex and ϕ is nondecreasing, then we can replace the second equality by
inequality, and the desired inequality µ(R)≤

∑
i ri ·µ(Ri) still holds. □
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Note that Khrapchenko’s measure (2.4) has the form (2.6), where ϕ(x) = x2 is a
nondecreasing convex function, and both s(R) = |R| and w(R) = |Y ∩ R| are positive
additive functions. Hence, this measure is convex.

By Theorem 2.16, neither taking another sets Y of “special” edges nor taking an-
other convex function ϕ can lead to a better rectangle measure than Khrapchenko’s
one: none of them can yield super-quadratic lower bounds on the formula size.

Call rectangle measures of the form (2.6) polynomial measures of degree k if ϕ(x) =
xk, k ≥ 1. That is, each such measure has the form

µ(R) =
w(R)k

s(R)k−1
,

where w(R) is some additive rectangle function, and s(R) is some additive and positive
rectangle function.

We have seen that no polynomial measure of degree k ≥ 2 can yield a super-
quadratic lower bound. But what about measures of smaller degree—can we then
obtain larger lower bounds?

If the weight function w(R) is additive positive, then the answer is negative.

PROPOSITION 2.19. Let R be an n-dimensional rectangle. If a polynomial measure µ

of degree k uses positive weight function w(R), then

µ(R)≤ (2n)k .

Note that for k < 2 this is o(n2).

PROOF. The normalization condition µ(M)≤ 1, for a monochromatic rectangle M

implies that
w(M)≤ s(M)1−1/k .

Since every n-dimensional rectangle can be (non-disjointly) covered by at most 2n

monochromatic rectangles Mi,ε, we have

w(R)≤
∑

i,ε

w(Mi,ε)≤
∑

i,ε

s(Mi,ε)
1−1/k ≤ 2n · s(R)1−1/k .

Dividing by s(R)1−1/k and raising to the power k we get the inequality. □

In Proposition 2.19 we have two requirements on the weight function w(R): it
must be additive and positive. Let us look at what happens, if we relax any of these
two conditions.

First, let us require that w(R) is positive but not necessarily additive. Namely, say
that a rectangle function µ is subadditive if µ(R) ≤ µ(R1) + µ(R2), as long as R is a
union of two disjoint rectangles R1 and R2.

If we define w(R) = L(R) to be the smallest size of a formula separating R, then
w(R) is subadditive (show this!) and positive. Take s(R) := |R|. The resulting rectangle
function µ(R) = w(R)k/|R|k−1 is normalized since L(R) is normalized. Most boolean
functions in n variables, and hence, most n-dimensional rectangles R require L(R) ≥
2n(1−o(1)). For such rectangles R, measure µ(R) gets asymptotically close to the values

2kn

22n(k−1)
= 2n(2−k) .

Hence, polynomial measured of degree k < 2, based on positive and subadditive
weight measures w(R) can yield even exponential lower bounds!
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But what is we would require the weight function w(R) be additive and allow
to take also negative values? That such measures, even for k = 1, can yield quadratic
lower bounds, was show in the proof of Theorem 2.15. The measure w(R) =

∑
e∈R w(e)

constructed there is additive, but takes positive as well as negative values.

RESEARCH PROBLEM 2.20. Can rectangle measures µ(R) = w(R)k/|R|k−1 with 1 ≤
k < 2 yield super-quadratic lower bounds when the weight function w(R) is an additive,

but not necessarily nonnegative rectangle function?

Most of the known rectangle measures are defined by associating with a boolean
function f in question, a matrix A : S f → F over some field F. Given a matrix parameter
p(A) (rank, norm, etc.) one obtains a rectangle function R 7→ p(AR), where AR denotes
the restriction of A to the rectangle R obtained by setting to 0 all entries outside R. To
have a rectangle measure we need to normalize this function. This is usually made by
taking

µA(R) =
p(AR)

C
, where C =max

M
p(AM )

and the maximum is over all monochromatic subrectangles M of the “ambient” rectan-
gle S f ; C is the normalization constant.

In matrix terms, the convexity condition turns to: for every sequence r1, . . . , rt of
real numbers in [0,1],

AR =

t∑

i=1

ri · AMi
implies p(AR)≤

t∑

i=1

ri · p(AMi
) . (2.8)

Interesting measures can be obtained from matrix norms. A mapping A 7→ ‖A‖ is a
matrix norm if it satisfies all the properties of vector norms: (i) ‖A‖ ≥ 0 with equality
if and only if A= 0; (ii)‖rA‖ = |r| · ‖A‖ for all numbers r and all matrices A, and (iii)
‖A+ B‖ ≤ ‖A‖+ ‖B‖ for all matrices A and B.

In particular, any rectangle function of the form µ(R) := ‖AR‖ is convex. Moreover,
by Theorem 2.18, if ϕ is a non-decreasing convex real function and s is an additive
rectangle function, then the rectangle function

µ(R) = s(R) ·ϕ
�‖AR‖

s(R)

�
, (2.9)

is also convex, and hence cannot give better than O(n2) lower bounds.
The spectral norm of A is defined by

‖A‖2 = max
x ,y 6=0

|x>Ay |
‖x‖2‖y‖2

,

where ‖x‖2 = (
∑

i x2
i
)1/2 is the Euclidean norm of x . Associate with every matrix A the

following rectangle measure

µA(R) =
‖AR‖22

maxM ‖AM‖22
, (2.10)

where the maximum is over all monochromatic subrectangles M of R. It can be shown
that this measure is convex (Exercise 2.7).

Another important parameter of matrices is their rank. Given an n× n matrix A

(over some field), we can associate with it the following measure for n-dimensional
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rectangles:

%A(R) =
rk(AR)

maxM rk(AM )
, (2.11)

where the maximum is over all monochromatic subrectangles of R. If rk(AR) = 0 then
we set %A(R) = 0.

Subadditivity of rank implies that these measures are subadditive. But it turns out
that rank-based measures are not convex.

PROPOSITION 2.21. For any even integer n there is an n× n (0,1) matrix A such that

the measure %A is not convex.

Note that the rank parameter itself is not convex by a simple reason: if A = r · B
for some 0< r < 1, then rk(A) = rk(B), not rk(A) ≤ r · rk(B). For rank based rectangle

measures this is no more so obvious: the matrix A on both sides of the first equality in
(2.8) is the same.

PROOF. Let n be even. Take a rectangle R = R0 × R1 with R0 = {x1, . . . , xn} and
R1 = {y1, . . . , yn} where x i = ei , yi = ei + ei+1 and ei ∈ {0,1}n+1 is the ith unit vector.
Let A be the complement of the n× n unit matrix. We define the fractional partition of
the rectangle R into monochromatic subrectangles as follows.

For every i ∈ [n] we take the size-1 rectangle Mi = {(x i , yi)} and give it weight
ri = 1. To cover the rest of the rectangle R, we use rectangles

MI = {(x i, y j) | i ∈ I , j 6∈ I}

for all I ⊆ [n] of size |I |= n/2, and give them weight

rI =

�
4−

4

n

��
n

n/2

�−1

.

With such a choice of the numbers ri and rI , the left-hand side equality in (2.8) holds,
because rectangle MI contains n2/4 of the n2 − n ones in A and there are

� n
n/2

�
such

rectangles.
For every i ∈ [n] we have that µA(Mi) = 0 since we have only 0’s on the diagonal

of A. For every subset I of [n] we have that µA(MI) = 1 since there are no 0’s outside
the diagonal, implying that AMI

is an all-1 matrix. Hence, on the right hand side of
the corresponding inequality in (2.8) for convexity we have the sum of n zeros (the
ranks of the size one matrices on the diagonal) and

� n
n/2

�
terms each being at most

4
� n

n/2

�−1, implying that the right hand sums to at most 4. On the other hand, since

rk(A) is n or n− 1 (which depends on n and the field), on the left hand side we have
%A(R) ≥ (n− 1)/2: by the construction of R, no monochromatic subrectangle M of R

can hit the diagonal in more than one entry, implying that rk(AM) ≤ 2. □

We have shown that, for some measures µA, the convexity inequality (2.8) fails
badly: the right hand side is constant whereas the left had side is Ω(n). Since the
measures µA based on the rank are not convex, Theorem 2.16 does not apply for them.
Still, Razborov (1992b) proved that these measures belong to the class of so-called
submodular measures, and none of them can yield larger than O(n) lower bound.
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2.7. Complexity is not submodular

In order to prove that some boolean function f requires large formulas, one tries
to find some clever “combinatorial” measure µ on the set of all boolean functions
satisfying two conditions: µ( f ) is a lower bound on the size of any circuit computing
f , and µ( f ) can be non-trivially bounded from below at some explicit boolean functions
f . One class of such measures, proposed by Mike Paterson, is the following.

Let Bn be the set of all boolean function in n variables. A formal complexity mea-

sure of boolean functions is a mapping µ : Bn → R which assigns positive values to
each boolean function. The requirements are that µ is normalized, that is, assigns each
literal a value ≤ 1, and satisfies the following two simple rules for all f , g ∈Bn:

µ( f ∨ g) ≤ µ( f ) + µ(g); (2.12)

µ( f ∧ g) ≤ µ( f ) + µ(g). (2.13)

Note that the minimal formula size L( f ) itself is a formal measure with both inequali-
ties being equalities.

In order to understand what measures are “good” (can lead to large lower bounds)
it is important to understand what measures are “bad”. We have already seen that
convex measures are bad. There is another class of bad measures—submodular ones.

A formal complexity measure µ :Bn→ R is submodular if it is normalized and for
all f , g ∈Bn,

µ( f ∧ g) + µ( f ∨ g)≤ µ( f ) + µ(g). (2.14)

Note that this condition is stronger than both (2.12) and (2.12).

THEOREM 2.22. If µ is a submodular measure on Bn, then µ( f ) ≤ O(n) for each

f ∈ Bn.

PROOF. Let g
d

be a random boolean function in d variables x1, . . . , xd . That is, we
choose g

d
randomly and uniformly fromBd . We are going to prove by induction on d

that
E
�
µ(g

d
)
�
≤ d + 1. (2.15)

Given a variable x i , set x1
i

:= x i and x0
i

:= x i .
Base. d = 1. Here we have µ(g(x1)) ≤ 2 for any g(x1). This follows from the

normalization condition if g is a variable x1 or its negation x1. By the subadditivity
we also have

µ(0) + µ(1) = µ(x1 ∧ x1) + µ(x1 ∨ x1)≤ µ(x1) +µ(x1) ≤ 2

which proves µ(g(x1))≤ 2 in the remaining case when g is a constant.
Inductive step. Assume that (2.15) is already proved for d. Let the symbol ≈ mean

that two random functions have the same distribution. Note that

g
d+1 ≈
�

g 0
d
∧ x0

d+1

�
∨
�

g 1
d
∧ x1

d+1

�
, (2.16)

where g 0
d

and g 1
d

are two independent copies of g
d
. By duality,

g
d+1 ≈
�

g 0
d
∨ x0

d+1

�
∧
�

g 1
d
∨ x1

d+1

�
. (2.17)

By the linearity of expectation, we obtain from (2.16) and (2.12) (remember that the
latter is a consequence of the submodularity condition) that

E
�
µ(g

d+1)
�
≤ E
�
µ
�

g 0
d
∧ x0

d+1

��
+ E
�
µ
�

g 1
d
∧ x1

d+1

��
(2.18)
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and similarly from (2.17) and (2.13),

E
�
µ(g

d+1)
�
≤ E
�
µ
�

g 0
d
∨ x0

d+1

��
+ E
�
µ
�

g 1
d
∨ x1

d+1

��
. (2.19)

Summing (2.18), (2.19) and applying consecutively (2.14), normalization of µ and
the inductive assumption (2.15), we obtain

2 · E
�
µ(g

d+1)
�
≤ E
�
µ
�

g 0
d
∧ x0

d+1

��
+ E
�
µ
�

g 0
d
∨ x0

d+1

��
+

E
�
µ
�

g 1
d
∧ x1

d+1

��
+ E
�
µ
�

g 1
d
∨ x1

d+1

��

≤ E
�
µ(g 0

d
)
�
+ µ(x0

d+1) + E
�
µ(g 1

d
)
�
+ µ(x1

d+1)

≤ 2 · E
�
µ(g

d
)
�
+ 2

≤ 2d + 4.

This completes the proof of (2.15). But this inequality only says that the expected value
of µ(g

n
) does not exceed n+ 1 for a random function g

n
, whereas our goal is to give

an upper bound on µ( fn) for each function fn. So, we must somehow “de-randomize”
this result. To achieve this goal, observe that every function fn ∈ Fn can be expressed
in the form

fn = (g n
∧ (g

n
⊕ fn ⊕ 1))∨ ((g

n
⊕ 1)∧ (g

n
⊕ fn). (2.20)

But g
n
≈ g

n
⊕ fn⊕1≈ g

n
⊕1≈ g

n
⊕ fn. So, applying to (2.20) the inequalities (2.12)

and (2.13), averaging the result over g
n

and applying (2.15) with d = n, we obtain

µ( fn) = E
�
µ( fn)
�
≤ 4 · E
�
µ(g

n
)
�
≤ 4n+ 4, as desired. □

2.8. The drag-along principle

Suppose we want to prove that a boolean function f has high complexity, say,
requires large DeMorgan formulas over ∧,∨,¬. If the function is indeed hard, then it
should have some specific properties forcing its formulas be large, that is, fooling every
small formula to make an error.

It turns out that formal complexity measures cannot capture any specific proper-
ties of boolean functions. When using such measures, every lower bound for a given
function f must also prove that many other unrelated functions have large complexity.
Thus, we cannot use any special properties of our function!

THEOREM 2.23 (The Drag-Along Principle). Suppose µ is a formal complexity mea-

sure and there exists a function f ∈ Bn such that µ( f ) > s. Then, for at least 1/4 of all

g inBn, µ(g)> s/4.

PROOF. Let g be any function inBn. Define f = h⊕ g where h= f ⊕ g. Then,

µ( f ) ≤ µ(g) + µ(¬g) +µ(h) + µ(¬h) . (2.21)

This follows from (2.12) and (2.13) and the definition of parity,

f = ( f ⊕ g)⊕ g = h⊕ g = (h∧ g)∨ (¬h∧¬g) .

By way of contradiction assume that the set G = {g ∈ Bn | µ(g) < s/4} contains
more than 3/4 of all function in Bn. If we pick the above function g randomly in Bn

with probability |Bn|−1, then ¬g,h,¬h are also random elements of Bn (though not
independent) each with the same probability. Using the trivial union bound we have

Pr[some of h,¬h, g,¬g is not in G ]< 4 ·
1

4
= 1 .
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Thus, there must be at least one choice for g such that all four functions h,¬h, g,¬g

belong to G , that is, have measure < s/4. By (2.21), this implies that µ( f ) < s, which
is a contradiction. □

Thus, if one uses a formal complex measure to prove that f is complex, then one
proves much more! That is, any lower bounds proof for formulas, based on some
formal complexity measure µ( f ), automatically fulfills the “largeness” condition of so-
called “natural proofs” (we sketch this important concept in Appendix): if µ( f ) is large
for some specific function f , then µ(f) must be also large for a random function f. So,
for such a proof to be “unnatural,” the predicate “µ( f ) ≥ t” must be not constructive,
that is, must be not computable in exponential(!) time 2O(n).

Exercises

EX. 2.1. Let n= 2m+1, and consider the majority function MAJn, which outputs 1
iff x1+. . .+ xn ≥ m+1. Use Khrapchenko’s theorem to show that this function requires
DeMorgan formulas of size Ω(n2). Hint: Consider the subrectangle A× B ⊆ S f of f = MAJn with

A= {a : |a| = m+ 1} and B = {b : |b| = m}.

EX. 2.2. Show that Khrapchenko’s theorem cannot yield larger than quadratic
lower bounds. Hint: Each vector in {0, 1}n has only n neighbors, that is, vectors y with dist(x , y) = 1.

EX. 2.3. Show that, if µ is an additive rectangle function then, for every fractional
partition R=
∑

i ri · Ri , we have that µ(R) =
∑t

i=1 ri ·µ(Ri).

EX. 2.4. Show that any linear combination of convex rectangle functions is a
convex rectangle function.

EX. 2.5. Let a(R) and b(R) be arbitrary additive nonnegative rectangle functions,
and consider the rectangle function

µ(R) =
f (a(R))

g(b(R))
,

where f , g : R→ R are non-decreasing, and f is sub-multiplicative in that f (x · y) ≤
f (x) · f (y).

Show that, if µ is normalized then, for every n-dimensional rectangle R, we have
that µ(R)≤ ϕ(2n).

Hint: Consider a covering of R by 2n (overlapping) monochromatic rectangles.

EX. 2.6. Consider rectangle measures of the form µ(R) = w(R)k/|R|k−1, where
w(R) is an arbitrary subadditive rectangle function: if R= R1∪ · · · ∪Rt is a partition of
R, then w(R) ≤ w(R1) + · · ·+ w(Rt). Recall that Khrapchenko’s measure has this form
with k = 2 and w(R) being the number of pairs (x , y) ∈ R with dist(x , y) = 1. The
goal of this exercise is to show that, for k > 2, such measures fail badly: they cannot
yield even non-constant lower bounds!

Namey, let Sn be the rectangle of the parity function in n variables. Show that, for
every constant k > 2 there is a constant c = ck (depending only on k, not on n) such
that µ(Sn) ≤ c.

Hint: Consider the following “first difference” decomposition of Sn. For 1 ≤ i < n, ε ∈ {0, 1} and a

string u ∈ {0, 1}i , let Ri
u,ε be the rectangle consisting of all pairs (x , y) such that xi+1 = ε, yi+1 = 1− ε

and x j = y j = u j for all j = 1, . . . , i. Use the normalization condition µ(Ri
u,ε ) ≤ 1 to show that the sum of

µ-measures of these rectangles is constant.
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EX. 2.7. Prove that the spectral norm measure µA(R), defined by (2.10), is convex.
Hint: Show that the rectangle function s(R) = ‖x R‖22 · ‖yR‖22 is additive, and use Theorem 2.18.

EX. 2.8. Let A and B be two disjoint subsets of {0,1}n. Define the set A⊗ B to
contain all pairs (a, b) of vectors a ∈ A and b ∈ B such that a and b differ in exactly
one bit. Define now the measure

µ( f ) =
|A⊗ B|2

|A| · |B| ,

where A= f −1(0) and B = f −1(1). Observe that this is the measure used in Khrapchenko’s
theorem (Theorem 2.12). Prove that µ( f ) is a formal complexity measure.

Hint: Argue by induction as in the proof of Rychkov’s lemma (Lemma 1.8). In the induction step use
the inequality

c2
1

a1 · b
+

c2
2

a2 · b
≥
(c1 + c2)

2

(a1 + a2) · b
which can be checked by a cross-multiplication.
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CHAPTER 3

Monotone Formulas

We now consider monotone formulas, that is, formulas with fanin-2 AND and OR
gates. Such formulas can only compute monotone boolean functions, that is, functions
f such that f (x) ≤ f (y) as long as x i ≤ yi for all positions i. Let L+( f ) denote the
smallest leafsize of (=the smallest number of leaves in) a monotone formula comput-
ing f . Just like for DeMorgan formulas (with AND, OR and NOT gates) it is possible
to lower bound L+( f ) by a monotone decomposition number D+(S f ) of the rectangle
S f = f −1(0)× f −1(1).

Recall that an n-dimensional rectangle is just a Cartesian product R = S × T of
subsets S, T ⊆ {0,1}n, S ∩ T = ;. A rectangle R is monochromatic if all its edges
(a, b) ∈ R are separated by some literal1 in that xσ

i
(a) = 0 and xσ

i
(b) = 1. If this

separation is done by a monotone literal, that is, by a variable x i (and not by its
negation ¬x i) then we call R monotone. rectangle!monotone That is, a monochromatic
rectangle is monotone if there is a position i such that ai = 0 and bi = 1 for all
(a, b) ∈ M .

The monotone partition number D+(S) of a rectangle S is the smallest number t

such that S can be decomposed into t disjoint monotone monochromatic rectangles.
Note that this measure is defined not for all rectangles. A simplest counterexample is
a rectangle S = {(1,0)}, consisting of just one pair of vectors. If, however, S ⊆ S f :=
f −1(0)× f −1(1) for a monotone boolean function f then, for every (a, b) ∈ S, there
must be a position i for which ai = 0 and bi = 1. Hence, in this case D+(S) is well
defined.

LEMMA 3.1. For every monotone boolean function f and for every rectangle S ⊆ S f

we have that

L+( f )≥ D+(S) .
PROOF. The proof is the same as that of Rychkov’s lemma (Lemma 1.8). The only

difference is the basis case L+( f ) = 1. Since in this case we have no negated variables
at all, the function f must be just a single variable x i , implying that S f itself is a
monotone monochromatic rectangle. The induction step is the same. □

3.1. The rank lower bound

To bound D+(S f ) from bellow, Razborov (1990) suggested to use rank arguments,
where the rank is over some (fixed in advance) field F. Given a rectangle R, we denote
by AR the matrix which is obtained from the matrix A by changing to 0 all its entries
(u, v) 6∈ R. Let also rk(A) denote the rank of A over F.

1As before, x1
i
= xi and x0

i
= ¬xi .

37
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LEMMA 3.2. Let f be a monotone boolean function, I ⊆ f −1(0) and J ⊆ f −1(1).
Then for every |I | × |J | matrix A 6= 0,

L+( f )≥
rk(A)

maxR rk(AR)
, (3.1)

here the maximum is over all monotone monochromatic subrectangles of I × J.

PROOF. Let t = L+( f ). By Lemma 3.1 we know that there must exists a set R
of |R| ≤ t monotone monochromatic rectangles such that all the rectangles in R are
pairwise disjoint, and their union covers the whole rectangle I × J . So A=

∑
R∈R AR,

and hence, by the subadditivity of rank,

rk(A)≤
∑

R∈R
rk(AR)≤ |R| ·max

R∈R
rk(AR)

implying the desired lower bound on |R| and hence, on t = L( f ). □

It is clear that the same lower bound (3.1) also holds for non-monotone formulas,
if we do not require monochromatic rectangles be monotone. However, Razborov
(1992b) has proved that in this (non-monotone) case the result is useless: for any
boolean function f in n variables, the fraction on the right-hand side of (3.1) is then a
submodular measure, and hence, cannot exceed O(n) (see Theorem 2.22). Fortunately,
in the monotone case, Lemma 3.2 can give large lower bounds, and we are going to
show this in the next two sections. But before, let us make a note on notation.

Boolean functions f : {0,1}n → {0,1} are predicates on the n-cube. It is however
often more convenient to identify each vector a ∈ {0,1}n with the set {i | ai = 1} of its
1-positions, and look at boolean functions as predicates on the family of all subsets of
[n] = {1, . . . , n}. In these terms, (a, b) is separated by a variable x i iff i 6∈ a and i ∈ b.

3.2. Lower bounds for quadratic functions

A monotone quadratic function of a graph G = ([n], E) is a monotone boolean
function

fG(x1, . . . , xn) =
∨

{i, j}∈E

x i ∧ x j .

Note that fG(a) = 0 iff I = {i | ai = 1} is an independent set in G. It is clear that
L+( fG) ≤ |E| for any graph G, but for some graphs this trivial upper bound is very far
from the truth.

EXAMPLE 3.3. Let G = ([n], E) be a complete bipartite graph with E = S × T ,
S ∩ T = ; and |S| = |T | = n/2. Then |E| = n2/4, but fG can be computed by a
monotone formula

F(x1, . . . , xn) =

�∨

i∈S

x i

�
∧
�∨

j∈T

x j

�

of leafsize |S|+ |T |= n.

So, a natural question is: what quadratic functions require monotone formulas
of super-linear size? We will use the rank argument to show that such are boolean
functions defined by dense graphs without 4-cycles. A 4-cycle in G is a set v1, v2, v3, v4

of four distinct vertices such that v1v2, v2v3, v3v4 and v4v1 are edges of G.

THEOREM 3.4. If G = (V, E) is a triangle-free graph without 4-cycles, then

L+( fG)≥ |E|/2 .
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x

y y

Ix Ix

xuu=

v v

FIGURE 1. The cases when x ∈ V and when x ∈ E.

PROOF. We look at vertices as one-element and edges as two-element sets. For a
vertex x ∈ V , let Ix be the set of its neighbors. For an edge x ∈ E, let Ix be the set of
all its proper neighbors; that is, v ∈ Ix precisely when v 6∈ x and v is adjacent with an
endpoint of x . Since G has no triangles and no 4-cycles, the sets Ix are independent
sets, and must be rejected by f . We will concentrate on only these independent sets.

Let A be a (0,1) matrix whose rows correspond to independent sets Ix with x ∈
V ∪ E, and columns to edges y ∈ E. The entries are defined by

A[x , y] =

¨
1 if x ∩ y 6= ;,
0 if x ∩ y = ;.

CLAIM 3.5. If M is a monotone monochromatic rectangle, then rk(AM) ≤ 2.

PROOF. Since M = M0 × M1 is monotone and monochromatic, there must be a
vertex v ∈ V such that

v 6∈ Ix and v ∈ y for all x ∈ M0 and y ∈ M1.

Hence, for each x ∈ M0, we have two possible cases.
Case 1: v ∈ x . Since v ∈ y for all y ∈ M1, in this case we have that x∩ y ⊇ {v} 6= ;,

implying that AM[x , y] = 1 for all y ∈ M1. That is, in this case the x-th row of AM is
the all-1 row.

Case 2: v 6∈ x . We claim that in this case the x-th row of AM must be the all-0 row.
To show this, assume that AM[x , y] = 1 for some y ∈ M1. Then x ∩ y 6= ;, implying
that x and y must share a common vertex u ∈ x ∩ y (see Fig. 1). Moreover, u 6= v

since v 6∈ x . Together with v ∈ y , this implies that y = {u, v}. But then v ∈ Ix , a
contradiction. □

By Lemma 3.2, it remains to show that the entire matrix A has full column-rank
|E| over GF(2).

Take an arbitrary subset ; 6= F ⊆ E of edges. We have to show that the columns
of the submatrix A′ of A corresponding to the edges in F cannot sum up to the all-0
column over GF(2). If F is not an even factor, that is, if the number of edges in F

containing some vertex v is odd, then the row of v in A′ has an odd number of 1’s, and
we are done.

Hence, we may assume that F is an even factor. Take an arbitrary edge x = uv ∈ F ,
and let H ⊆ F be the set of edges in F incident to at least one endpoint of x . Since
both vertices u and v have even degree (in F), the edge x has a nonempty intersection
with an odd number of edges in F : one intersection with itself and an even number
of intersections with the edges in H − {x}. Hence, the row of x in A′ contains an odd
number of 1’s, as desired. □

Explicit constructions of dense triangle-free graphs without 4-cycles are known.
Such is, for example, the point-line incidence n × n graph H of a projective plane



40 3. MONOTONE FORMULAS

PG(2,q) for a prime power q. Such a plane has n = q2 + q + 1 points and n subsets
of points (called lines). Every point lies in q+ 1 lines, every line has q+ 1 points, any
two points lie on a unique line, and any two lines meet is a unique point. Now, if we
put points on the left side and lines on the right, and joint a point x with a line L by
an edge iff x ∈ L, then the resulting bipartite n× n graph will have (q+ 1)n= Θ(n3/2)

edges and contain no 4-cycles. For this graph Theorem 3.4 yields

COROLLARY 3.6. L+( fH) = Θ(n
3/2).

3.3. A super-polynomial lower bound

Let G = (U , V, E) be a bipartite graph with V = {1, . . . , n} and U = {n+ 1, . . . , 2n}.
For a subset S ⊆ U of vertices on the left part, let

Γ1(S) := { j ∈ V | (i, j) ∈ E for all i ∈ S}
denote the set of its common neighbors of S on the right part. Associate with G a
monotone boolean function fG in 2n variables defined by:

fG(x1, . . . , x2n) =
∨

S⊆U ,|S|≤k

∧

i∈S∪Γ1(S)

x i .

That is, fG(x) = 1 iff there is a subset S ⊆ U of size |S| ≤ k such that x i = 1 for all
i ∈ S ∪ Γ1(S).

By its definition, the function fG can be computed by a trivial monotone formula
of leafsize at most

∑k
i=1 i
�n

i

�
≤ nO(k). We will show that, for some explicit graphs G,

this trivial upper bound is almost optimal. The proof will be based on the (quite often
used in circuit complexity) fact that so-called “disjointness matrices” have large rank.

3.3.1. Disjointness matrices. The k-disjointness matrix Dn,k is a (0,1) matrix

whose rows as well as columns are labeled by all
∑k

i=0

�n
i

�
subsets a of [n] of size at

most k; the entry in the a-th row and b-th column is defined by:

Dn,k[a, b] =

¨
0 if a ∩ b 6= ;,
1 if a ∩ b = ;.

This matrix plays an important role in computational complexity.

LEMMA 3.7. The k-disjointness matrix D = D(n, k) has full rank over GF(2), that is,

rk(Dn,k) =

k∑

i=0

�
n

i

�
.

PROOF. Let N =
∑k

i=0

�n
i

�
. We must show that the rows of D are linearly indepen-

dent over GF(2), i.e., that for any non-zero vector λ= (λI1
,λI2

, . . . ,λIN
) in GF(2)N we

have λ · D 6= 0. For this, consider the following polynomial:

f (x1, . . . , xn) :=
∑

|I|≤k

λI

∏

i∈I

x i .

Since λ 6= 0, at least one of the coefficients λI is nonzero, and we can find some I0

such that λI0
6= 0 and I0 is maximal in that λI = 0 for all I ⊃ I0. Assume w.l.o.g. that

I0 = {1, . . . , t}, and make in the polynomial f the substitution x i = 1 for all i 6∈ I0.
After this substitution has been made, a non-zero polynomial over the first t variables
x1, . . . , x t remains such that the term x1 x2 · · · x t is left untouched (here we use the
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maximality of I0). Hence, after the substitution we obtain a polynomial which is 1 for
some assignment (a1, . . . , at) to its variables. But this means that the polynomial f

itself takes the value 1 on the assignment b = (a1, . . . , at , 1, . . . , 1). Hence,

1= f (b) =
∑

|I|≤k

λI

∏

i∈I

bi .

Let J0 := {i : ai = 0}. Then |J0| ≤ k and, moreover,
∏

i∈I bi = 1 if and only if I∩J0 = ;,
which is equivalent to DI,J0

= 1. Thus,
∑

|I|≤k

λI DI,J0
= 1,

meaning that the J0-th coordinate of the vector λ · D is non-zero. □

3.3.2. A lower bound for Paley graphs. A bipartite graph G = (U , V, E) is k-
separated if, for every two nonempty subsets S, T ⊆ U of size at most k, we have that

S ∩ T = ; iff Γ1(S)∩ Γ0(T ) 6= ; , (3.2)

where Γ0(S) := { j ∈ V | (i, j) ∈ E for no i ∈ S} is the set of all common non-neighbors

of S. That is, for every two disjoint subsets S and T of size at most k on the left
part there is a vertex v ∈ V on the right part such that v is joined by an edge to all
vertices in S and to none of the vertices in T . Explicit bipartite n× n graphs, which are
k-separated for k =Θ(log n), are known. Such are, for example, Paley graphs.

THEOREM 3.8. If G is k-separated then L+( fG) ≥ nΩ(k).

PROOF. For a constant σ ∈ {0,1}, define Xσ to be the set of all vectors x ∈ {0,1}2n

such that, for some subset S ⊆ U of size |S| ≤ k,

x i = σ iff i ∈ S ∪ Γσ(S) .
That is, x ∈ X0 iff there is a subset S of at most k vertices on the left side of G such that
x has 0’s exactly in positions i ∈ S ∪Γ0(S), and x ∈ X1 iff there is a subset S of at most
k vertices on the left side of G such that x has 1’s exactly in positions i ∈ S ∪ Γ1(S).
Since no vector can have 0 and 1 in the same position, (3.2) implies that X0 ∩ X1 = ;.
Hence, X0 × X1 is a rectangle.

By the definition of f = fG , we have that f (y) = 1 for all y ∈ X1 and, by (3.2),
we also have that f (x) = 0 for all x ∈ X0. Hence, X0 × X1 is a subrectangle of
f −1(0)× f −1(1).

LetR be a decomposition of X0×X1 into monotone monochromatic subrectangles.
For each R ∈ R there is a separating position i = iR ∈ U ∪ V = {1, . . . , 2n} such that
x i = 0 and yi = 1 for all pairs (x , y) ∈ R. Hence, we can assign to each pair (x , y)

in X0 × X1 its position i(x ,y): this is the separating position iR of the unique rectangle
R ∈R such that (x , y) ∈ R. Define now the |X0| × |X1| matrix A by

A[x , y] =

¨
0 if i(x ,y) ∈ U ,

1 if i(x ,y) ∈ V .

That is, to determine the value of the (x , y)-entry of A we take the unique rectangle R

containing (x , y) and set the value to 1 iff the separating position iR of this rectangle
belongs to the right part V of the bipartition.

Associate with each vector x ∈ X0 the set Sx = {i ∈ U | x i = 0}, and with each
vector y ∈ X1 the set Ty = {i ∈ U | yi = 1}. By (3.2), we have that then

A[x , y] = 1 iff i(x ,y) ∈ V iff Sx ∩ Ty = ; .
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Hence, A is the disjointness matrix Dn,k, and Lemma 3.7 implies that A has full rank

over GF(2), that is, rk(A) =
∑k

i=0

�n
i

�
.

On the other hand, since for each rectangle R ∈ R , its separating position iR
belongs either to U or to V (but not to both), we have that rk(AR) ≤ 1 for all R ∈ R ,
and Lemma 3.2 yields the desired lower bound on L+( f ). □

As mentioned above, explicit k-separated bipartite graphs with k = Ω(log n) are
known. Such are, for example, Paley graphs.

Let n be a n odd prime congruent to 1 modulo 4. A Paley graph is a bipartite
graph G = (V1, V2, E) with parts V1 = V2 = GF(n) where two nodes, x ∈ V1 and y ∈ V2,
are joined by an edge if and only if x − y is a non-zero square in GF(n), that is, if
x − y = z2 mod n for some z ∈ GF(n), z 6= 0. The condition n ≡ 1 mod 4 is only to
ensure that −1 is a square in the field, so that the resulting graph is undirected.

It is known that Paley n×n graphs over GF(n) are k-separated as long as k2k <
p

n,
and in particular, are k-separated for k = Ω(log n). This is a well known result, and is
proved using some deep results regarding sums of quadratic characters χ(x) = x (n−1)/2

over GF(n).

COROLLARY 3.9. If G is a bipartite n× n Paley graph, then

L+( fG)≥ nΩ(log n) .
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CHAPTER 4

Monotone Circuits

We now consider monotone circuits, that is, circuits with fanin-2 AND and OR
gates. Like monotone formulas, such circuits can only compute monotone boolean
functions. The difference from monotone formulas is that now the fan-outs of gates
may be arbitrary, not just 1 as in the case of formulas. That is, a result computed at
some gate can be used many times with no need to recompute it again and again, as
in the case of formulas. This additional future makes the lower bounds problem more
difficult.

In this chapter, all considered boolean functions are assumed to be monotone.

4.1. Switching lemma for monotone forms

Recall that a monotone k-CNF (conjunctive normal form) is an And of an arbitrary
number of monotone clauses, each being an Or of at most k variables. Dually, a mono-
tone k-DNF is an Or of an arbitrary number of monomials, each being an And of at
most k variables. Note that in k-CNFs we allow clauses shorter than k.

In an exact k-CNF we require that all clauses have exactly k distinct variables; exact

k-DNF is defined similarly. For two boolean functions f and g in n variables, we write
f ≤ g if f (x) ≤ g(x) for all input vectors x . For a CNF/DNF C we will denote by |C |
the number of clauses/monomials in it.

Our goal is to show that complex monotone function, that is, monotone functions
requiring large monotone circuits cannot be “simple” in a sense that they cannot be
approximated by small CNFs and DNFs. The proof of this will be based on the following
“switching lemma” allowing us to switch between CNFs and DNFs, and vice versa.

LEMMA 4.1 (Switching Lemma). For every s-CNF f0 there is an r-DNF f1 and an

exact (r + 1)-DNF D such that

f1 ≤ f0 ≤ f1 ∨ D and |D| ≤ sr+1 . (4.1)

Dually, for every r-DNF f1 there is an s-CNF f0 and an exact (s+ 1)-CNF C such that

f0 ∧ C ≤ f1 ≤ f0 and |C | ≤ r s+1 . (4.2)

PROOF. We prove the first claim (the second is dual). Let f0 = C1 ∧ · · · ∧ C` be
an s-CNF; hence, each clause Ci has |Ci | ≤ s variables. It will be convenient to iden-
tify clauses and monomials with the sets of indices of their variables. We say that a
monomial M pierces a clause Ci if M ∩ Ci 6= ;.

We associate with the CNF f0 the following tree T of fan-out at most s. This is a
DNF-tree for f0 we already defined in Section 1.5; the only difference is that now we
have no negated variables.

The first node of T corresponds to the first clause C1, and the outgoing |C1| edges
are labeled by the variables from C1. Suppose we have reached a node v, and let M be
the monomial consisting of the labels of edges from the root to v. If M pierces all the

43
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clauses of f0, then v is a leaf. Otherwise, let Ci be the first clause such that M ∩Ci = ;.
Then the node v has |Ci | outgoing edges labeled by the variables in Ci .

Note that each path from the root to a leaf of T corresponds to a monomial of f0

(since each such path intersects all clauses). More important is that also the converse
holds: each monomial of f0 must appear as a path from the root to a leaf. Thus, we
have just represented the DNF of f0 as a tree, implying that T (x) = f0(x) for all input
vectors x ∈ {0,1}n. But some paths (monomials) may be longer than r + 1. So, we
now cut-off these long paths.

Namely, let f1 be the OR of all paths of length at most r ending in leafs, and D be
the set of all paths of length exactly r + 1. Observe that:

(i) every monomial of f1 is also a monomial of f0, and
(ii) every monomial of f0, which is not a monomial of f1, must contain (is an

extension of) at least one monomial of D.

For every input x ∈ {0,1}n, we have f1(x) ≤ f0(x) by (i), and f0(x) ≤ f1(x) ∨ D(x)

by (ii). Finally, we also have that |D| ≤ sr+1, because every node of T has fan-out at
most s. □

Most important in the Switching Lemma is that the DNF D, correcting possible
errors, contains only sr+1 monomials instead of all

� n
r+1

�
possible monomials.

4.2. Lower bounds criterion

We now give a general lower bounds criterium for monotone circuits.

DEFINITION 4.2. Let f (x1, . . . , xn) be a monotone boolean function. We say that f

is t-simple if for every pair of integers 1≤ r, s ≤ n− 1 there exists an exact (s+ 1)-CNF
C , an exact (r + 1)-DNF D, and a subset I ⊆ {1, . . . , n} of |I | ≤ s such that

(a) |C | ≤ t · r s+1 and |D| ≤ t · sr+1, and
(b) either C ≤ f or f ≤ D ∨

∨
i∈I x i (or both) hold.

THEOREM 4.3 (Criterion). If a monotone boolean function can be computed by a

monotone circuit of size t, then it is t-simple.

PROOF. Given a monotone circuit, the idea is to approximate every intermediate
gate (more exactly – the function computed at the gate) by an s-CNF and an r-DNF,
and to show that when doing so we do not introduce too many errors. If the function
computed by the whole circuit is not t-simple, then it cannot be approximated well by
such a CNF/DNF pair meaning that every such pair must make many errors. Since the
number of errors introduced at each separate gate is small, the total number of gates
must be large. To make as few errors at each gate as possible we will use the Switching
Lemma (Lemma 4.1) which allows us to approximate an s-CNF by small r-DNFs and
vice versa.

Let F(x1, . . . , xn) be a monotone boolean function, and suppose that F can be
computed by a monotone circuit of size t. Our goal is to show that then the function
F is t-simple. To do this, fix an arbitrary pair of integers 1≤ s, r ≤ n− 1.

Let f = g ∗h be a gate in our circuit. By an approximator of this gate we will mean
a pair f0, f1, where f0 is an s-CNF (a left approximator of f ) and f1 is an r-DNF (a right

approximator of f ) such that f1 ≤ f0.
We say that such an approximator f0, f1 of f introduces a new error on input

x ∈ {0,1}n if the approximators of g and of h did not make an error on x , but the
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approximator of f does. That is, g0(x) = g1(x) = g(x) and h0(x) = h1(x) = h(x), but
either f0(x) 6= f (x) or f1(x) 6= f (x).

We define approximators inductively as follows.
Case 1: f is an input variable, say, f = x i . In this case we take f0 = f1 := x i . It is

clear that this approximator introduces no errors.
Case 2: f is an And gate, f = g ∧ h. In this case we take f0 := g0 ∧ h0 as

the left approximator of f ; hence, f0 introduces no new errors. To define the right
approximator of f we use Lemma 4.1 to convert f0 into an r-DNF f1; hence, f1 ≤ f0.
Let E f be the set of inputs on which f1 introduces a new error, i.e.,

E f :=
�

x | f (x) = f0(x) = 1 but f1(x) = 0
	

.

By Lemma 4.1, all these errors can be “corrected” by adding a relatively small exact
(r + 1)-DNF: there is an exact (r + 1)-DNF D such that |D| ≤ sr+1 and D(x) = 1 for all
x ∈ E f .

Case 3: f is an Or gate, f = g∨h. This case is dual to Case 2. We take f1 := g1∨h1

as the right approximator of f ; hence, f1 introduces no new errors. To define the left
approximator of f we use Lemma 4.1 to convert f1 into an s-CNF f0; hence, f1 ≤ f0.
Let E f be the set of inputs on which f0 introduces a new error, i.e.,

E f :=
�

x | f (x) = f1(x) = 0 but f0(x) = 1
	

.

By Lemma 4.1, all these errors can be “corrected” by adding a relatively small exact
(s+ 1)-CNF: there is an exact (s+ 1)-CNF C such that |C | ≤ r s+1 and C(x) = 0 for all
x ∈ E f .

Proceeding in this way we will reach the last gate of our circuit computing the
given function F . Let F0, F1 be its approximator, and let E be the set of all inputs x ∈
{0,1}n on which F differs from at least of one of the functions F0 or F1. Since at input
gates (= variables) no error was made, for every such input x ∈ E, the corresponding
error should be introduced at some intermediate gate. That is, for every x ∈ E there
is a gate f such that x ∈ E f (approximator of f introduces an error on x for the first
time). But we have shown that, for each gate, all these errors can be corrected by
adding an exact (s+1)-CNF of size at most r s+1 or an exact (r+1)-DNF of size at most
sr+1. Since we have only t gates, all such errors x ∈ E can be corrected by adding an
exact (s+ 1)-CNF C of size at most t · r s+1 and an exact (r + 1)-DNF D of size at most
t · sr+1, that is, for all inputs x ∈ {0,1}n, we have

C(x) ∧ F0(x)≤ F(x)≤ F1(x)∨ D(x) .

This already implies that the function F is t-simple. Indeed, if the CNF F0 is empty
(i.e., if F0 ≡ 1) then C ≤ F , and we are done. Otherwise, F0 must contain some clause
S of length at most s, say, S =

∨
i∈I x i for some I of size |I | ≤ s. Since F0 ≤ S, the

condition F1 ≤ F0 implies F ≤ F1 ∨ D ≤ F0 ∨ D ≤ S ∨ D, as desired. This completes the
proof of Theorem 4.3. □

4.3. Explicit lower bounds

In order to show that a given boolean function cannot be computed by a monotone
circuit of size at most t, it is enough, by Theorem 4.3, to show that the function is
not t-simple for at least one(!) choice of parameters s and r. In this section we
demonstrate how this can be used to derive exponential lower bounds for concrete
boolean functions.
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In applications, boolean functions f are usually defined as set-theoretic predicates.
In this case we say that f accepts a set S ⊆ {1, . . . , n} if and only if f accepts its
incidence vector.

A set S is a positive input for f if f (S) = 1, and a negative input if f (S) = 0,
where S is the complement of S. Put otherwise, a positive (negative) input is a set
of variables which, if assigned the value 1 (0), forces the function to take the value
1 (0) regardless of the values assigned to the remaining variables. Note that one set
S can be both positive and negative input! For example, if f (x1, x2, x3) outputs 1 iff
x1 + x2 + x3 ≥ 2, then S = {1,2} is both positive and negative input for f , because
f (1,1, x3) = 1 and f (0,0, x3) = 0.

To translate the definition of t-simplicity of f (Definition 4.2) in terms of posi-
tive/negative inputs, note that if C is a CNF, then C ≤ f means that every negative
input of f must contain at least one clause of C (looked at as set of indices of its vari-
ables). Similarly, f ≤ D∨

∨
i∈I x i means that every positive input must either intersect

the set I or contain at least one monomial of D.

4.3.1. Detecting triangles. We begin with the simplest example. We will also
present a more respectable applications—a 2Ω(n

1/4) lower bound—but this special case
already demonstrates the common way of reasoning pretty well.

Let us consider a monotone boolean function ∆m, whose input is an undirected
graph on m vertices, represented by n=

�m
2

�
variables, one for each possible edge. The

value of the function is 1 if and only if the graph contains a triangle (three incident
vertices). Clearly, there is a monotone circuit of size O(m3) computing this function:
just test whether any of

�m
3

�
triangles is present in the graph. Thus, the following

theorem is tight, up to a poly-logarithmic factor.

THEOREM 4.4. Any monotone circuit, detecting whether a given m-vertex graph is

triangle-free, must have Ω
�

m3/ log4 m
�

gates.

PROOF. Let t be the minimal number for which ∆m is t-simple. By Theorem 4.3, it
is enough to show that t ≥ Ω

�
m3/ log4 m
�

. For this proof we take

s := b5 log2 mc and r := 1 .

According to the definition of t-simplicity, we have only two possibilities.
Case 1: Every positive input for ∆m either intersects a fixed set I of s edges, or

contains at least one of L ≤ tsr+1 = ts2 2-element sets of edges R1, . . . ,RL .
As positive inputs for ∆m we take all triangles, i.e., graphs on m vertices with

exactly one triangle; we have
�m

3

�
such graphs. At most s(m− 2) of them will have an

edge in I . Each of the remaining triangles must contain one of ts2 given pairs of edges
Ri . Since two edges can lie in at most one triangle, we conclude that, in this case,

t ≥
�m

3

�
− s(m− 2)

s2 = Ω
�

m3/ log4 m
�

.

Case 2: Every negative input for ∆m contains at least one of t r s+1 = t sets of
edges S1, . . . ,St , each of size |Si |= s+ 1.

In this case we consider the graphs E = E1 ∪ E2 consisting of two disjoint non-
empty cliques E1 and E2 (we look at graphs as sets of their edges). Each such graph
E is a negative input for ∆m, because its complement is a bipartite graph, and hence,
has no triangles. The number of such graphs is a half of the number 2m of all binary
strings of length m excluding 0 and 1. Hence, We have 2m−1−1 such graphs, and each
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of them must contain at least one of the sets S1, . . . ,St . Every of these sets of edges Si

is incident to at least
p

2s vertices, and if E ⊇ Si then all these vertices must belong
to one of the cliques E1 or E2. Thus, at most 2m−

p
2s − 1 of our negative inputs E can

contain one fixed set Si , implying that, in this case,

t ≥
2m−1 − 1

2m−
p

2s − 1
≥ 2
p

2s−1 ≥ 23 log m ≥ m3 .

Thus, in both cases, t ≥ Ω
�

m3/ log4 m
�

, and we are done. □

4.3.2. Graphs of polynomials. Our next example is the following monotone boolean
function introduced by Andreev (1985). Let q ≥ 2 be a prime power, and set d :=
b(q/ lnq)1/2/2c. Consider q × q (0,1) matrices A = (ai, j). Given such a matrix A, we
are interested in whether it contains a graph of a polynomial h : GF(q)→ GF(q), that
is, whether ai,h(i) = 1 for all rows i ∈ GF(q).

Let fn be a monotone boolean function in n = q2 variables such that fn(A) = 1 iff
A contains a graph of at least one polynomial over GF(q) of degree at most d−1. That
is,

fn(X ) =
∨

h

∧

i∈GF(q)

x i,h(i) ,

where h ranges over all polynomials over GF(q) of degree at most d − 1. Since we
have at most qd such polynomials, the function fn can be computed by a monotone
boolean circuit of size at most qd+1, which is at most nO(d) = 2O(n1/4

p
ln n). We will now

show that this trivial upper bound is almost optimal.

THEOREM 4.5. Any monotone circuit computing the function fn has size at least

2Ω(n
1/4
p

ln n).

PROOF. Take a minimal t for which the function fn is t-simple. Since n = q2 and
(by our choice) d =Θ(n1/4

p
ln n), it is enough by Theorem 4.3 to show that t ≥ qΩ(d).

For this proof we take
s := dd ln qe and r := d ,

and look at input matrices as bipartite q × q graphs. In the proof we will essentially
use the well-known fact that no two distinct polynomials of degree at most d − 1 can
coincide on d points. According to the definition of t-simplicity, we have only two
possibilities.

Case 1: Every positive input for fn either intersects a fixed set I of at most s edges,
or contains at least one of L ≤ tsr+1 (r + 1)-element sets of edges R1, . . . ,RL .

Graphs of polynomials of degree at most d − 1 are positive inputs for fn. Each set
of l (1 ≤ l ≤ d) edges is contained in either 0 or precisely qd−l of such graphs. Hence,
at most sqd−1 of these graphs can contain an edge in I , and at most qd−(r+1) of them
can contain any of the given graphs Ri . Therefore, in this case we again have

t ≥
�

1−
s

q

�
qd

sr+1 · qd−(r+1)
≥
�

q

s

�Ω(r)
≥ qΩ(d) .

Case 2: Every negative input for fn contains at least one of K ≤ t r s+1 (s + 1)-
element sets of edges S1, . . . ,SK .

Let E be a random bipartite graph, with each edge appearing in E independently
with probability γ := (2d ln q)/q. Since there are only qd polynomials of degree at most
d − 1, the probability that the complement of E will contain the graph of at least one
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of them does not exceed qd(1− γ)q ≤ q−d , by our choice of γ. Hence, with probability
at least 1− q−d , the graph E is a negative input for f . On the other hand, each of the
sets Si is contained in E with probability γ|Si | = γs+1. Thus, in this case,

t ≥
1− q−d

r s+1γs+1 ≥
�

q

2d2 ln q

�Ω(s)
≥ 2Ω(s) ≥ qΩ(d) ,

where the third inequality holds for all d ≤ (q/ ln q)1/2/2.
We have proved that the function f can be t-simple only if t ≥ qΩ(d). By Theo-

rem 4.3, this function cannot be computed by monotone circuits of size smaller than
qΩ(d). □

4.4. Extension to circuits with real-valued gates

We now consider monotone circuits where, besides boolean AND and OR gates,
one may use arbitrary monotone real-valued functions ϕ : R2 → R as gates. Such a
function ϕ is monotone if ϕ(x1, x2) ≤ ϕ(y1, y2) whenever x1 ≤ y1 and x2 ≤ y2. The
corresponding circuits are called monotone real circuit.

As in boolean circuits, inputs for such circuits also are binary strings x ∈ {0,1}n;
the output must be also a binary bit 0 or 1. But at each intermediate gate any monotone
function g : {0,1}n → R may be computed. Hence, unlike in boolean case, here we
have uncountable number of possible gates ϕ : R2 → R, and one may expect that at
least some monotone boolean functions can be computed much more efficiently by
such circuits. Exercise 4.6 at the end of this chapter shows that this intuition is correct:
so-called “slice functions” can be computed by a very small monotone circuit with real-
valued gates, but easy counting shows most of slice functions cannot be computed by
boolean circuits of polynomial size, even if NOT gates are allowed!

It is therefore somewhat surprising that the criterion for boolean circuits (The-
orem 4.3) remains true also for circuits with real-valued gates. The only difference
from the boolean case is that now in the definition of t-simplicity we take slightly
larger CNFs and DNFs, which does not greatly change the asymptotic values of result-
ing lower bounds.

We say that a monotone boolean function f is weakly t-simple if the conditions in
Definition 4.2 hold with (a) replaced by

(a’) |C | ≤ t · (2r)s+1 and |D| ≤ t · (2s)r+1

That is, the only difference from the definition of t-simplicity are a slightly larger
upper bounds on the number of clauses in C and monomials in D.

THEOREM 4.6 (The Criterion for Real Circuits). Let f be a monotone boolean func-

tion. If f can be computed by a monotone real circuit of size t then f is weakly t-simple.

PROOF. The proof is similar to the boolean case (Theorem 4.6). We only have to
show how to construct the approximators for real-valued gates. The idea is to consider
thresholds of real gates and approximate the thresholded values. For a real-valued
function f : {0,1}n→ R and a real number a, let f (a) denote the boolean function that
outputs 1 if f (x) ≥ a, and outputs 0 otherwise.

Let now ϕ : R2 → R be a gate at which the function f (x) is computed, and let
g(x) and h(x) are functions g,h : {0,1}n → R computed at the inputs of this gate. A
simple (but crucial) observation is that then

ϕ
�

g(x),h(x)
�
≥ a ⇐⇒ ∃b, c : g(x) ≥ b, h(x)≥ c and ϕ(b, c)≥ a .
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The (⇒) direction is trivial: just take b = g(x) and c = h(x). The other direction (⇐)
follows from the monotonicity of ϕ: ϕ(g(x),h(x))≥ ϕ(b, c)≥ a.

Together with f (a)(x) = 1 iff ϕ(g(x),h(x)) ≥ a, this allows us to determine each
threshold function f (a) of a gate f = ϕ(g,h) from the thresholds of its input gates as:

f (a) =
∨

ϕ(b,c)≥a

(g(b) ∧ h(c)) (4.3)

as well as
f (a) =
∧

ϕ(b,c)<a

(g(b) ∨ h(c)) . (4.4)

It is convenient to think these expressions as an infinite AND and an infinite OR,
respectively. However, since the number of settings x ∈ {0,1}n for input variables is
finite, the real gates take only finite number of possible values, and therefore, we only
need finite expressions.

As before, every threshold f (a) is approximated by two functions: an s-CNF f
(a)

0

and an r-DNF f
(a)

1 . The approximators for the thresholds of the input variables are
0, 1, or the variable itself, depending on the value of the threshold; they can always
represented by at most one literal and thus newer fail.

Let now f = ϕ(g,h) be an intermediate gate with two input gates g and h, and
suppose that, for all (finitely many!) reals b, c, the left and right approximators for
threshold functions g(b) and h(c) of its input gates are already constructed.

To construct the left approximator from the approximators of its two input gates g

and h, we first consider the representation

f (a) =
∨

ϕ(b,c)≥a

(g
(b)

1 ∧ h
(c)

1 ) .

Since the monomials in the r-DNFs g
(b)

1 and h
(c)

1 have length at most r, all the subex-

pressions g
(b)

1 ∧ h
(c)

1 can be turned into a single 2r-DNF Da such that

Da(x) = 1 iff f (a)(x) = 1 iff f (x)≥ a . (4.5)

After that we use the same procedure as before (that is, Lemma 4.1) to convert this
DNF into an s-CNF f

(a)

0 . This can be done for each (of the finitely many) threshold
values a, and we only need to ensure that the number of errors introduced when
approximating the whole gate f does not depend on this number of thresholds.

When forming the s-CNF f
(a)

0 , we introduce errors as we throw away clauses that
become longer than s. We want to count the number of inputs x ∈ {0,1}n such that
f (a)(x) = 0 while f

(a)

0 (x) = 1 for some a, i.e., the union over a of the errors introduced

in a gate by f
(a)

0 . To do this, let us list in the increasing order a1 < a2 < . . . < aN all
the N ≤ 2n possible values f (x) the gate f can output when the input vector x ranges
over {0,1}n. Hence,

D := Da1
∨ Da2

∨ · · · ∨ DaN

is a 2r-DNF, and this DNF makes no error on x , i.e., D(x) = f (x). By (4.5), we have
that

Da1
≥ Da2

≥ · · · ≥ DaN
.

That is, every monomial of Dai+1
contains at least one monomial of Dai

. Hence, if t(D)

denotes the family of all transversals of D, that is, the family of all subsets of variables,
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each of which intersects all the monomials of D, then

t(Da1
)⊆ t(Da2

)⊆ · · · ⊆ t(DaN
) ,

implying that t(D) = t(DaN
). This means that all the clauses (=transversals), which

we throw away (because they are longer than s) when forming an s-CNF f0 from the
DNF D, are precisely those clauses, which we would throw away when converting the
2r-DNF DaN

into an s-CNF. Thus, by Lemma 4.1, all the errors that may appear during
the construction of the left approximator f0, can be corrected by an exact (s+ 1)-CNF
C of size |C | ≤ (2r)s+1. That is, for every input x such that f (x) = 0 but f0(x) = 1, we
have that C(x) = 0.

A dual argument can be used to bound the number of errors introduced when
constructing the right approximator f1. Note that we cannot use the DNF (4.5) for this
purpose since D is a 2r-DNF, not an r-DNF. But we can argue as above by using the
expression (4.4) instead of (4.3). Then all the introduced errors can be corrected by
an exact (r + 1)-DNF D of size |D| ≤ (2s)r+1. The rest of the proof is the same as that
of Theorem 4.3. □

Since the definitions of t-simple functions and of weakly t-simple function are al-
most the same, Theorem 4.6 allows to extend lower bounds for the monotone boolean

circuits (we proved above) to the monotone real circuits. For example, the same argu-
ment as in the proof of Theorem 4.5 yields

THEOREM 4.7. Any monotone real circuit computing the polynomial function fn has

size at least 2Ω(n
1/4
p

ln n).

REMARK 4.8. Lower bounds for monotone real circuits have found intriguing ap-
plications in proof complexity. In particular, Pudlák (1997) used such bounds to prove
the first exponential lower bound on the length of so-called “cutting plane proofs,” a
proof system for solving integer programming problems. We will describe this result in
Section 18.5.

The extension of the lower bounds criterium from monotone boolean circuits to
monotone real circuits shows the power of the criterion. On the other hand, it gives us
an explanation of why the method requires monotonicity.

PROPOSITION 4.9. Any boolean function in n variables can be computed using n− 1
real monotone fanin-2 gates and one non-monotone unary gate.

PROOF. For an input vector x ∈ {0,1}n, let bin(x) =
∑k

i=1 x i2
i−1 be the number

whose binary code is x . It is easy to see that bin(x) can be computed by a circuit C(x)

using n− 1 real fanin-2 gates of the form g(u, v) = u+ 2v. This can be done via the
recurrence:

bin(x) = x1 + 2 · bin(x ′) = g(x1, bin(x ′)) ,

where x ′ = (x2, . . . , xn). These gates are monotone.
Now, every boolean function f defines a unique set of numbers

L f = {bin(x) | f (x) = 1} .

Hence, in order to compute f , it is enough to attach the (non-monotone) output gate
testing whether C(x) ∈ L f or not. □
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4.5. Criterion for graph properties

When dealing with decision problems defined on graphs, variables xe usually cor-
respond to edges, not to vertices. Each set S of edges defines a graph, and graphs
(unlike just unstructured sets) have many interesting parameters. It is therefore many
possibilities to define the “length” µ(C) of a clause C =

∨
e∈S xe:

- as the number |S| of edges in S;
- as the number |V (S)| of vertices touched by the edges in S;
- as the number κ(S) of connected components in the graph S,

and so on. Depending on what concrete graph property we are dealing with, one
measure may be more suitable than another. It makes therefore sense to extend the
lower bounds criterion so that it allows different measures of “length.”

To do this we only need one additional concept. Namely, say that an input vector
x respects a length measure µ if we cannot add an edge from outside the set S = {e |
xe = 1} to any of its subsets without increasing the weight of the µ-length of S, that is,
if

µ(S′ ∪ {e})≥ µ(S) + 1 for any subset S′ ⊆ S and any e 6∈ S.

We additionally require that µ(S)/2≤ |S| ≤ µ(S)2. In particular, if µ(S) := |V (S)| then
these inequalities hold, but in this case only cliques (complete graphs) will respect this
measure.

Let ν and µ be any length measures. We only require that both they are at most
v(S), the number of vertices touched by the edges in S. The following lemma and its
proof look more “complicated” than our initial Switching Lemma (Lemma 4.1), but
this is only “notational complexity” (we work in more general measure spaces)—the
proof idea is the same as in the case of trivial measures µ(S) = ν(S) := |S|.

LEMMA 4.10. Let f0 be a CNF whose clauses have ν-length at most s. Then there

exist DNFs f1 and D such that: D contains at most s4r monomials, all monomials in f1

have µ-length < r, all monomials in D have µ-length ≥ r, and for all inputs x ∈ {0,1}n
respecting the norm µ, we have that

f1(x) ≤ f0(x) ≤ f1(x)∨ D(x) . (4.6)

PROOF. Let f0 = C1 ∧ · · · ∧ Cm. We identify each clause C =
∨

e∈S xe with the set S

of edges indexing its variables. Hence, each clause Ci has |Ci | ≤ s2 variables. Arguing
as in the proof of Lemma 4.1 we can associate with f0 a tree T of fan-out at most s2

by slightly modifying the condition of when we declare a node to be a leaf. Namely,
we now say that a monomial M pierces a clause Ci if µ(M ∪ {e}) > µ(M) for all edges
e ∈ Ci . (This in particular implies that M ∩ Ci = ;, but the converse needs not hold if
µ is a non-trivial length measure, not µ(S) = |S|.)

As in the proof of Lemma 4.1, the first node of T corresponds to the first clause
C1, and the outgoing |C1| edges are labeled by the variables from C1. Suppose we have
reached a node v, and let M be the monomial consisting of the labels of edges from
the root to v. If M pierces all the clauses of f0, then v is a leaf. Otherwise, let Ci be the
first clause not pierced by M . Then the node v has |Ci | outgoing edges labeled by the
variables in Ci .

We now let f1 consist of all paths (monomials) ending in a leaf of T and whose
µ-length is smaller than r. Let also D contain all paths M to nodes v such that the
path to its father has µ-length < r, but the path M to the node v itself has µ-length
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≥ r. That is, D consists of all paths whose µ-length reached the threshold r for the
first time. In particular, the µ-length of each monomial in D is at least r.

First observe that each monomial M of D has length (not just µ-length!) |M | ≤ 2r.
Indeed, when going from the father to its child in T , the length of a path increases
by exactly 1, whereas the µ-length increases by at least 1 and by at most 2 (only one
edge is added). Hence, monomials in D correspond to paths in T of length at most
2r. Since every node of T has fan-out at most s2, this gives the desired upper bound
|D| ≤ (s2)2r = s4r on the total number of monomials in D.

It remains to prove (4.6). Since, by the construction, each path of T is either a
monomial of f1 or is an extension of at least one monomial in D, we immediately have
that f0(x)≤ f1(x)∨ D(x) holds for all inputs x ∈ {0,1}n.

However, this time the inequality f1(x) ≤ f0(x) needs not to hold for all inputs
x . The reason, why this could happen, is that the fact that a monomial M pierces all
clauses of f0 alone does not imply that M must also intersect all the clauses of f0: in
general, µ(M ∪ {e}) = µ(M) does not necessarily imply that e ∈ M . Note however,
that this cannot happen if the set Sx = {e | xe = 1} respects the norm µ: this would
mean that we can add to M an edge e lying outside Sx (and hence, outside M) without
increasing the µ-length of M . □

This lemma motivates the following modification of the notion of t-simplicity for
graph properties. Let ν be some length measure for negative inputs, and µ be some
length measure for positive inputs.

DEFINITION 4.11. A graph property f is weakly t-simple with respect to (ν ,µ), if for
all integers 1 ≤ r, s ≤ n− 1 there exists a set I of edges of ν-length at most s, a system
of sets S1, . . . ,SK of edges each of ν-length at least s, and a system of sets R1, . . . ,RL of
edges each of µ-length at least r such that1 K ≤ t(2r)4s, L ≤ t(2s)4r and at least one
of the following two conditions hold:

a. Every positive input of µ-length at least r, which respects the norm µ, either
intersects the set I or contains at least one of the sets R1, . . . ,RL .

b. Every negative input of ν-length at least s, which respects the norm ν , contains
at least one of the sets S1, . . . ,SK .

We have the following extension of Theorem 4.6 to more general length measures
for inputs.

THEOREM 4.12. If a monotone boolean function can be computed by a monotone real

circuit of size t, then it is t-simple with respect to any pair ν ,µ of length measures.

The proof of this theorem is the same as that of Theorem 4.6: just use Lemma 4.10
(and its dual version) instead of Lemma 4.1. We leave a detailed proof as an exercise.

4.6. Clique-like problems

We consider graphs on a fixed set of m vertices. We have n =
�m

2

�
boolean vari-

ables, one for each potential edge. Then each boolean function f : {0,1}n → {0,1}
described some graph property. A prominent NP-complete graph property if a mono-
tone boolean function C LIQU E(m, k) which accepts a given graph iff it contains a
k-clique, that is, a a subgraph on k vertices whose all vertices are pairwise adjacent.

1We take (2r)4r instead of just r4s, as suggested by Lemma 4.10, in order to cover also the real-valued
case.
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Instead of proving a lower bound on this function we will do this for a much larger
class of “clique-like” functions.

A complete k-partite graph is a disjoint union of k cliques, some of which may
consist of just one isolated vertex. Each such graph is defined by a coloring of vertices
in k colors, and two vertices are adjacent iff they recieve different colors. Note that
none of such graphs can contain a k-clique, but adding any one edge already yields a
k-clique.

Let 2 ≤ a ≤ b ≤ m be integers. An (a, b)-clique function is a monotone boolean
function f such that, for every graph G on m vertices,

f (G) =





0 if G is complete (a− 1)-partite graph;

1 if G is a b-clique;

any value otherwise.

THEOREM 4.13. Let 32≤ a ≤ b ≤ m/32, and let f be an (a, b)-clique function. Then

the minimal number of gates in a monotone real circuit computing f is exponential in

min{a, m/b}1/4.

In particular, for k = bpmc, C LIQUE(m, k) requires 2Ω(m
1/8) gates.

PROOF. Let f be an (a, b)-clique function. We are going to apply the refined ver-
sion of the lower bounds criterion (Theorem 4.6). To do this, we must first choose
appropriate length measure µ for positive inputs an a length measure ν for negative
inputs.

What to take as positive and how to measure their length is clear. All b-cliques are
positive inputs for f . A natural measure for a clique S is to take

µ(S) := the number of vertices touched by the edges in S .

It is clear that every clique S respects this measure: we cannot add a new edge e to S

without increasing the number of vertices.
What to take as negative inputs is also clear: such are all complements of complete

(a−1)-partite graphs. Each such complement Gh is defined by a coloring h of vertices in
a−1 colors: two vertices u and v are adjacent in Gh iff h(u) = h(v). But what should we
take as a length ν(Gh) of such graphs? We cannot take the same length measure µ(Gh)

(as for positive inputs) because the graphs Gh do not respect this measure: if S ⊆ Gh

and if the ends of the edge e belong to different parts of Gh, then µ(S ∪ {e}) = µ(S).
Observe however that, in this case, the graph S ∪ {e} has one connected component
fewer! This suggests the following length measure for negative inputs: take

ν(S) := µ(S)−κ(S) ,
where κ(S) is the number of connected components in S. We claim that this measure is
already respected by all graphs Gh = (V, E). To show this, let S ⊆ E and e 6∈ E. Let also
V (S) be the set of all vertices touched by the edges of S; hence, |V (S)| = µ(S). Since
each connected component of E is either an isolated vertex or a clique, the edge e must
lie between two distinct components of E. Since each connected component of S lies
entirely in some of the components of E, we have that

a. either e ⊆ V (S), and hence, µ(S ∪ {e}) = µ(S) and κ(S ∪ {e}) = κ(S)− 1;
b. or |e ∩ V (S)|= 1, and hence, µ(S ∪ {e}) = µ(S) + 1 and κ(S ∪ {e}) = κ(S);
c. or e ∩ V (S) = ;, and hence, µ(S ∪ {e}) = µ(S) + 2 and κ(S ∪ {e}) = κ(S) + 1.
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e

FIGURE 1. A complement of a complete 4-partite graph. Any new
edge e can only join its distinct connected components.

In all three case we have that

ν(S ∪ {e}) = µ(S ∪ {e})− κ(S ∪ {e}) = µ(S)−κ(S) + 1= ν(S) + 1 ,

as desired.
Suppose now that the function f is t-simple. By Theorem 4.12, it is enough to

show that then t ≥ 2Ω(N
1/4). Set

r :=

��a− 1

32

�1/4�
and s :=

�� m

32b

�1/4�
.

According to Definition 4.11 we have only two possibilities, depending on what of the
two of its items holds.

Case 1: Every positive input of µ-length at least r, which respects the norm µ,
either intersects the set I or contains at least one of the sets R1, . . . ,RL , each of µ-
length at least r.

Positive inputs are b-cliques. At least
�m

b

�
− s2�m−2

b−2

�
≥ 1

2

�m
b

�
of such cliques must

avoid a fixed set I of |I | ≤ s2 edges. Each of these b-cliques must contain at least one
of L ≤ t · (2s)4r r-cliques R1, . . . ,RL . Since each Ri is contained in

�m−r

b−r

�
of k-cliques,

we conclude that in this case

t ≥
1
2

�m
b

�

(2s)4r
�m−r

b−r

� ≥
�

m

16s4 b

�Ω(r)
= 2Ω(a

1/4) .

Case 2: Every negative input of ν-length at least s, which respects the norm ν ,
contains at least one of the sets S1, . . . ,SK , each of ν-length at least s.

Each negative input Gh consists of m1 isolated vertices and m2 mutually disjoint
cliques, where 1≤ m1 +m2 ≤ a− 1. Thus,

ν(Gh) = µ(Gh)−κ(Gh) = (m−m1)−m2 ≥ m− a+ 1> s .

Since the graphs Gh respect the norm ν , we have that each of these graphs must contain
at least one of the sets of edges S1, . . . ,SK , where ν(Si)≥ s and K ≤ t · (2r)4s. We have
(a − 1)m colorings h, and it remains to estimate for how many of them, the induced
graph Gh can contain a fixed set of edges S, with ν(S) ≥ s.

If V1, . . . , Vd are the sets of vertices of the connected components of S, then by the
definition of the norm ν , |V1|+ . . .+ |Vd | ≥ s+ d. If Gh ⊇ S, then all the vertices in each
of the classes Vi must get the same color. Hence, the number of colorings h, for which
Gh ⊇ S, does not exceed

(a− 1)d(a− 1)m−(s+d) = (a− 1)m−s .



4.6. CLIQUE-LIKE PROBLEMS 55

Thus, in this case,

t ≥
(a− 1)m

(2r)4s(a− 1)m−s
=

�
a− 1

16r4

�s
= 2(m/b)1/4 . □

As mentioned above, the class of clique-like functions includes some NP-complete
problems, like C LIQU E(m, k). But the class of (a, b)-clique functions is much larger.
So large that it also includes some graph properties computable by non-monotone
circuits of polynomial size!

A graph function is a function ϕ assigning each graph G a real number ϕ(G). Such
a function ϕ is clique-like if

ω(G)≤ ϕ(G)≤ χ(G) ,

where ω(G) is the clique number, i.e. the maximum number of vertices in a complete
subgraph of G, and χ(G) is the chromatic number, i.e. the smallest number of colors
which is enough to color the vertices of G so that no adjacent vertices receive the same
color.

Fix k to be the square root of the number m of vertices, and let fϕ denote the
monotone boolean function of n =

�m
2

�
boolean variables encoding the edges of a

graph on m vertices, whose values are defined by

fϕ(G) = 1 iff ϕ(G)≥ k .

Note that

fϕ(G) =

¨
1 if ω(G)≥ k,

0 if χ(G)≤ k− 1.

OBSERVATION 4.14. For every clique-like graph function ϕ, the boolean function fϕ
is a (k, k)-clique function.

PROOF. If G contains a k-clique, then ϕ(G) ≥ ω(G) = k, and hence, the function
fϕ accepts G. On the other hand, if G is a complete (k−1)-partite graph, then ϕ(G)≤
χ(G)≤ k− 1, and fϕ rejects G. □

Although we always have thatω(G)≤ χ(G), the gap between these two quantities
can be quite large: results of Erdös (1967) imply that the maximum of χ(G)/ω(G) over
all m-vertex graphs G has the order Θ

�
m/ log2 m
�

. So, at least potentially, the class
of clique-like functions is large enough. And indeed, Tardos (1987) observed that this
class includes not only NP-complete problems (like the clique function) but also some
problems from P.

LEMMA 4.15. There exists an explicit monotone clique-like graph function ϕ which is

computable in polynomial time.

PROOF. In his seminal paper on Shannon-capacity of graphs Lovász (1979a) intro-
duced the capacity ϑ(G). The function ϕ′(G) := ϑ(G), where G denotes the comple-
ment of G, is a monotone clique-like function. Grötschel, Lovász and Schrijver (1981)
gave a polynomial time approximation algorithm for ϑ. That is, given a graph G and a
rational number ε > 0 the algorithm computes, in polynomial time, a function g(G,ε)
such that

ϑ(G)≤ g(G,ε) ≤ ϑ(G) + ε .
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Now, for any 0 < ε < 1/2 the function bg(G,ε)c is a polynomial time computable
clique-like function. This function might not be monotone. Let us therefore consider
the monotone function

ϕ(G) = bg(G, n−2) + e(G) · n−2c ,
where n is the number of vertices and e(G) the number of edges in G. This is the
desired monotone clique-like function computable in polynomial time. □

Together with Theorem 4.13, Observation 4.14 and Lemma 4.15 immediately yield
an exponential trade-off between monotone and non-monotone circuits.

THEOREM 4.16. For every clique-like graph function ϕ, the boolean function fϕ can

be computed by a non-monotone boolean circuit of polynomial size, but any monotone

real circuit requires 2Ω(n
1/16) gates.

We will use this theorem later in Section 18.5 to prove exponential lower bounds
for widely used proof systems—resolution refutation and cutting plane proofs.

4.7. What about circuits with NOT gates?

As we mentioned at the very beginning, no non-linear lower bounds are known
for circuits using NOT gates. So, what is “bad” with the arguments we described in
this and the previous chapters? Why they do not work for non-monotone circuits?

A possible answer is that the arguments are just too general! In order to show that
no circuit with t gates can compute a given boolean function f , we have to show that
no such circuit C can separate the set f −1(0) from f −1(1), that is, reject all vectors
in f −1(0) and accept all vectors in f −1(1). Current arguments for monotone circuits
(and formulas) do much more: there are relatively small subsets A ⊆ f −1(0) and
B ⊆ f −1(1) (sets of particular negative and positive inputs) such that every monotone
circuit separating A from B must be large.

To be more specific, let A be the set of all complete (k − 1)-partite graphs on m

vertices, and B be the set of all k-cliques. Hence, for any k-clique function f , members
of A are negative inputs and members of B are positive inputs for f . We have shown
that any monotone circuit separating A from B must have exponential size.

On the other hand, A can be separated from B by a small circuit if we allow just
one NOT gate be used at the top of the circuit! Indeed, each graph in A has at least
K =
�m/k

2

�
edges, whereas each graph in B (a k-clique) has only

�k
2

�
edges, which

is smaller than K for for every k <
p

m. Hence, if g = ¬ThK is the negation of the
threshold-K function, then g(a) = 0 for all a ∈ A, and g(b) = 1 for all b ∈ B. Since
threshold functions have small monotone circuits (at most n2 in the number n of input
variables), the resulting circuit is also small, separates A from B, and has only one NOT
gate.

That is, it is not hard to separate the pair A, B by a monotone circuit – it is only
hard to do this separation in a “right” direction: reject all vectors a ∈ A, and accept all
vectors b ∈ B. This motivates the following definition.

Let f be a monotone boolean function. Say that a pair A, B with A⊆ f −1(0) and
B ⊆ f −1(1) is r-hard if every monotone circuit separating A and B (either in a “right”
or in a “wrong” direction) must have super-polynomial size.

Exercise 4.7 shows that any r-hard pair A, B requires a super-polynomial number
of gates in any circuit that separates A from B and uses up to r NOT gates. In the next
chapter we will show that r = dlog(n+ 1)e is a critical number of allowed NOT gates:
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having an r-hard pair for such an r we would have proved a super-polynomial lower
bound for non-monotone circuits! What we know so far is that the clique function
produces an r-hard pair for r about log log n; this was shown by Amano and Maruoka
(2005).

RESEARCH PROBLEM 4.17. Exhibit an explicit r-hard pair A, B for r � log log n.

Exercises

EX. 4.1. A partial b–(n, k,λ) design is a familyF of k-element subsets of {1, . . . , n}
such that any b-element set is contained in at most λ of its members. We can associate
with each such design F a monotone boolean function fF such that fF (S) = 1 if and
only if S ⊇ F for at least one F ∈ F . Assume that ln |F |< k−1 and that each element
belongs to at most N members of F . Use Theorem 4.3 to show that for every integer
a ≥ 2, every monotone circuit computing fF has size at least

` :=min

¨
1

2

�
k

2b ln |F |

�a
,
|F | − a · N
λ · ab

«
.

Hint: Take r = a − 1, s = b − 1 and show that under this choice of parameters, the function fF can be

t-simple only if t ≥ `. When doing this, note that the members of F are positive inputs for fF . To handle

the case of negative inputs, take a random subset T in which each element appears independently with

probability p = (1 + ln |F |)/k, and show that T is not a negative input for fF with probability at most

|F |(1− p)k ≤ e−1.

EX. 4.2. Derive Theorem 4.5 from the previous exercise.
Hint: Observe that the family of all qd graphs of polynomials of degree at most d−1 over GF(q) forms

a partial b–(n, k,λ) design with parameters n= q2, k = q and λ= qd−b.

EX. 4.3. Andreev (1987) has shown how, for any prime power q ≥ 2 and d ≤ q,
to construct an explicit family F of subsets of {1, . . . , n} which, for every b ≤ d + 1,
forms a partial b–(n, k,λ) design with parameters n = q3, k = q2, λ = q2d+1−b and
|F | = q2d+1. Use Exercise 4.1 to show that the corresponding boolean function fD
requires monotone circuits of size exponential in Ω

�
n1/3−o(1)
�

.

EX. 4.4. A boolean function f (x1, . . . , xn) is a k-slice function if f (x) = 0 for all
x with |x | < k, and f (x) = 1 for all x with |x | > k. Show that some slice functions
require DeMorgan circuits of size 2Ω(n).

Hint: Take k = n/2 and argue as in the proof of Theorem 1.2.

EX. 4.5. Given a vector x = (x1, . . . , xn) in {0,1}n, associate with it the following
two integers h+(x) := |x |·2n+b(x) and h−(x) := |x |·2n−b(x), where |x |= x1+· · ·+xn

and b(x) =
∑n

i=1 x i2
i−1. Prove that for any two vectors x 6= y ,

a. if |x |< |y |, then h+(x)< h+(y) and h−(x) < h−(y);
b. if |x | = |y |, then h+(x)≤ h+(y) if and only if h−(x) ≥ h−(y).

EX. 4.6. Let f (x1, . . . , xn) be a k-slice function, 0 ≤ k ≤ n. Use the previous exer-
cise to show that f can be computed by a circuit with O(n) monotone real-valued
functions as gates. Hint: As the last gate take a monotone function ϕ : R2 → {0, 1} such that

ϕ(h+(x), h−(x)) = f (x) for all inputs x of weight |x | = k.

EX. 4.7. Let f be a boolean function and suppose that it can be computed by a
circuit of size t with at most r negations. Show that then, for any A ⊆ f −1(0) and
B ⊆ f −1(1), there is a monotone boolean function g such that g can be computed by a
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monotone circuit of size at most t and either g or its negation ¬g rejects a 2−r fraction
of inputs from A and accepts a 2−r fraction of inputs from B.
Hint: Argue by induction on r. If r ≥ 1, then consider the first negation gate and the function g that is

computed at the gate immediately before this negation gate. Let ε ∈ {0, 1} be such that g(a) = ε for at least

one half of the inputs a ∈ A. If also one half of the inputs b ∈ B have g(b) = ε ⊕ 1, then either g or ¬g has

the property stated in the lemma. If this is not the case, try to apply the induction hypothesis.
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CHAPTER 5

Mystery of Negations

The main difficulty in proving non-trivial lower bounds on the size of circuits over
{∧,∨,¬} is the presence of NOT gates – we already know how to prove even exponen-
tial lower bounds if no NOT gates are allowed. The effect of such gates on circuit size
remains to a large extent a mystery. It is, therefore, worth to recall what we actually
know about this “ghost.” Among the basic questions concerning the role of NOT gates
are the following:

1. For what monotone boolean functions NOT gates are useless, that is, cannot
lead to much more efficient circuits?

2. Given a function f , what is the minimum number M( f ) of NOT gates in a
circuit computing f ?

3. Given a circuit, to what extend can we decrease the number of NOT gates in it
without a substantial increase in circuits size? In particular, how much can the size of
a circuit increase when trying to compute f using the smallest number M( f ) of NOT
gates?

4. Suppose that a function f in n variables can be computed by a circuit of size
polynomial in n, but every circuit with M( f ) negations computing f requires super-
polynomial size. What is then the minimal number of negations sufficient to compute
f in polynomial size? In other words, how many NOT gates do we need in oder to
achieve superpolynomial savings in circuit size?

In this chapter we answer these questions.

5.1. When NOT gates are useless?

Let us consider circuits with gates ∧,∨,¬. Recall that such a circuit is a DeMorgan
circuit if its inputs are variables and their negations, and gates are fanin-2 AND and
OR gates. A circuit is monotone if it has no negated inputs.

For a boolean function f , let C( f ) denote the smallest number of gates in a circuit
over {∧,∨,¬} computing f . Let also C′( f ) denote the number of ∧ and ∨ gates in a
DeMorgan circuit computing f . It can be shown (do this!) that C′( f ) ≤ 2 · C( f ). For
a monotone boolean function f , let C+( f ) denote the smallest number of gates in a
monotone DeMorgan circuit computing f .

As we already mentioned above, current methods are not able to prove larger
than C( f )≥ 5n lower bounds, where n is the number of variables. On the other hand,
we already know how to prove even exponential lower bounds for monotone circuits
where we have no NOT gates at all. Even better, there is a large class of monotone
boolean functions f for which NOT gates are almost useless, that is, C+( f ) is not
much larger than C( f ). These are so-called “slice functions”. Unfortunately, known
lower bounds arguments for monotone circuits do not work for these functions.
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FIGURE 1. A k-slice function.

5.1.1. Slice functions. A boolean function f (x) is a k-slice function if f (x) = 0
when |x |< k, and f (x ) = 1 when |x |> k; here |x |= x1+ . . .+ xn is the number of 1’s
in x . Note that slice functions are monotone! They are, however, nontrivial only on
the k-th slice of the binary n-cube {0,1}n. Note also that, for every boolean function f ,
the function f (k) defined by

f (k) = f ∧ Thn
k
∧¬Thn

k+1 ∨ Thn
k+1

is a k-slice function. Here, as before, Thn
k

is the threshold-k function in n variables
which accepts a given vector iff it has at least k 1’s.

Important property of slice functions is that NOT gates are almost useless when
computing them. This is because we can replace each negated input in a circuit for
a k-slice function f by a small monotone circuit computing a threshold function. The
idea, due to Berkowitz is to consider threshold functions

T n
k,i(x1, . . . , xn) := Thn−1

k
(x1, . . . , x i−1, x i+1, . . . , xn) .

A simple (but crucial) observation is that, for all input vectors x ∈ {0,1}n with exactly
k ones, Tk,i(x) is the negation of the ith bit x i:

Tk,i(x) = ¬x i . (5.1)

It is known that all these n threshold functions (i = 1, . . . , n) can be computed by a
monotone circuit of size O(n log2 n). Hence, if we replace all n negated inputs in a
(non-monotone) circuit

f (x1, . . . , xn) = F(x1, . . . , xn,¬x1, . . . ,¬xn)

for a k-slice function f by outputs of this circuit, we obtain a monotone circuit

F+(x1, . . . , xn) = F(x1, . . . , xn, Tk,1(x ), . . . , Tk,n(x)) .

It is not difficult to verify that F+ also computes f . That F+(x) = F(x) for all inputs x

with |x | = k follows from (5.1). To show that the same holds for all remaining input
vectors, observe that

F(x1, . . . , xn, 0, . . . , 0)≤ F(x1, . . . , xn,¬x1, . . . ,¬xn) ≤ F(x1, . . . , xn, 1, . . . , 1) .

This holds because the circuit F itself is monotone, i.e., has only AND and OR gates
(negations are only on inputs). Thus, if |x |< k, then f (x) = 0 independent of whether
x i = 0 or x i = 1. Hence, on such input vectors,

F+(x1, . . . , xn) = F(x1, . . . , xn, 0, . . . , 0) ≤ f (x1, . . . , xn) = 0 .

The case of input vectors with more than k ones is dual.
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What we have just proved is the following

THEOREM 5.1. For any slice function f in n variables,

C′( f ) ≥ C+( f )−O(n log2 n) .

Thus, any lower bound C+( f ) � n log2 n on the monotone(!) complexity of a
slice function would yield superlinear lower bound on their non-monotone complexity.
Unfortunately, existing methods for monotone circuits (and formulas) do not work for
slice functions.

The obstacle for this, roughly, is that either the set of positive or the set of negative
inputs of a slice function are not “scattered” enough. For the lower bounds criterium
(Theorem 4.3) to work, we need that the number of positive (as well as negative)
inputs of f containing a fixed r-element set is relatively small. Now, if f is a k-slice
function with, say, k ≤ n/2, then the only interesting negative inputs are (n − k)-
element sets, corresponding to the vectors on the k-th slice of the n-cube on which
the function takes value 0. But then up to 2(n−k)−r ≥ 2n/2−r such inputs may share r

common elements.
When trying to understand the monotone complexity of k-slice functions, it is im-

portant to first understand the case k = 2. This leads to so-called “graph complexity”,
a notion we already described in the first chapter.

5.1.2. Negated inputs as new variables. There is also another bridge between
monotone and non-monotone complexities. Namely, with any boolean function f in n

variables, it is possible to associate a monotone boolean function g f if 2n variables so
that

C′( f )≥ C+(g f )− 4n .

Let f (x) be any boolean function in n variables. Take a set y of new n variables
and define a boolean function g f (x , y) by

g f (x , y) = α(x , y)∧ f (x)∨ β(x , y) ,

where

α(x , y) =

n∧

i=1

(x i ∨ yi) and β(x , y) =

n∨

i=1

(x i ∧ yi) .

That is, α(x , y) = 1 iff x ∨ y = 1 and β(x , y) = 1 iff x ∧ y 6= 0 (a component-wise OR
and AND).

LEMMA 5.2. For any boolean function f , g f is a monotone function.

PROOF. If g(x , y) = g f (x , y) is not monotone, there must be vectors a, b so that
g(a, b) = 1 and changing some bit from 0 to 1 makes g = 0. Clearly, β(a, b) = 0;
otherwise, after the change β would still output 1. Since g(a, b) = 1 it must be the case
that α(a, b) = 1. But then after the change β must be equal to 1, a contradiction. □

LEMMA 5.3. For any boolean function f ,

g f (x1, . . . , xn,¬x1, . . . ,¬xn) = f (x1, . . . , xn) .

PROOF. Let y be the vector y = (¬x1, . . . ,¬xn). Then, by definition, α(x , y) = 1
and β(x , y) = 0. □

THEOREM 5.4. For any boolean function f in n variables,

C′( f )≤ C+(g f )≤ C′( f ) + 4n .
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PROOF. The first inequality C′( f ) ≤ C+(g f ) follows from Lemma 5.3. Now suppose
that f has a circuit F(x1, . . . , xn,¬x1, . . . ,¬xn) of size `. This is a monotone circuit with
fanin-2 AND and OR gates; inputs are variables and their negations. Replace now the
negated inputs ¬x1, . . . ,¬xn by new variables y = (y1, . . . , yn), extend the circuit by
adding an AND with a circuit monotone computing α(x , y) and adding an OR with a
circuit monotone computing β(x , y). Let F ′(x , y) the resulting monotone circuit. It is
clear that F ′ has size at most `+4n. We claim that F ′ is the desired monotone circuit:

g f (x , y) = F ′(x , y) .

Suppose that F ′ is different from g f for some values of the inputs x and y . Then,
clearly, β(x , y) = 0; otherwise, they would agree. Also α(x , y) must equal 1; again,
if not, the two values could not disagree. We now claim that for each k, xk = ¬yk.
Suppose that this was false. Then, let xk = yk for some k. Clearly, the common value
cannot be 1 since β = 0. Also the common value cannot be 0 since α = 1. This proves
that for each k, xk = ¬yk. But then

f (x) = F(x1, . . . , xn,¬x1, . . . ,¬xn) = F ′(x , y) .

Since, by Lemma 5.3,

f (x) = g f (x1, . . . , xn,¬x1, . . . ,¬xn) = g f (x , y) ,

we have that g f (x , y) = F ′(x , y). This is a contradiction with our assumption that g f

and F ′ differ on input (x , y). □

5.2. The Markov theorem

More than 50 years ago, Markov (1957) has made an intriguing observation that
every boolean (and even multi-output) function on n variables can be computed by
a circuit with only about log n negations.1 To state and prove his result, we need a
concept of a “decrease” of functions.

For two binary vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) we write, as before,
x ≤ y if x i ≤ yi for all i. We also write x < y if x ≤ y and x i < yi for at least one
i. A boolean function f : {0,1}n → {0,1} is monotone if x ≤ y implies f (x) ≤ f (y).
A chain in the binary n-cube is an increasing sequence Y = {y1 < y2 < . . . < yk} of
vectors in {0,1}n.

Given such a chain, we look at how many times our boolean function f changes
its value from 1 to 0 along this chain, and call this number the decrease of f on this
chain. Namely, say that i is a jump position (or a jump down position) of f along Y , if

f (y i) = 1 and f (y i+1) = 0 .

The number of all jump positions is the decrease dY ( f ) of f on the chain Y . The
decrease d( f ) of f is the maximum of dY ( f ) over all chains Y .

Note that we only count the “jumps” from 1 to 0: positions j for which f (y j) = 0
and f (y j+1) = 1 do not contribute to dY ( f ). In particular, we have that d( f ) ≤ n/2
for every boolean function f in n variables, and d( f ) = 0 for all monotone functions.

The inversion complexity, I( f ), of a boolean function f is the minimum number of
NOT gates contained in a circuit over {∧,∨,¬} computing f .

We have the following surprisingly tight result.

1Here and in what follows, all logarithms are base two; hence, dlog(n+ 1)e is the number of bits in the
binary representation of n.
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THEOREM 5.5 (Markov 1957). For every boolean function f ,

I( f ) = dlog(d( f ) + 1)e .

The same result holds also for multi-output functions f : {0,1}n → {0,1}m. In
this case, the decrease of f along a chain is the number of times at least one of m

components of f changes its value from 1 to 0.
We prove the lower and upper bounds on I( f ) separately.

LEMMA 5.6 (Lower bound).

I( f )≥ dlog(d( f ) + 1)e . (5.2)

PROOF. We can assume that I( f )> 0, for otherwise the function f would be mono-
tone, and in this case d( f ) = 0.

Fix a chain Y = {y1 < y2 < . . . < yk} for which dY ( f ) = d( f ). Take an arbitrary
circuit C computing f , and let g be the function computed on the output of the first

NOT gate of C . Hence, the function computed at the input of g is monotone.
Our goal is to prove the following claim.

CLAIM 5.7. It is possible to replace g by a constant 0 or 1 so that the function f ′

computed by the resulting circuit satisfies

dY ( f
′)≥

1

2
dY ( f ) .

Having this, the desired lower bound (5.2) can be shown as follows. If the original
circuit C would have r < dlog(d( f ) + 1)e = dlog(dY ( f ) + 1)e NOT gates, then repeat-
ing Claim 5.7 r times we would obtain a circuit without any negations computing a
function fr for which dY ( fr) ≥ 2−r · dY ( f ) ≥ 1 But the function fr is monotone (no
NOT gates are used to compute it), a contradiction.

So, it remains to prove Claim 5.7.
Let g be the function computed on the output of the first NOT gate of C . Since the

function computed at the input of this gate is monotone, we have that dY (g)≤ 1, that
is, g can make at most one jump down on Y .

Case 1: dY (g) = 0 (no jumps at all). In this case, we have that g(Y ) ≡ 0 or
g(Y )≡ 1, and we can replace this negation gate by the corresponding constant 0 or 1.
For the function f ′ computed by the resulting circuit we then have that f ′(y) = f (y)

for all y ∈ Y , implying that dY ( f
′) = dY ( f ) in this case.

Case 2: dY (g) = 1. In this case there is a 1 ≤ t < k such that g(y) = 1 for all
y ∈ Y1 := {y1, . . . , y t}, and g(y) = 0 for all y ∈ Y0 = {y t+1, . . . , yk}. Let

Y ( f ) = {y i | f (y i) > f (y i+1)}
be the set of jumps made by function f on the entire chain Y ; hence, |Y ( f )| = dY ( f ).
Depending on whether |Y1 ∩ Y ( f )| ≥ |Y ( f )|/2 or not, replace the gate g by constant 1
or by constant 0. In both cases the resulting circuit has one negation gate fewer, and
computes a function f ′ for which dY ( f

′)≥ |Y ( f )|/2 = dY ( f )/2.
This completes the proof of Claim 5.7, and hence, the proof of the lower bound (5.2).

□

LEMMA 5.8 (Upper bound).

I( f )≤ dlog(d( f ) + 1)e . (5.3)
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FIGURE 2. Chain Y0 ends in x , and chain Y1 starts with x .

PROOF. We will prove the lemma by induction on M( f ) := dlog(d( f ) + 1)e.
Base: M( f ) = 0. Then d( f ) = 0, so f is monotone and I( f ) = 0.
Induction Step: Suppose I( f ′) ≤ M( f ′) for all boolean functions f ′ such that

M( f ′)≤ M( f )−1. Let S be the set of all vectors x ∈ {0,1}n such that dY ( f ) < 2M( f )−1

for every chain Y starting with x:

S = {x | dY ( f )< 2M( f )−1 for any chain Y starting in x} .
Note that the set S is upwards closed: if x ∈ S and x ≤ y , then y ∈ S. This holds
because each chain starting in y can be extended to a chain starting in x .

CLAIM 5.9. for every chain Y ending in a vector outside the set S we also have
dY ( f )< 2M( f )−1.

PROOF. Assume that there is a chain Y0 ending in a vector x 6∈ S and such that
dY0
( f ) ≥ 2M( f )−1 (see Fig. 2). The fact that x does not belong to S means that there

must be a chain Y1 starting in x for which dY1
( f ) ≥ 2M( f )−1. But then the decrease

dY0∪Y1
( f ) of f on the combined chain Y0 ∪ Y1 is

dY0∪Y1
( f ) = dY0

( f ) + dY1
( f )≥ 2M( f ) = 2dlog(d( f )+1)e > d( f ),

a contradiction with the definition of d( f ). □

Consider now two functions f0 and f1 defined as follows:

f0(x) =

�
f (x) if x ∈ S,
0 if x 6∈ S

and

f1(x) =

�
1 if x ∈ S,
f (x) if x 6∈ S.

CLAIM 5.10. Both d( f0) and d( f1) are strictly smaller than 2M( f )−1.

PROOF. We show this for f0 (the argument for f1 is similar). Let Y be a chain for
which dY ( f0) = d( f0). Let x be a vector which Y starts in and y be a vector which Y

ends in. If x ∈ S or y 6∈ S, then d( f0) ≤ 2M( f )−1 − 1 by Claim 5.9 and definition of S.
So, assume that x 6∈ S and y ∈ S. Since the set S is upwards closed, some initial part
Y0 of the chain Y lies outside S and the remaining part Y1 lies in S. By the definition
of the function f0, it is constant 0 on Y0, and coincides with f on Y1. By the definition
of the set S, we have that the decrease of f0 on Y1 is smaller than 2M( f )−1 − 1. Since
f0(z) = 0 for all z ∈ Y0, there cannot be any additional jump down of f0 along the
entire chain Y = Y0 ∪ Y1. □
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Hence,

M( fi) = dlog(d( fi) + 1)e ≤ dlog 2M( f )−1e= M( f )− 1.

By the induction hypothesis, I( fi) ≤ M( fi) ≤ M( f )− 1 for both i = 0,1. It therefore
remains to show that

I( f )≤ 1+max
�

I( f0), I( f1)
	

. (5.4)

For this we need one auxiliary result. A connector of two boolean functions f0(x) and
f1(x) in n variables is a boolean function g in n+2 variables such that g(0,1, x) = f0(x)

and g(1,0, x) = f1(x).

CLAIM 5.11. Every pair of functions f0(x), f1(x) has a connector g such that

I(g)≤max
�

I( f0), I( f1)
	

.

Let us first complete the proof of Lemma 5.8 using this claim. Let χS(x) be the
characteristic function of S, and let g be a connector of f0 and f1 guaranteed by
Claim 5.11. By the definition of the functions f0 and f1, we then have that our original
function f (x) can be computed as

f (x) = g
�
¬χS(x),χS(x), x

�
.

Indeed, if x ∈ S then f (x) = f0(x) = g(0,1, x) = g
�
¬χS(x),χS(x), x

�
, and similarly

for all vectors x 6∈ S. Since the set S is upwards closed, its characteristic function χS(x)

is monotone, and hence, requires no NOT gates. Thus, Claim 5.11 implies

I( f )≤ 1+ I(g)≤ 1+max
�

I( f0), I( f1)
	

.

This completes the proof of (5.3), and thus, the proof of Lemma 5.8.
It remains therefore to prove Claim 5.11.
We argue by induction on r := max

�
I( f0), I( f1)
	
. If r = 0 then both functions fi

are monotone, and we can take g(u, v, x) = (u∧ f1)∨ (v ∧ f0).
For the induction step, let Ci(x) be a circuit with I( fi) negations computing fi(x).

Replacing the first NOT gate in Ci by a new variable ξ we obtain a circuit C ′
i
(ξ, x)

on n+ 1 variables which contains one NOT gate fewer. Let f ′
i
(ξ, x) be the function

computed by this circuit; hence, I( f ′
i
) ≤ r − 1. Moreover, if hi(x) is the monotone

function computed immediately before the first NOT gate in Ci , then

f0(x) = f ′0(¬h0(x), x) and f1(x) = f ′1(¬h1(x), x) . (5.5)

By the induction hypothesis, there is a boolean function g ′(u, v,ξ, x) (the connector of
the pair f ′0 , f ′1) such that I(g ′)≤max

�
I( f ′0), I( f ′1)
	
≤ r − 1,

g ′(0,1,ξ, x) = f ′0(ξ, x) and g ′(1,0,ξ, x) = f ′1(ξ, x) .

Replace now the variable ξ in g ′(u, v,ξ, x) by the function

Z(u, v, x) := ¬
�
(u∧ h1(x))∨ (v ∧ h0(x))

�
.

Since Z(0,1, x) = ¬h0(x) and Z(1,0, x) = ¬h1(x), (5.5) implies that the obtained
function g(u, v, x) is a connector of f0 and f1. Since the functions h0 and h1 are mono-
tone, we have I(g)≤ 1+ I(g ′)≤ r, as desired. □
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FIGURE 3. If, when going from input x to input y > x , gi changes
from “down” state to “up” state, then the subformula Fi must contain
at least one NOT gate changing its state form “up” to “down” state.

5.3. Formulas require exponentially more NOT gates

We now consider formulas, that is, circuits with AND, OR and NOT gates whose
fanout in a circuit is 1. The only difference from the general circuits (over the same
basis) considered in the previous section is that now the underlying graph of a circuit is
a tree, not an arbitrary directed acyclic graph. It is “clear” that this (requiring fanin 1)
should restrict the power of circuits. And indeed, we will now show that the minimal
number of NOT gates in formulas must be exponentially larger than in circuits.

Define the inversion complexity, IF ( f ), of a boolean function f in the class of for-
mulas as the minimum number of NOT gates contained in a formula computing f .

By Markov’s theorem, the minimum number of NOT gates in a circuit for f is about
log2 d( f ), where d( f ) is the decrease of f . In the case of formulas we have:

THEOREM 5.12. For every boolean function f , IF ( f ) = d( f ).

We again prove the lower and upper bounds on IF ( f ) separately.

LEMMA 5.13 (Lower bound). IF ( f )≥ d( f ).

PROOF. Let C be a formula computing f . Our goal is to show that then C must
have at least d( f ) NOT gates.

If the input to a NOT gate g is 0 and the output is 1, then we call the state of g up.
The state of g is down if the input of g is 1 and the output is 0. We denote by down(x)
the number of NOT gates in the formula C whose states are down when the input for
C is vector x .

CLAIM 5.14. If x < y , then down(y)− down(x) ≥ 0. If moreover, f (x) = 1 and
f (y) = 0, then down(y)− down(x)≥ 1.

PROOF. We change the input of C from x to y . Let g1, . . . , gm be all NOT gates
in C that change from down state to up state, when going from input x to input y .
If a subformula Ci entering a NOT gate gi , changing from down state to up state
when going from input x to input y > x , would have no NOT gates, then Ci would
be monotone, implying that Ci(x) ≤ Ci(y) (see Fig. 3). But since gi changes from
down state to up state, this means that Ci changes from up state to down state, that
is, Ci(x) = 1 and Ci(y) = 0, a contradiction. Hence, Ci must contain at least one NOT
gate changing its state from up to down state. Let g ′

i
be any of these NOT gates such

that there are no other NOT gates between it and gi . Now, none of the gates g ′
i

can
be among g1, . . . , gm because their behavior when going from x to y is different. Also,
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since C is a formula, we have that all gates g ′1, . . . , g ′
m

must be distinct, for otherwise
same gate in C would be forced to have fanout at least 2. This shows down(y) is at
least down(x).

Now, if f (x) = 1 and f (y) = 0, then the output of C must be connected, by a
path without NOT gates, with a NOT gate g ′0 which changes from up state to down
state, when going from x to y . This gate is not among the gates g ′1, . . . , g ′

m
, because

the (unique) path from each g ′
i

to the output contains a NOT gate gi of a different
type, namely, changing its state form down to up state. Thus, in this case, down(y)−
down(x) ≥ 1. □

Take now a chain Y = {y1 < y2 < . . . < yk} for which dY ( f ) = d( f ). Hence, the
number of indices i such that f (y i) = 1 and f (y i+1) = 0 is d( f ), and for each such
index i we have that down(y i)− down(y i+1) ≥ 1. Since for the remaining indices j

we still have down(y j)− down(y j+1) ≥ 0, this implies that

down(yk)− down(y1) ≥ d( f ) .

Thus, the number of NOT gates in C must be at least down(yk)≥ d( f ). □

LEMMA 5.15 (Upper bound). IF ( f ) ≤ d( f ).

PROOF. Induction on d( f ). The base case d( f ) = 0 is trivial, since then f is mono-
tone and IF ( f ) = 0.

For the induction step, suppose that d( f ) ≥ 1, and IF ( f
′) ≤ d( f ′) for all boolean

functions f ′ such that d( f ′) ≤ d( f )− 1. Let S be the set of all vectors x ∈ {0,1}n such
that dY ( f ) = 0 for every chain Y starting with x:

S = {x | dY ( f ) = 0 for any chain Y starting in x} .
Note that the set S is upwards closed: if x ∈ S and x ≤ y then y ∈ S. This holds
because each chain starting in y can be extended to a chain starting in x .

As in the proof of Markov’s theorem, consider two functions f0 and f1 defined by:

f0(x) =

�
f (x) if x ∈ S,
0 if x 6∈ S

and

f1(x) =

�
1 if x ∈ S,
f (x) if x 6∈ S.

Let also χS be the characteristic function of the set S itself, that is,

χS(x) =

�
1 if x ∈ S,
0 if x 6∈ S.

It is easy to see that
f = f0 ∨ ( f1 ∧¬χS) .

Indeed, if x ∈ S, then f0(x) = f (x) and ¬χS(x) = 0, and if x 6∈ S, then f0(x) = 0,
f1(x) = f (x) and ¬χS(x) = 1.

CLAIM 5.16. d( f0) = d(χS) = 0 and d( f1) ≤ d( f )− 1.

PROOF. Since the set S is upwards closed, its characteristic function χS is mono-
tone, implying that d(χS) = 0. That d( f0) = 0 follows from the fact f0 cannot take
value 1 on a chain Y until Y enters the set S.

To show that d( f1) ≤ d( f )− 1, assume that d( f1) ≥ d( f ). Since we only count
the number of changes of values of f on a chain from 1 to 0 (not from 0 to 1), the
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maximum d( f1) =maxX dX ( f1) is achieved on a chain X ending in a vector y such that
f1(y) = 0. Since dY ( f ) = 0 for all chains Y starting with some vector in S, there must
be a chain X which ends in some vector y 6∈ S and for which dX ( f1) ≥ d( f ) holds.
On the other hand, the fact that y is not in S implies that there must be a chain Y

starting in y such that dY ( f )≥ 1. But then for the combined chain X ∪ Y we have that
dX∪Y ( f ) = dX ( f ) + dY ( f )≥ d( f ) + 1 , a contradiction with the definition of d( f ). □

By Claim 5.16 and the induction hypothesis, we have that IF ( f0) = 0, IF (χS) = 0
and IF ( f1)≤ d( f )− 1. Hence, the desired upper bound follows:

IF ( f )≤ IF ( f0) + IF ( f1) + IF (χS) + 1≤ d( f ) . □

5.4. The Fischer theorem

According to Markov’s theorem, every boolean function in n variables can be com-
puted by a circuit with at most

M(n) := dlog(n+ 1)e
NOT gates. The next important step was made by Fischer (1974): restricting the
number of negations to M(n) entails only a polynomial blowup in circuit size!

THEOREM 5.17 (Fischer 1974). If a function on n variables can be computed by

a circuit over {∧,∨,¬} of size t, then it can be computed by a circuit of size at most

2t +O(n2 log2 n) using at most M(n) NOT gates.

PROOF. It is easy to show (do this!) that every circuit of size t can be transformed
to a circuit of size at most 2t such that all negations are placed only on the input
variables. Hence, it is enough to show how to compute the (multi-output) function

N EG(x1, . . . , xn) = (¬x1, . . . ,¬xn)

by a circuit of size O(n2 log2 n) using M(n) negations; the function N EG is also known
as an invertor.

We already know (see Eq. (5.1)) that, on inputs x ∈ {0,1}n with exactly k 1’s, the
negation ¬x i of its ith bit can be computed as ¬x i = Tk,i(x), where

T n
k,i(x1, . . . , xn) := Thn−1

k
(x1, . . . , x i−1, x i+1, . . . , xn) .

Using this observation, we can also simulate the behavior of ¬x i on all inputs.

CLAIM 5.18. For any x ∈ {0,1}n and any 1 ≤ i ≤ n, we have that ¬x i = fi(x),
where

fi(x) :=
n∧

k=1

�
¬Thn

k
(x)∨ T n

k,i(x)
�

.

PROOF. Take an arbitrary vector a ∈ {0,1}n. If ¬x i(a) = 1 then ai = 0, implying
that in this case Thn

k
(a) = T n

k,i(a) for all k = 1, . . . , n, and hence, fi(a) = 1. If ¬x i(a) =

0 then ai = 1. So, for k = |a|, we then have Thn
k
(a) = 1 and T n

k,i(a) = 0, implying that
fi(a) = 0. □

It can be shown (we will not do this) that all the functions Thn
k

and T n
k,i (0 ≤ k ≤

n, 1 ≤ i ≤ n) can be computed by a monotone circuit of size O(n2 log2 n). Hence, it
remains to compute the function

¬T (x) :=
�
¬Thn

1(x),¬Thn
2(x), . . . ,¬Thn

n
(x)
�
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using at most M(n) = dlog(n+ 1)e negations. To do this, we first take a monotone
circuit C1(x) computing the function

T (x) :=
�

Thn
1(x), Thn

2(x), . . . , Thn
n
(x)
�

.

Observe that the outputs of this circuit belong to the set Asor t of all inputs y ∈ {0,1}n
whose bits are sorted in decreasing oder y1 ≥ y2 ≥ . . . ≥ yn. Using only M(n) negations
it is possible to construct a circuit C2(y) of size O(n)which computes N EG(y) correctly
on all inputs in Asor t (Exercise 5.19). The resulting circuit C(x) = C2(C1(x)) computes
¬T (x). □

EXERCISE 5.19. Let n = 2r − 1, and consider the set Asor t of all vectors x ∈ {0,1}n
whose bits are sorted in decreasing oder x1 ≥ x2 ≥ . . . ≥ xn. Construct a circuit Cn of
size O(n) which has at most r NOT gates and computes

N EG(x1, . . . , xn) = (¬x1, . . . ,¬xn) for all inputs x ∈ Asor t .

Hint: Let x = (x1 , . . . , xn) ∈ Asor t . Take the middle bit xm (m= n/2) and show that the output of Cn can be

obtained from the output of Cn/2 and the output of ¬xm. For this observe that ¬xm = 1 implies ¬x j = ¬xm

for all j > m, whereas ¬xm = 0 implies ¬x j = ¬xm for all j < m.

5.5. How many negations are enough to prove P 6= NP?

In order to prove the well known conjecture that P 6= NP, it would be enough to
prove that some functions f : {0,1}n → {0,1}n in NP cannot be computed by circuits
of polynomial (in n) size. By the results of Markov and Fischer, it would be enough to
prove a “weaker” result. Namely, let

P(r) = class of all functions computable by polynomial-size circuits with at most r

NOT gates.

Then, by Markov–Fischer results, we have that:

If CLIQUE 6∈ P(r) for r = dlog2(n+ 1)e, then P 6= NP.

The breakthrough result of Razborov (1985a) states that

CLIQUE 6∈ P(r) for r = 0.

Amano and Maruoka (2005) have shown that essentially the same argument yields a
stronger result:

CLIQUE 6∈ P(r) even for r = (1/6) log log n.

At the first glance, this development looks like a promising way to prove that P 6= NP:
just extend the bound to circuits with a larger and larger number r of allowed NOT
gates. But how large this number r of allowed NOT gates must be in order to have the
conclusion P 6= NP? This question motivates the following parameter for functions f :

R( f ) =min{r | f 6∈ P(r) implies f 6∈ P} .
By the results of Markov and Fischer, for any f , we have that

0≤ R( f )≤ dlog2(n+ 1)e
holds for every function f in n variables. This parameter is most interesting for mono-

tone functions since they need no NOT gates at all, if we don’t care about the circuit
size. We already know that R( f ) = 0 for a large class of monotone boolean functions
f , namely—for slice functions. But no specific slice function f with f 6∈ P(0) is known.
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On the other hand, would R( f )≤ (1/6) log log n hold for every monotone function
f , then we would already have that CLIQUE 6∈ P, and hence, that P 6= NP. Unfortunately,
there are monotone functions f for which R( f ) is near to Markov’s log n-border.

THEOREM 5.20. There are explicit monotone functions f : {0,1}n→ {0,1}n such that

f ∈ P but

f 6∈ P(r) unless r ≥ log n−O(log log n) .

PROOF. The proof idea is to take a feasible monotone boolean function g : {0,1}n→
{0,1}, and consider a monotone multi-output function f : {0,1}kn → {0,1}k comput-
ing k = 2r copies of g on disjoint sets of variables. We call such a function f a k-fold

extension of g. We then show that, if g requires monotone circuits of exponential size,
then f requires circuits of super-polynomial size, even if up to r NOT gates are allowed.

CLAIM 5.21. Let f be a monotone boolean function, and k be a power of 2. If the
k-fold extension of f can be computed by a circuit with log2 k NOT gates, then f can
be computed by a monotone circuit of the same size.

PROOF. It is enough to prove the lemma for k = 2 (we can then iterate the argu-
ment). Thus, take a circuit with one NOT gate computing two copies f0 = f (Y0) and
f1 = f (Y1) of the monotone function f (X ) on disjoint sets of variables. Let g be the
monotone(!) boolean function computed at the input to the (unique) NOT gate.

We have only two possibilities: either some minterm of g lies entirely in Y1, or not.
In the first case we assign constant 1 to all the variables in Y1, whereas in the second
case we assign constant 0 to all the variables in Y0. As the function g is monotone, in
both cases it turns into a constant function (constant 1 in the first case, and constant
0 in the second), and the subsequent NOT gate can be eliminated. But since Y0 ∩ Y1 =

;, the setting Yε 7→ ε does not affect the function f1−ε. Hence, we obtain a circuit
which contains no NOT gates and computes either f0 or f1, and hence, also f (X ) after
renaming the input variables. □

To finish the proof of Theorem 5.20, we will make use of an explicit monotone
boolean clique-like function Tm in m variables considered by Tardos (1987). In Sec-
tion 4.6 we have shown (see Theorem 4.16) that this function is feasible—can be com-
puted by a non-monotone circuit of size mO(1)—but every monotone circuit computing
it requires size is exponential2 in Ω(m1/16).

Let n = km where k = 2r and r = blog2 n − 32 log2 log2 nc; hence, k is about
n/(log2 n)32. Consider the k-fold extension fn of Tm. Then fn can be computed by a
(non-monotone) circuit of size at most k ·mO(1), which is, of course, polynomial in n.
Hence, fn ∈ P. On the other hand, by Claim 5.21, every circuit with at most r NOT
gates computing fn must have size exponential in

m1/16 ≈
�

n

k

�1/16

= (log n)32/16 = (log2 n)2 .

Thus, fn 6∈ P(r) unless r ≥ log2 n− 32 log2 log2 n. □

The message of Theorem 5.20 is that, in the context of the P vs. NP problem, it
is important to understand the role of NOT gates when their number r is indeed very
close to the Markov–Fisher upper bound of log n.

2Another explicit feasible monotone boolean function—logical permanent—requiring monotone circuits
of size nΩ(log n) was earlier given by Razborov (1985b). For the k-fold extensions fn of this function the same
argument yields R( fn) = Ω(log n).
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The function fn in Theorem 5.20 has many output bits. It would be interesting to
prove a similar result for a boolean (i.e., single output) function.

RESEARCH PROBLEM 5.22. Find an explicit monotone boolean function fn for which

R( fn) = Ω(log n).
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CHAPTER 6

Span Programs

In 1993 Karchmer and Wigderson introduced an interesting linear algebraic
model for computing boolean functions – the span program. A span program for a
function f (x1, . . . , xn) is presented as a matrix over some field1, with rows labeled by
literals, that is, variables x i or their negations ¬x i (one literal can label many rows).
The span program accepts an input assignment if and only if the all-1 vector can be
obtained as a linear combination of the rows whose labels are satisfied by the input.
The size of the span program is the number of rows in the matrix. A span program is
monotone if only positive literals are used as labels of the rows, i.e. negated variables
are not allowed.

The model turns out to be quite strong: classical models for computing boolean
functions – like switching networks or DeMorgan formulas – can be simulated by span
programs without any increase in size. Moreover, and this was one of the motivations
to introduce this model, the size of span programs lower bounds the size of parity
branching programs—a model where no larger than n2 lower bounds are known even
in the simplest, read-once case (along each s-t path, each variable can be tested at
most once). It is therefore not surprising that proving lower bounds on the size of span
programs is a hard task, even in monotone case.

In this chapter we will show how this task can be solved using linear algebra
arguments.

6.1. The model

We first describe the model more precisely.
Let F be a field. A span program over F is given by a matrix M over F with its rows

labeled by literals x1, . . . , xn,¬x1, . . . ,¬xn; one literal may label several rows. If only
positive literals x1, . . . , xn are used, then the program is called monotone. The size of a
span program M is the number of rows in it. For an input a = (a1, . . . , an) ∈ {0,1}n,
let Ma denote the submatrix of M obtained by keeping those rows whose labels are
satisfied by a. That is, Ma contains rows labeled by those x i for which ai = 1 and
by those ¬x i for which ai = 0. The program M accepts the input a if the all-1 vector
1 (or any other, fixed in advance, vector) belongs to the span of the rows of Ma. A
span program computes a boolean function f if it accepts exactly those inputs a where
f (a) = 1. That is,

f (a) = 1 iff 1 ∈ Span(Ma) . (6.1)

It is useful to keep in mind the following equivalent definition of the acceptance con-
dition (6.1):

f (a) = 0 iff there exists a vector r such that 〈r ,1〉 = 1 and Ma · r = 0. (6.2)

1In this chapter we will only work over the field GF(2), but the results hold for any field.
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FIGURE 1. A switching network for the threshold-2 function
Th3

2(x , y, z) in three variables (which outputs 1 iff x + y + z ≥ 2)
and the corresponding span program.

That is, a vector a is rejected iff some odd vector r (vector with an odd number of 1’s) is
orthogonal to all rows of M . This follows from a simple observation that 1 ∈ Span(Ma)

iff all vectors in Span(Ma)
⊥ are even; here, as customary, V⊥ is the orthogonal com-

plement of V , and is defined as the set of vectors orthogonal to every vector in V .
Finally, note that the number of columns is not counted as a part of the size. It is

always possible to restrict the matrix of a span program to a set of linearly independent
columns without changing the function computed by the program, therefore it is not
necessary to use more columns than rows. However, it is usually easier to design a span
program with a large number of columns, many of which may be linearly dependent.

6.2. Power of span programs

One of the oldest models for computing boolean functions is that of switching net-
works or nondeterministic branching programs. This model includes that of DeMorgan
formulas and was intensively studied after C. E. Shannon introduced this model about
60 years ago.

THEOREM 6.1. If a boolean function can be computed by a switching network of size

s then it can also be computed by a span program of size at most s. The same holds for

their monotone versions.

PROOF. Let G = (V, E) be a switching network for a function f , with s, t ∈ V its
special vertices. Take the standard basis {ei | i ∈ V } of the |V |-dimensional space over
GF(2), i.e., e i is a binary vector of length |V | with exactly one 1 in the ith coordinate.

The span program M is constructed as follows. For every edge {i, j} in E add the
row e i ⊕ e j = e i + e j to M and label this row by the label of this edge (see Fig. 1). It is
easy to see that there is an s-t path in G, all whose labeled edges are switched on by
an input vector a, if and only if the rows of Ma span the vector v0 = es⊕e t . Therefore,
M computes f , and its size is |E|. □

The program, we just constructed, is not quite that what we called a span program:
in the acceptance condition we use not 1 but some other vector v0. This, however, is
only a technical matter: just add one more row v0 ⊕ 1 labeled by constant 1.

Theorem 6.1 shows that span programs are not weaker than switching networks,
and hence, than DeMorgan formulas and deterministic branching programs. What
span programs capture is the size of parity branching programs. These are switching
networks with the “parity-mode”: an input a is accepted iff the number of s-t paths
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consistent with a is odd (see Section 16.1.2). Namely, if SP( f ) denotes the complexity
of a boolean function in the class of span programs, and ⊕BP( f ) in the class of parity
branching programs, then SP( f ) ≤ 2·⊕BP( f ) and ⊕BP( f )≤ SP( f )O(1); see Karchmer–
Wigderson (1993) for details.

6.3. Power of monotone span programs

We will exhibit a monotone boolean function f in n variables such that SP( f )≤ n

but any monotone circuit for f requires nΩ(log n) gates.
A spanning subgraph of a graph G = (V, E) is a graph G′ = (V, F) where F ⊆ E; the

set of vertices remains the same. A (connected) component of a graph is a maximal set
of its vertices such that there is a path between any two of them. A graph is connected

if it consists of just one component. The degree dF (i) of a vertex i is the number of
edges of F which are incident to i.

An odd factor in a graph is a spanning subgraph with all degrees odd.

LEMMA 6.2. If a graph is connected then it has an odd factor if and only if the number

of its vertices is even.

PROOF. Suppose that G has an odd factor G′ = (V, F). Hence, all degrees dF (i) are
odd. By Euler’s theorem , the sum

∑
i∈V dF (i) equals 2|F |, and hence, is even. Thus,

the number |V | of summands must be even, as claimed.
For the other direction, suppose that the graph G = (V, E) is connected and has

an even number of vertices, say V = {x1, . . . , x2m}. For every i = 1, . . . , m, fix any one
path Pi = (Vi , Ei) connecting x i to x i+m. Let F be the set of those edges from E which
appear in an odd number of the sets E1, . . . , Em.

We claim that the subgraph (V, F) is the desired odd factor. Indeed, observe that if
a vertex x appears in a path Pi then either degEi

(x) is even or degEi
(x) = 1, and this

last event happens iff x is a leaf of this path, i.e., if x = x i or x = x i+m. Since each
vertex x ∈ V is a leaf of exactly one of the paths P1, . . . , Pm, we have that the sum of
degrees D(x) :=

∑m
i=1 degEi

(x) is odd. It remains to observe that, by the definition
of F , this sum D(x) is congruent modulo 2 to the degree degF (x) of x in the graph
(V, F). □

We now consider the following function ODDFACTORn on n = m2 variables: the
input is an m×m (0,1) matrix representing a bipartite graph with m vertices in each
part; the graph is accepted if it has an odd factor.

LEMMA 6.3. Every monotone circuit computing ODDFACTORn requires nΩ(log n) gates.

PROOF. One of celebrated results of Razborov (1985b) is an nΩ(log n) lower bound
on the size of any monotone circuit for the perfect matching problem. In fact, he
proved that such number of gates is necessary in any monotone circuit which: (i)
accepts every perfect matching, and (ii) rejects a constant fraction of all unbalanced 2-
colorings of vertices; each 2-coloring is identified with the graph of all monochromatic
edges.

Every perfect matching is an odd factor, and should be accepted. On the other
hand, an odd 2-coloring (in which each color occupies an odd number of vertices) has
two odd components, and thus must be rejected: by Lemma 6.2, none of them can
have an odd factor. As odd 2-colorings constitute half of all 2-colorings, Razborov’s
argument yields the result. □
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It is therefore somewhat surprising that ODDFACTORn can be computed by a very
small monotone span program.

THEOREM 6.4. ODDFACTORn can be computed by a monotone span program of size n.

PROOF. We construct the desired span program for ODDFACTORn as follows. Let
V = V1∪V2 be the vertex set (|V1|= |V2|= m), and let X = {x i, j} with i ∈ V1 and j ∈ V2

be the corresponding set of boolean variables (one for each potential edge). Take the
standard basis {e i | i ∈ V } of the 2m-dimensional space over GF(2), i.e., e i is a binary
vector of length 2m with exactly one 1 in the ith coordinate. Let M be the m2 by 2m

matrix whose rows are vectors e i + e j labeled by the corresponding variables x i, j . We
claim that this span program computes ODDFACTORn. To verify this we have to show
that the all-1 vector 1= (1, . . . , 1) is a sum (over GF(2)) of vectors of the form e i + e j

precisely when the corresponding edges (i, j) form an odd factor.
Take an arbitrary graph E ⊆ V1 × V2. Suppose that E has an odd factor F ⊆ E.

Since the degree dF (i) of each vertex i ∈ V in the subgraph F is odd, we have
∑

(i, j)∈F

(e i + e j) = 1

because for each i ∈ V , the vector e i occurs exactly dF (i) times in this sum. Thus, our
span program M accepts the graph E, as desired.

Suppose now that E has no odd factors. By Lemma 6.2, the graph E must have
a connected component with an odd number of vertices. Take such a component
G′ = (A, B, F) where A ⊆ V1 and B ⊆ V2; hence, |A ∪ B| is odd. The program M

must reject the graph E. Assume the opposite, i.e., that some subset of rows, labeled
by edges in E, sum up to the all-1 vector 1. Since our subgraph G′ is a connected
component, no vertex from the set A∪ B is incident to a vertex from outside. This
means that the 1’s in the positions, corresponding to vertices in A∪ B, can be obtained
only by summing along the edges in that component. Hence, there must be a subset of
edges H ⊆ E ∩ (A× B) such that the vector

w =
∑

(i, j)∈H

(e i + e j)

has 1’s in all the coordinates from A∪B. For each i ∈ A∪B, the number of terms e i+e j

in this sum is exactly the degree dH(i) of i in the subgraph H. By Euler’s theorem,
the sum
∑

i∈A∪B dH(i) equals 2|H|, and hence, is even. Since |A∪ B| is odd, there must
be at least one i0 ∈ A∪ B for which dH(i0) ≡ 0 mod 2 (the sum of an odd number of
odd numbers would be odd). But this means that the vector w has a 0 in the i0-th
coordinate, a contradiction.

Thus, the designed span program M correctly computes ODDFACTORn. Since it has
only m2 = n rows, we are done. □

Thus, for some monotone boolean functions their monotone span program size
is exponentially smaller than their monotone circuits size. The converse direction re-
mains open.

RESEARCH PROBLEM 6.5. Do there exist functions admitting polynomial size monotone

circuits which require superpolynomial size monotone span programs?
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6.4. Weakness of monotone span programs

We will now present a rank argument to show that some monotone boolean func-
tions require large monotone span programs.

Let f (x1, . . . , xn) be a monotone boolean function. It will be convenient to look at
f as accepting/rejecting subsets a ⊆ [n] = {1, . . . , n}: f (a) = 1 iff f (χa) = 1 for the
characteristic vector χa of a. Let also a = [n]− a denote the complement of a set a.

Let A, B be some pair of families of subsets of [n]. A boolean function f in n

variables separates this pair if f (a) = 1 for all a ∈ A, and f (b) = 0 for all b ∈ B. A pair
A, B of sets is cross intersecting if a ∩ b 6= ; for all a ∈ A and b ∈ B.

Every family A of subsets of [n] defines a monotone boolean function in a natural
way:

fA(x) =
∨

a∈A

∧

i∈a

x i .

That is, we just take a DNF whose monomials correspond to the members of A. This
shows that every cross-intersecting pair A, B can be separated by at least one monotone
boolean function, namely—by fA. Indeed, this function must accept all members of A,
by its definition. Take now a set b ∈ B. In the vector χb, all positions i with i ∈ b are
set to 0. Since b intersects all a ∈ A, all monomials (and hence, the function fA itself)
will be evaluated to 0 on input vector χ

b
, implying that f (b) = 0.

DEFINITION 6.6. Let A, B be some pair of families of subsets of [n]. The pair (A, B)

is locally intersecting if every set b ∈ B can be divided in to two parts b = b0 ∪ b1 so
that every a ∈ A has a nonempty intersection with exactly one of these parts.

Given a locally intersecting pair (A, B), define its disjointness matrix DA,B to be an
|A| by |B| matrix, with its rows indexed by sets a ∈ A and its columns indexed by sets
b ∈ B, such that the entries of D = DA,B are defined by

D[a, b] =

¨
0 if a ∩ b0 6= ;,
1 if a ∩ b1 = ;.

THEOREM 6.7. If a pair A, B is locally intersecting, then any monotone span program

over GF(2) separating this pair must have size at least rk(DA,B).

PROOF. Let M be a monotone span program separating (A, B). Let r be the number
of rows and c the number of columns in M . The idea is to show that the disjointness
matrix D = DA,B of A, B is a matrix of scalar products of vectors of dimension at most
r; this yields rk(D) ≤ r.

For every a ∈ A, let va ∈ GF(2)r be a vector witnessing the fact that a must be
accepted, which means that

v>
a
·M = 1 ,

where 1 is the all-1 vector and v a is a vector which is nonzero only in coordinates
corresponding to elements of a.

Let b = b0 ∪ b1 ∈ B. Since the complement b of b cannot be accepted, no linear
combination of the rows of Mb can give 1. Hence, by the dual acceptance condition
(6.2), for each b ∈ B there is a vector u b in GF(2)c such that

〈1,ub〉 = 1 and Mb · u b = 0.
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FIGURE 2. The two cases a ∩ b0 6= ; and a ∩ b1 6= ;.

Let w b be the vector in GF(2)r obtained from the vector M · u b by replacing to 0 all
its elements, corresponding to the rows labeled by elements of b0; note that

w b(i) 6= 0 only if i ∈ b1.

Indeed, the elements w b(i) with i ∈ b are zero because Mb · u b = 0, and the elements
w b(i) with i ∈ b0 are zero by the definition of w b. We claim that

D[a, b] = 〈va, w b〉 .
To show this, recall that the set b is splitted into two disjoint parts b = b0 ∪ b1 such
that each member of A has a nonempty intersection with exactly one of these parts.
If a ∩ b0 6= ; then a ∩ b1 = ;, and hence, the vectors v a and w b have no element on
which they both are nonzero; so, in this case 〈v a , w b〉 = 0 (see Fig 2). If a ∩ b1 6= ;
then a ∩ b0 = ;, and hence, in this case, we have 〈va, w b〉 = 〈v a , Mu b〉, implying that

〈v a, w b〉= 〈v a, Mu b〉 = 〈v>a M , u b〉 = 〈1, u b〉 = 1 .

This shows that D is a matrix of scalar products of vectors of dimension r, implying
that rk(D) ≤ r. □

Since, by Theorem 6.1, monotone span programs are not weaker than mono-
tone switching networks (and hence, are not weaker than monotone formulas), Theo-
rem 6.7 directly yields the following

COROLLARY 6.8. If the pair A, B is locally intersecting, then any monotone DeMorgan

formula separating this pair has size at least rk(DA,B).

We now show how Theorem 6.1 can be used to prove a lower bound nΩ(log n) for
an explicit monotone function in n variables. Then we show that this is the best what
can be proved using rank arguments.

6.4.1. Super-polynomial lower bound. The general disjointness matrix Dn is a
2n × 2n (0,1) matrix whose rows and columns are labeled by the subsets a of an n-
element set, and the (a, b)-th entry is 1 if and only if a ∩ b = ;.

LEMMA 6.9. rk(Dn) = 2n.

PROOF. Follows easily by the induction on n together with the following recursive
construction of Dn:

D1 =

�
1 1
1 0

�
, Dn =

�
Dn−1 Dn−1

Dn−1 0

�
.
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Since the lower right submatrix of Dn is an all-0 matrix, and since (by the induction
hypothesis) the rows of Dn−1 are linearly independent, the rows of the entire matrix
Dn must be linearly independent as well. □

The disjointness matrix of a (single) family A of sets is a (0,1) matrix DA whose
rows are labeled by members of A and columns are labeled by all subsets of each
member of A. That is, for every a ∈ A and for every b ⊆ a there is a column labeled by
b. Like in the case of matrices Dn, the entry in the a-th row and b-th column is defined
by: DA[a, b] = 1 iff a ∩ b = ;.

LEMMA 6.10. Let A be a family of subsets that are incomparable by inclusion. Then

rk(DA) = |A|.
PROOF. Fix an a ∈ A and let M be the submatrix of DA consisting of all 2|a| columns

indexed by subsets of a. Since, by our assumption, every subset of a appears as a
column of M , the rows of M are rows of the full disjointness matrix D|a|, some of them
repeated (just relabel each row c ∈ A by c ∩ a). By Lemma 6.9, we know that D|a| has
full row rank. On the other hand, since a is not contained in any other member of A,
the row indexed by a occurs in M only once.2 This implies that this row cannot be
a linear combination of other rows in M . Thus, the corresponding row of the entire
matrix DA cannot be a linear combination of others, as well. □

We will consider boolean functions defined by bipartite graphs as in Section 3.3.
Let G = (U , V, E) be a bipartite graph with V = {1, . . . , n} and U = {n+ 1, . . . , 2n}.
Recall that such a graph is k-separated if for every disjoint subsets X , Y of U of size at
most k there exists a vertex v ∈ V such that every vertex u ∈ X is connected with v and
no vertex u ∈ Y is connected with v.

For a bipartite graph satisfying this condition we define A to be the family of sets
a ⊆ U ∪ V such that |a ∩ U | = k and a ∩ V is the set of all vertices that are joined to
every vertex of a ∩ U , i.e., maximal complete bipartite graph with the part in U of size
k. Consider the monotone boolean function

fA,G(x) =
∨

a∈A

∧

i∈a

x i .

We are now able to extend the lower bound on the formula size of such functions,
given in Theorem 3.8, to a more general model of monotone span programs.

THEOREM 6.11. If the graph G is k-separated, then every monotone span program

computing fA,G requires size
�n

k

�
.

PROOF. Define B to be the family of sets b = b0∪ b1 such that b0 ⊆ U , |b0| ≤ k and
b1 consists of all vertices of V that have no neighbor in b0.

Since each a ∈ A induces a complete bipartite graph and b = b0 ∪ b1 an empty
graph, a cannot intersect both b0 and b1. Moreover, the condition that the underlying
graph is k-separated guarantees that a ∩ b0 = ; iff a ∩ b1 6= ;. That is, the pair of
families A, B is locally intersecting. Theorem 6.7 implies that every monotone span
program separating the pair A, B, and hence, any such program computing fA,G must
have size at least rk(DA,B).

Relabel now each row a ∈ A of DA,B by a′ := a ∩ U (a k-element subset of U),
and column b ∈ B of DA,B by b′ := b0 (an at most k-element subset of U), and let

2Would the row of some other a′ ∈ A be the same, this would in particular mean that a′ would intersect
(that is, contain) each single element of a, since a does this.
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M be the resulting matrix; this matrix differs from DA,B only in labelings of rows and
columns—the entries remain the same.

Since b0 ranges over all at most k-element subsets of U , and since we have:

DA,B[a, b] = 1 iff a ∩ b1 6= ; iff a ∩ b0 = ; iff a′ ∩ b′ = ;,

the matrix M is the disjointness matrix DA′ of the family A′ = {a ∩ U | a ∈ A}. By
Lemma 6.10,

rk(DA,B) = rk(DA′) = |A′|=
�

n

k

�
,

and we are done. □

There are several constructions of k-separated graphs that achieve k = Ω(log n),
the most popular is the Paley graph (see Section 3.3). For these graphs we obtain
lower bounds of the form nΩ(log n).

We shall now show that this is already the limit: the approach, based on locally
intersecting set families, cannot yield larger lower bound than nΩ(log n).

LEMMA 6.12. Let A and B be families of subsets of [n]. If the pair A, B is locally

intersecting, then

rk(DA,B)≤ nO(log n) .

PROOF. Let D = DA,B, and let Dec(D) be the minimum number of mutually dis-
joint monochromatic submatrices of D whose union covers all entries of D. Hence,
rk(D) ≤ Dec(D). On the other hand, we will show later (see Theorem 7.17 in Sec-
tion 7.2) that, for every (0,1) matrix M , log2 Dec(M) is at most a constant times
(log2 Cov(M))2, where Cov(M) is the minimum number of monochromatic (but not
necessarily disjoint!) submatrices whose union covers all entries of M .

Each entry D[a, b] of our matrix D is either 0 or 1 depending on whether a in-
tersects b in its first block b0 or in the second one b1. Hence, all entries of D can be
covered by 2n submatrices

Mσ
i
= {(a, b) : i ∈ a ∩ bσ}, i = 1, . . . , n; σ = 0,1 .

It is clear that these submatrices cover all entries of D. Moreover, since the pair A, B

is locally intersecting, we have that all the entries of Mσ
i

are equal to σ. Hence,
we have found a covering of D by 2n monochromatic submatrices Mσ

i
, implying that

Cov(D) ≤ 2n. By the above mentioned result,

log2 rk(D)≤ log2 Dec(D)≤ O((log Cov(D)2) ≤ O((log n)2) . □

We already know (see, for example, Section 4.6) that some explicit monotone
boolean functions (clique-like functions) require monotone circuits of exponential size
whereas their non-monotone circuit size is polynomial. The existence of such a gap
between monotone and non-monotone span programs remains open.

RESEARCH PROBLEM 6.13. Do there exist monotone functions admitting polynomial

size span programs which require superpolynomial size monotone span programs?
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Exercises

EX. 6.1. (Karchmer–Wigderson 1993). Let M be a span program computing f over
F2. Such a program is canonical if the columns of M are in one-to-one correspondence
with the vectors in f −1(0), and for every b ∈ f −1(0), the column corresponding to
b in Mb is an all-0 column. Show that every span program can be converted to a
canonical span program of the same size (= the number of rows) and computing the
same function.

Hint: Take a vector b ∈ f −1(0). By (6.2), there is an odd vector r = r b for which Mb · r b = 0. Define

the column corresponding to b in a new span program M ′ to be M · r b . Do this for all b ∈ f −1(0). Show

that, for every vector a ∈ Fn
2 , the rows of M ′a span the all-1 vector 1 if and only if f (a) = 1.

EX. 6.2. Research problem. Let k be the minimal number for which the following
holds: there exist n colorings c1, . . . , cn of the n-cube {0,1}n in k colors {1, . . . , k}
such that, for every triple of vectors x , y, z there exists a coordinate i on which not
all three vectors agree and the three colors ci(x), ci(y), ci(z) are distinct. Bound the
smallest number k of colors for which such a good collection of colorings c1, . . . , cn

exists. Comment: This problem is connected with proving lower bounds on the size of
non-monotone span programs, see Wigderson (1993).

EX. 6.3. (Wigderson 1993). Consider the version of the problem above where
we additionally require that the colorings ci are monotone, i.e., x < y implies ci(x) ≤
ci(y). Prove that in this case k = Ω(n).

The goal of the next exercises is to show that we cannot replace the acceptance
condition “accept vector a iff the rows of Ma span vector 1” of span programs by
“accept vector a iff the rows of Ma are linearly dependent” because then very simple
boolean functions require programs of exponential size.

A monotone dependency program over a field F is given by a matrix M over F
with its rows labeled by variables x1, . . . , xn. For an input a = (a1, . . . , an) ∈ {0,1}n,
let (as before) Ma denote the submatrix of M obtained by keeping those rows whose
labels are satisfied by a. The program M accepts the input a if and only if the rows of
Ma are linearly dependent (over F). A program computes a boolean function f if it
accepts exactly those inputs a where f (a) = 1. The size of a dependency program is
the number of rows in it.

EX. 6.4. Suppose that a boolean function f 6≡ 1 is computed by a monotone
dependency program M of size smaller than the number of minterms of f . Prove that
then there exists a set of minterms A, |A| ≥ 2, such that for any non-trivial partition
A= A0 ∪ A1, the set

S(A0,A1) :=

� ⋃

a∈A0

a

�
∩
� ⋃

b∈A1

b

�

contains at least one minterm of f .
Hint: For every minterm a of f choose some linear dependence va of the rows of M , i.e., va is a vector

such that va · M = 0, and va has a nonzero coordinates only at rows labeled by variables in a. The vectors
va are linearly dependent (why?). Let A be a minimal set of minterms such that {va | a ∈ A} are linearly
dependent. Thus,

∑
a∈Aαa va = 0 for some coefficients αa 6= 0. Observe that for any non-trivial partition

A= A0 ∪ A1,

v :=
∑

a∈A0

αa va = −
∑

a∈A1

αa va 6= 0 .

Let b be the set of variables labeling the rows of M corresponding to nonzero coordinates of v. This set lies

in S(A0 , A1) and contains at least one minterm of f .
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EX. 6.5. Use the previous fact to show that the function

f = (x1 ∨ x2)∧ (x3 ∨ x4)∧ · · · ∧ (x2n−1 ∨ x2n)

cannot be computed by a monotone dependency program of size smaller than 2n.
Show that this function has a small monotone span program.

Hint: Each minterm a of f has precisely one variable from each of the sets {x2i−1, x2i}, i = 1, . . . , n;

hence, there are 2n minterms. Suppose that f has a program of size smaller than 2n, and let A be the

set of minterms guaranteed by (i). Pick i such that both sets of minterms A0 = {a ∈ A | x2i−1 6∈ a} and

A1 = {a ∈ A | x2i 6∈ a} are non-empty (why this is possible?). By (i), the set S(A0, A1) must contain at least

one minterm b of f . But, by the definition of A0 and A1, this minterm can contain neither x2i−1 nor x2i , a

contradiction.
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Part 2

Communication Complexity



CHAPTER 7

Two Players

In this and the next chapter we will consider games between two players, Alice
and Bob, where communication between players is allowed. However, we will assume
that the players are far away from each other, so that each communicated bit costs
money. The goal is to pay, and hence, to communicate as few as possible. The players
are not adversaries—they help and trust each other.

The goal of players is to compute the values of a given boolean function f :
{0,1}2m → {0,1} on all input vectors. The restriction is that each player has only
partial access to the input. In the fixed-partition communication game, the players are
given a functions as well some partition of the input variables into two disjoint blocks
of size m. Hence, inputs have the form (x , y) with x , y ∈ {0,1}m, and the players must
compute f (x , y) for all inputs. The restriction is that Alice can only see x and Bob can
only see y .

There is also another, best-partition model of communication where, given a func-
tion f , the players are allowed to choose a most suitable for this function partition
(x , y) of its inputs. Yet more trickier is the communication model where we have more
than two players, each seeing all but a small piece of the input vector. We will consider
this model later in Chapter 9.

7.1. Fixed partition games

In this case we actually consider communication games for matrices, rather than
for boolean functions. If a partition of the 2m variables of f into equal sized parts
is fixed, then we can look at f as an n × n (0,1) matrix A with n = 2m such that
A[x , y] = f (x , y). Such a matrix A is usually referred to as the communication matrix

of f .
Thus, in a fixed-partition game, the players are given a boolean n×n matrix A. The

goal of players is to evaluate the matrix, that is, for every its entry (x , y), to compute
the value A[x , y] of this entry. The matrix A itself is known to both players! The
restriction, however, is that the players only have a partial access to the input: Alice
can only see x and Bob can only see y . Hence, Alice only knows which row it is, Bob
only knows which column it is, and they must determine the value in their intersection.

7.1.1. Deterministic communication. Before the game starts, the players agree
on a “protocol” for exchanging messages. After that, given an input pair (x , y), the
protocol dictates to each player what messages to send at each point, based on her/his
input and the messages received so far. It also dictates when to stop, and how to deter-
mine the answer from the information received. There is no limit on the computational
complexity of these decisions, which are free of charge. The cost of the protocol is the
number of bits they have to exchange on the worst case choice of input pair (x , y). The

84
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Bob (split by columns)

Alice (split by rows)

Bob (split by columns)

Alice (split by rows)

1 1
0 1

0 1 1
0 0 1
1 1 1

0 1 1 
0 0 1

1 1 1

0
0

1 1 0 1

0 1

FIGURE 1. An example of a communication tree. Shaded rectangles
are monochromatic. Dashed lines indicate the resulting decomposi-
tion of the original matrix into monochromatic rectangles. The com-
munication complexity of this protocol is 4.

communication complexity C(A) of the matrix A is the cost of the best protocol for this
game.

More formally, this measure can be defined as follows.
By sending bits 0 and 1, the players actually split the rows (if this bit is send by

Alice) or columns (if this bit is send by Bob) into two disjoint parts. A communication

protocol (or a communication tree) of a game is a binary tree, each inner node of which
correspond to a decision made by one of the players at this node. Each node of the
tree is labeled by a submatrix of A so that the following holds (see Fig. 1).

a. The root is labeled by the whole matrix A.
b. If a node u is labeled by a matrix M , then the sons of u are labeled by the

corresponding submatrices M0 and M1 of M . Moreover, these submatrices are
obtained from M by splitting the rows of M (if u is Alice’s node) or by splitting
the columns of M (if u is Bob’s node).

c. If w is a leaf and R is its label, then R is monochromatic, i.e., is either all-0
matrix or all-1 matrix.

Since at each node, the rows (or columns) of the corresponding submatrix are
splitted into disjoint parts, the protocol is deterministic: each pair (x , y) will reach
precisely one leaf. The depth of a tree is the maximum number of edges from the root
to a leaf. In these terms, the communication complexity C(A) of a matrix A is just the
minimum depth of a communication tree for this matrix.

It is clear that for any n× n (0,1) matrix A (n being a power of two) we have that

C(A)≤ log2 n

since Alice can just tell Bob the binary code of her row x .
Lower bounds on C(A) can be shown using the rank rk(A) as well as the decompo-

sition number of A. The decomposition number, Dec(A), of a boolean matrix A is defined
as the smallest number of mutually disjoint1 monochromatic submatrices of A covering
all entries of A.

1Two submatrices are disjoint if they do not share a common entry.
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y’’

1

1 1

0

0 0
1

0

1

x
x’

x’’

y y’

FIGURE 2. A decomposition that does not correspond to any protocol.
Show this!

REMARK 7.1. Unlike arbitrary decompositions of a given matrix A into monochro-
matic submatrices, decompositions arising from communication protocols have special
form: they are produced inductively by splitting the resulting submatrices only row-
wise or column-wise. And indeed, there are decompositions that cannot be produced
by any communication protocol, like one depicted in Fig. 2.

Since the submatrices occurring on the leaves of any communication tree for A

must be disjoint, we immediately have that C(A) ≥ log2 Dec(A). On the other hand, the
subadditivity of rank implies that rk(A)≤ Dec(A). So, we have the following estimates:

C(A) ≥ log2 Dec(A) ≥ log2 rk(A) . (7.1)

Hence, already simplest matrices, like the identity matrix In, have maximal com-
munication complexity. The goal however is (as in the case of other complexity mea-
sures) to understand what properties of a given matrix A force its communication com-
plexity be large. Having 1’s on the diagonal and 0’s elsewhere is just one of these
properties.

Using the rank one can show that a lot of matrices have large deterministic com-
munication complexity. For a matrix A, let |A| denote the number of its nonzero entries.

PROPOSITION 7.2. If A is a symmetric n× n (0,1) matrix with 1’s on the diagonal,

then

Dec(A)≥
n2

|A| .

PROOF. Let λ1, . . . ,λn be the eigenvalues of A, then their sum t =
∑n

i=1λi is the
trace of A (sum of diagonal entries of A), and at most r = rk(A) of them are nonzero.
Thus, the Cauchy–Schwarz inequality yields tr(A2) =

∑n
i=1λ

2
i
≥ r(t/r)2 = t2/r. Since

A is a (0,1) matrix, we also have that tr(A2) = |A|: the ith diagonal entry of A2 is the
number of 1s in the ith row of A. This implies rk(A) = r ≥ tr(A)2/|A|, where tr(A) = n

since A has 1’s on the diagonal. □

7.1.2. Rank Conjecture. We already know that C(A) ≥ log2 rk(A) holds for any
matrix A. But how tight this lower bound is?

CONJECTURE 7.3. There is a constant c such that, for every n× n (0,1) matrix A,

C(A)≤ (log2 rk(A))c .

If mono(A) denotes the maximum number of entries in a monochromatic subma-
trix of A, then

C(A)≥ log2 Dec(A)≥ log2

n2

mono(A)
.
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Hence, Rank Conjecture implies the following (seemingly “easier” to tackle) conjecture
stating that every (0,1) matrix of small rank must contain a large monochromatic
submatrix.

CONJECTURE 7.4. For every n× n (0,1) matrix A of rank r,

mono(A)≥
n2

2(log r)O(1)
.

In fact, Nisan and Wigderson (1995) have shown that this last conjecture is equiv-
alent to the Rank Conjecture! Moreover, they showed that Rank Conjecture does not

hold for c = 1/ log3 2≈ 1.6. They also gave a support for Conjecture 7.4: every matrix
of small rank must contain a submatrix of large “discrepancy.”

Let A be an n × n ±1 matrix. The discrepancy, disc(A), of A is the maximum,
over all its submatrices B, of the absolute value of the sum of entries in B. Hence,
small discrepancy means that the matrix is very balanced: every submatrix has almost
the same number of positive and negative entries. If A is a (0,1) matrix, then its
discrepancy is the discrepancy of its ±1 version A′ with A′[x , y] = 1− 2 · A[x , y].

Since monochromatic submatrices have maximal discrepancy, we have that disc(A)≥
mono(A). Interestingly, if we replace mono(A) by disc(A), then Conjecture 7.4 is true
in a very strong sense!

THEOREM 7.5. For every n× n ±1 matrix A of rank r,

disc(A)≥
n2

16r
.

PROOF. We are given a ±1 matrix A= (ai j) of low rank r = rk(A) and wish to find
in it a submatrix of hight discrepancy. For this, we first observe that

disc(A) =max |x>Ay |=max

����
n∑

i, j=1

ai j x i y j

����,

where the maximum is over all (0,1) vectors x and y: each pair of such vectors corre-
spond to a submatrix of A. So, we only need to find (0,1) vectors x and y for which
x>Ay is large. As an intermediate step we shall consider the set

Ball = {u ∈ Rn : |ui | ≤ 1 for all i}
of real vectors of small maximum norm and show that disc(A) can be lower bounded
by the maximum of u>Av over the vectors u, v ∈ Ball.

CLAIM 7.6. For any u, v ∈ Ball we have that

disc(A)≥
u>Av

4
.

PROOF. Letting z = Av, we have that u>Av =
∑n

i=1 uizi . Hence,
∑

i∈K uizi ≥
u>Av/2, where K is either the set of coordinates i where both ui and zi are posi-
tive or the set of coordinates in which both are negative. Assume the first case (the
second case is similar by using vector −v instead of v). Then letting x ∈ {0,1}n to
be the characteristic vector of K and using the fact that |ui | ≤ 1 for all i, we have
x>Av =
∑n

i=1 x izi ≥
∑

i∈K uizi ≥ u>Av/2. Repeating this argument with z = x>A,
we can replace v with a (0,1) vector y obtaining that x>Ay ≥ u>Av/4. Hence,
disc(A) ≥ x>Ay ≥ u>Av/4, as claimed. □
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To finish the proof of the theorem it is enough, by Claim 7.6, to find two vectors
u, v ∈ Ball for which u>Av ≥ n2/4r. For this we will use a known relation between
spectral norm, Euclidean norm and the rank of a matrix.

The spectral norm of a matrix A is defined as the maximum ‖A‖ =max |u>Av| over
all vectors u, v ∈ Rn whose Euclidean norm ‖u‖ = (

∑n
i=1 u2

i
)1/2 is equal to 1. The name

“spectral norm” comes from the fact that

‖A‖ =max{
p
λ | λ is an eigenvalue of A>A} .

The Euclidean norm (known also as Frobenius norm) of A is just the Euclidean norm
W(A) = (
∑

i, j a2
i j
)1/2 of the corresponding to the matrix vector of length n2.

CLAIM 7.7. For every real matrix A,

W(A)
p

rk(A)
≤ ‖A‖ ≤W (A) .

PROOF. Observe that W(A)2 is equal to the trace tr(B) i.e. the sum of diagonal
elements, of the matrix B = A>A. On the other hand, the trace of any real matrix is
equal to the sum of its eigenvalues. Hence, W(A)2 = tr(B) =

∑n
i=1λi where λ1 ≥ . . . ≥

λn are the eigenvalues of B. Since B has only r = rk(B) = rk(A) non-zero eigenvalues,
and since all eigenvalues of B are nonnegative (B is symmetric), the largest eigenvalue
λ1 is bounded by W (A)2/r ≤ λ1 ≤ W (A)2. It remains to use the (mentioned above)
fact that ‖A‖ =

p
λ1. □

We will now construct the desired vectors u, v ∈ Ball with

u>Av ≥
n2

4r
.

We start with two vectors x , y ∈ Rn of Euclidean norm ‖x‖ = ‖y‖ = 1 for which
x>Ay = ‖A‖. Let p ≥ 1 be a parameter (to be specified later), and consider the sets of
indices

I = {i : |x i |> 1/
p

p} and J = { j : |y j |> 1/
p

p} .
Since 1 = ‖x‖2 =

∑n
i=1 x2

i
≥ |I |/p, we have that |I | ≤ p, and similarly, |J | ≤ p.

Consider the vectors a and b defined by:

ai =

¨
0 if i ∈ I ,

x i otherwise
and b j =

¨
0 if j ∈ J ,

y j otherwise.

We claim that

a>Ab ≥
n
p

r
− p . (7.2)

To show this, consider the matrix B which agrees with A on all entries (i, j) with i ∈ I

and j ∈ J , and has 0’s elsewhere. Then

a>Ab = x>Ay − x>B y .

Since W(A) = n, Claim 7.7 yields x>Ay ≥ n/
p

r. The same claim also yields x>B y ≤
‖B‖ ≤W (B)≤ p, where the last inequality follows since B has at most p nonzero rows
and p nonzero columns. So,

a>Ab = x>Ay − x>B y ≥
n
p

r
− p .
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Set now p := n/(2
p

r), and consider the vectors u := 1p
p
a and v := 1p

p
b. Both vectors

u, v belong to Ball, and we have

u>Av = p · a>Ab ≥
n2

4r
. □

7.1.3. Nondeterministic communication. The cover number, Cov(A), of a (0,1)
matrix A is the smallest number of all-1 submatrices of A covering all its 1’s; this time
the matrices in a cover need not be disjoint. The nondeterministic communication com-

plexity, NC(A), of a matrix A is defined by:

NC(A) = log2 Cov(A) .

Perhaps, the best way to view a nondeterministic communication protocol between
two parties, Alice and Bob, wishing to evaluate a given matrix A, is a scheme by which a
third party, Carole (a “superior being”), knowing the whole input (x , y), can convince
Alice and Bob what the value of A[x , y] is. Hence, we have three players, Alice, Bob
and Carole. Given an input (x , y), Carole’s goal is to convince Alice and Bob that
A[x , y] = 1. For this purpose, she announces to both players some binary string, a
witness for (or a proof of) the fact that “A[x , y] = 1.” Having this witness, Alice and
Bob verify it independently and respond with either Yes or No. Alice and Bob agree that
A[x , y] = 1 (and accept the input (x , y)) if and only if they both replied with Yes. If
A[x , y] = 0 then Alice and Bob must be able to detect that the witness is wrong no
matter what Carole says. The protocol is correct if, for every input (x , y), Alice and
Bob accept it if and only if A[x , y] = 1. The communication complexity of this game is
the length of the witness in the worst case.

EXAMPLE 7.8. For example, Carole can easily convince Alice and Bob that two
binary strings x and y of length n are not equal: using only dlog2 ne + 1 bits she
announces (the binary code of) a position i with x i 6= yi and the bit x i; Alice checks
whether the bit she received is the ith bit of the string she can see, and Bob checks
whether yi 6= x i . If however Carole would like to convince that x = y , then she would
be forced to send n bits, just because Cov(In) = 2n for a 2n × 2n identity matrix In.

7.1.3.1. An upper bound. The following lemma says that only sparse matrices can
have large nondeterministic communication complexity. For a (0,1) matrix, let |A|
denote the number of its 1-entries.

LEMMA 7.9. Let A be a (0,1) matrix. If every column or every row of A contains at

most d zeroes, then

Cov(A) = O(d ln |A|) .

PROOF. We only consider the column case, the row case is the same. To cover the
ones of A we construct an all-1 submatrix B with row set I and column set J via the
following probabilistic procedure: pick every row of A with probability p = 1/(d + 1)
to get a random subset I of rows, and let J be the set of all columns of A that have no
zeroes in the rows of B.

A 1-entry (x , y) of A is covered by B if x was chosen in I and none of (at most d)
rows with a 0 in the y-th column was chosen in I . Hence,

Pr[(x , y) is covered by B]≥ p(1− p)d ≥ pe−pd ≥ p/e .

If we apply this procedure t times to get t all-1 submatrices, then the probability that
(x , y) is covered by none of these submatrices does not exceed (1− p/e)t ≤ e−t p/e.
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Hence, the probability that some 1-entry of A remains uncovered is at most

|A| · e−t p/e = exp(ln |A| − t/(e(d + 1))) ,

which is < 1 for t > e(d + 1) ln |A|. □

7.1.3.2. Lower bounds. We now turn to lower bounds on the covering number
Cov(A), and hence, on the nondeterministic communication complexity.

Given a (0,1) matrix A and a nonzero (0,1) matrix B ≤ A, let wA(B) denote the
largest possible number of 1-entries in B that can be covered by some all-1 submatrix
R of A. (Note that R needs not be a submatrix of B.) Since no all-1 submatrix of A

can cover more than wA(B) 1’s of B, at least |B|/wA(B) all-1 submatrices are needed to
cover all 1’s of A. Hence, the following greedy covering number,

µ(A) =max
B≤A

|B|
wA(B)

,

is a lower bound on Cov(A). Interestingly, this lower bound is not very far from the
truth.

LEMMA 7.10. For every (0,1) matrix A, we have

Cov(A)≤ µ(A) · ln |A|+ 1 .

PROOF. Consider a greedy covering R1, ...,Rt of A by all-1 submatrices. That is, in
the i-th step we choose an all-1 submatrix Ri ≤ A covering the largest number of all
yet uncovered 1’s in A. Let Bi be a (0,1) matrix containing all 1’s of A that are left
uncovered after the i-th step. That is, Bi[x , y] = 1 iff A[x , y] = 1 and R1[x , y] = . . . =
Ri[x , y] = 0. Hence, B0 = A and Bt = 0 (all-0 matrix). Let bi = |Bi | and wi = wA(Bi).
Since, by the definition of µ= µ(A), none of the fractions bi/wi can exceed µ, we have
that bi+1 = bi − wi ≤ bi − bi/µ. This yields

bi ≤ b0(1− 1/µ)i ≤ |A| · e−i/µ .

For i = t − 1, we obtain 1 ≤ bt−1 ≤ |A| · e−(t−1)/µ, and the desired upper bound
Cov(A) ≤ t ≤ µ ln |A|+ 1 follows. □

A natural choice for a “difficult to cover” matrix B ≤ A is to take a permutation
matrix. This leads to the following, easy to apply lower bounds. Say that two 1-entries
in a matrix are independent if they do not lie in one row or in one column.

The term-rank trk(A) of A is the largest number of its pairwise independent 1-
entries. The clique number ω(A) of A is the largest number r such that A contains an
r × r all-1 submatrix. Finally, the line weight `(A) of A is the largest number of 1’s in a
line (row or column), that is, w(A) is the maximum degree of the corresponding to A

bipartite graph. Using these matrix parameters we can lower bound the cover number
as follows:

Cov(A)≥
trk(A)

ω(A)
≥

|A|
`(A) ·ω(A) . (7.3)

The first inequality follows since any r × r all-1 submatrix of A can have at most r

independent 1’s. The second inequality is a direct consequence of a classical result of
König-Egervary saying that the term-rank trk(A) of A is exactly the minimum number
of lines (rows and columns) covering all 1’s in A.

Although simple, the first lower bound in (7.3)—known as the fooling set bound—
is one of the main tools for proving lower bounds on the nondeterministic communi-
cation complexity of boolean functions.
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For sparse matrices, we have a somewhat better bound. Proposition 7.2 implies
that, for any symmetric matrix A, the fraction trk(A)2/|A| is a lower bound on the
decomposition number Dec(A) of A. We now show that this fraction is also a lower
bound on the covering number Cov(A).

LEMMA 7.11. For every non-zero (0,1) matrix A, we have

Cov(A) ≥
trk(A)2

|A| .

PROOF. Take a largest set I of |I | = trk(A) independent 1-entries in A, and let
R1, . . . ,Rt be a covering of the 1-entries in A by t = Cov(A) all-1 submatrices. Define a
mapping f : I → {1, . . . , t} by f (x , y) =min{i | Ri[x , y] = 1}, and let Ii = {(x , y) ∈ I |
f (x , y) = i}. That is, Ii consists of those independent 1-entries in I that are covered
by the ith all-1 submatrix Ri for the first time. Note that some of the Ii ’s may be empty,
so let I1, . . . , Ik be the nonempty ones. Say that an entry (x , y) is spanned by Ii if
(x , y ′) ∈ Ii for some column y ′ and (x ′, y) ∈ Ii for some row x ′.

Let Si be the submatrix of Ri spanned by Ii . Hence, S1, . . . ,Sk are disjoint all-1
submatrices of A covering all 1-entries in I . Moreover, each Si is an ri × ri matrix with
ri = |Ii |. Since the Si ’s are disjoint, we have that

r1 + · · ·+ rk = |I |= trk(A)

and

r2
1 + · · ·+ r2

k
≤ |A| .

By the Cauchy–Schwarz inequality,

trk(A)2 = (r1 + · · ·+ rk)
2 ≤ k · (r2

1 + · · ·+ r2
k
)≤ k · |A| ,

and the desired lower bound t ≥ k ≥ trk(A)2/|A| follows. □

REMARK 7.12. For all (0,1) matrices A with |A| < trk(A) ·ω(A) ones, Lemma 7.11
yields somewhat better lower bounds than those given by the fooling set bound (7.3).
If, for example, an N × N matrix A contains an identity matrix and some constant
number c of r × r all-1 matrices with r =

p
N , then Lemma 7.11 yields Cov(A) ≥

N2/(cr2 + N) = Ω(N), whereas the fooling set bound (7.3) only yields Cov(A) ≥
N/r =

p
N .

7.1.3.3. Communication with restricted advice. Recall that Cov(A) ≤ t iff all 1-
entries of A can be covered by at most t all-1 submatrices. When doing this, one 1-
entry of A may be covered many times. Let us now consider a version of this measure,
where the cover frequency is restricted. This corresponds to nondeterministic com-
munication, where Carole cannot use one and the same witness for many inputs; this
situation is usually referred to as a nondeterministic communication with a restricted
number of advice bits.

Let Covk(A) be the smallest number of all-1 submatrices of A covering all its 1-
entries in such a way that no 1-entry of A is covered by more than k of these submatri-
ces. Let rk(A) denote the rank of A over the real numbers.

LEMMA 7.13. For every (0,1) matrix A and any integer k ≥ 1, we have

Covk(A) = Ω(k · rk(A)1/k) .
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PROOF. Let R1, . . . ,Rt be t = Covk(A) (0,1) matrices of rank 1 such that A ≤∑t
i=1 Ri ≤ kJ , where J is the all-1 matrix. This is an equivalent definition of Covk(A):

the 1-entries in each of the Ri ’s correspond to an all-1 submatrix of A. For a subset
I ⊆ {1, . . . , t}, let RI be a (0,1) matrix with RI[x , y] = 1 iff Ri[x , y] = 1 for all i ∈ I .
By the inclusion-exclusion formula, we can write the matrix A as a linear ±1 combina-
tion

A=
∑

I 6=;
(−1)|I|+1RI . (7.4)

The condition
∑t

i=1 Ri ≤ kJ implies that RI = 0 for all I of size |I | > k. Hence,

the right hand of (7.4) has at most
∑k

i=1

�t
i

�
non-zero terms. Using the estimates�t

i

�
≤
� t

k

�
≤ (et/k)k, the subadditivity of rank yields

rk(M)≤
k∑

i=1

�
t

i

�
≤ k

�
et

k

�k
,

from which the desired lower bound on t = Covk(A) follows. □

The following example shows that the lower bound in Lemma 7.13 cannot be
improved.

EXAMPLE 7.14. Let I be an identity n× n matrix with n = 2m for some m divisible
by k, and let I = J − I be its complement. Then rk(I) = n, but we have that

Covk(I)≤ k · n1/k .

To see this, encode the rows and the columns by vectors x ∈ {0,1}m; hence, I[x , y] = 1
iff x 6= y . Split the set [m] into k disjoint subsets S1, . . . ,Sk, each of size m/k. For every
j ∈ [m] and a ∈ {0,1}m/k , define the rectangle:

R j,a = {(x , y) | projection of x onto S j coincides with a and that of y doesn’t} .

These k2m/k = kn1/k rectangles cover all 1’s of I , and each pair (x , y) with x 6= y

appears in at most k of them (since we take only k projections).

7.2. P = NP∩ co-NP for fixed-partition games

Having deterministic and nondeterministic modes and having the (far-fetched)
analogy with the P versus NP question, it is natural to consider the relations between
the corresponding complexity classes. Here for convenience (and added thrill) we use
the common names for the analogs of the complexity classes:

Let P (resp., NP) consist of all boolean functions in 2m variables whose deter-
ministic (resp., nondeterministic) communication complexity is polynomial in
log m.

The complement of a (0,1) matrix A is the matrix A = A− J , where J is the all-1
matrix (of the same dimension). Note that in the case of deterministic protocols, there
is no difference what of the two matrices A or A we consider: we always have that
C(A) = C(A), because each deterministic protocol must cover all 0’s as well as all 1’s
of A. In the case of nondeterministic communication, the situation is different in two
respects:

a. we only need to cover the 1’s of A, and
b. the submatrices need not be disjoint.
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R

S

T

Q

FIGURE 3. R intersects S in rows, intersects T in columns, and inter-
sects Q in both rows and columns.

This is where an asymmetry between nondeterministic protocols for A and A comes
from. And indeed, we have already seen that the nondeterministic communication
complexities of the identity matrix and its complement are exponentially different.

But what if both A and A have small nondeterministic communication complexity,
what can be than said about the deterministic communication complexity of A. This is a
version of the famous P versus NP∩ co-NP question in communication complexity. To
answer questions of this type (in the communication complexity frame), we now give
a general upper bound on the deterministic communication complexity.

7.2.1. Making non-disjoint coverings disjoint. Let X and Y be two finite sets.
A rectangle is a subset R ⊆ X × Y of the form R = R0 × R1 with R0 ⊆ X and R1 ⊆ Y .
That is, a subset R is a rectangle iff for every two points (x , y) and (x ′, y ′) of R, the
combined points (x , y ′) and (x ′, y) belong to R as well.

Let us consider the following general scenario of covering a rectangle by ist sub-
rectangles. We are given a finite set R of (not-necessarily disjoint) rectangles, as well
as a labeling of rectangles. The only requirement is that the labeling must be legal in
the following sense:

(∗) Any two rectangles with different labels must be disjoint.

Let P be the set of all points (x , y) belonging to at least one of these rectangles. We
consider the following search problem for R: given a point (x , y) ∈ P, find a label
of a rectangle containing this point. Note that, if the point belongs to more than one
rectangle then, by (∗), all these rectangles must have the same label.

We want to solve this problem using a communication game between two players,
Alice and Bob, where Alice obtains the first coordinate x and Bob obtains the second
coordinate y . Let cc(R) denote the deterministic communication complexity of such a
game for R .

Say that a rectangle S = S0 × S1 intersects a rectangle R = R0 × R1 in rows, if
S0∩R0 6= ;, and intersects R in columns, if S1∩R1 6= ; (see Fig. 3). Note that, S∩R 6= ;
if and only if S intersects R in rows and in columns. This immediately leads to the
following basic observation about disjoint rectangles.

OBSERVATION 7.15. Let S be a rectangle and R a set of rectangles. If S ∩ R = ;
for all R ∈ R , then either S intersects at most half of rectangles R ∈ R in rows or S

intersects at most half of these rectangles in columns.

Using this observation, we can give a general upper bound on cc(R).

LEMMA 7.16. For every finite set R of legally labeled rectangles,

cc(R)≤ 2(log2 |R|)2 .
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PROOF. Let r = dlog2 |R|e, Say that two rectangles in R are consistent if they have
the same label, and inconsistent otherwise. A rectangle R = R0 × R1 contains a row x

(a column y) if x ∈ R0 (resp., y ∈ R1). The protocol consists of at most r rounds and
in each round at most 1+ r bits are communicated. After each round the current set
of rectangles is updated. Given a input (x , y), the goal is to decrease the number of
rectangles in each round by at least one half.

a. Alice checks whether all rectangles inR , containing her row x , are consistent.
If yes, then the (unique) label i of all these rectangles is a correct answer, and
she announces it.

b. Otherwise, Alice tries to find a rectangle R ∈ R containing x such that R

intersects in rows at most half of rectangles that are inconsistent with R. If
such a rectangle R exists, then Alice sends its name (using r bits) to Bob and
they both update R so that it only contains the rectangles that intersect with
R in rows (the other rectangles cannot contain (x , y)).

c. If Alice is unable find such a rectangle then she communicates this to Bob
(using one bit).

d. Now is Bob’s turn. Since Alice failed, Observation 7.15 ensures that there must
be a rectangle R ∈ R that contains y and intersects in columns at most half of
rectangles that are inconsistent with R. Bob takes any of such rectangles R and
sends its name (using r bits) to Alice and they both update R so that it only
contains the rectangles that intersect with R in columns (the other rectangles
cannot contain (x , y)). At this point the round is definitely over since they
successfully eliminated at least half of the rectangles inR , and we can proceed
by induction.

After at most r rounds the players will agree on a rectangle containing (x , y), and the
label of this rectangle is the correct answer. □

As a direct consequence we obtain the following important result due to Aho,
Ullman and Yannakakis (1983), implying that P = NP∩ co-NP holds for the fixed-
partition communication complexity.

THEOREM 7.17. For every (0,1) matrix A,

C(A)≤ 2max{NC(A), NC(A)}2 .

PROOF. Let R = R0 ∪ R1 where R0 is a set of |R0| ≤ 2N C(A) all-0 submatrices
covering all zeroes of A, and R1 is a set of |R1| ≤ 2N C(A) all-1 submatrices covering all
ones of A. Assign label “0” to all rectangles in R0, and label “1” to all rectangles inR1.
It is clear that this is a legal labeling, since every rectangle inR0 must be disjoint from
every rectangle inR1. Hence, on a given input (x , y), the players have only to find out
the label of a rectangle containing (x , y). By Lemma 7.16, this can be done using at
most 2(log2 |R|)2 ≤ 2max{NC(A), NC(A)}2 bits of communication. □

Theorem 7.17 cannot be essentially improved. To show this, consider the disjoint-
ness matrix Dn,k introduced in Section 3.3.1. Recall that its rows and columns are

labeled by all
∑k

i=0

�n
i

�
subsets a of [n] of size at most k, and the entry in the a-th row

and b-th column is defined by:

Dn,k[a, b] =

¨
0 if a ∩ b 6= ;,
1 if a ∩ b = ;.
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We already know that these matrices have full rank, even over GF(2). Hence,

C(Dn,k)≥ log2 rk(Dn,k) = Ω(k log(n/k)) . (7.5)

It is also easy to see that

NC(Dn,k)≤ log2 n (7.6)

(just guess a point in the intersection of a and b). It turns out that the nondeterministic
communication complexity of the matrix Dn,k itself is also not very large.

CLAIM 7.18. Cov(Dn,k) ≤ 2k4k ln n.

PROOF. The rows as well as columns of Dn,k are labeled by elements of the the set
[n]≤k of all subsets of [n] of size at most k. Say that a subset Y ⊆ [n] separates pair
(a, b) of two disjoint members a and b of [n]≤k if a ⊆ Y and b ∩ Y = ;. Let Y be
a random subset of [n] chosen uniformly with probability 2−n. Then for a fixed pair
(a, b),

Pr[Y does not separate (a, b)] = 1− Pr[a ⊆ Y and b ∩ Y = ;]

= 1−
2n−|a|−|b|

2n
= 1− 2−|a|−|b| .

Let ` := 2k4k ln n, and take ` independent copies Y 1, . . . , Y ` of Y . Then the probability
that none of them separates a given pair (a, b) is at most

�
1− 2−|a|−|b|
�` ≤
�

1− 2−2k
�`
< e−`·2

−2k

.

Since there are no more than n2k pairs (a, b), the probability that at least one of the
pairs (a, b) is left unseparated by all the sets Y1, . . . , Y `, is smaller than

n2k · e−`·2−2k

= n2k · e−2k ln n = 1 .

So, there must exists a sequence Y1, . . . , Y` of subsets of [n] such that Dn,k[a, b] = 1 iff
(a, b) is separated by at least one of these sets. Since the set {(a, b) | a ⊆ Yi , b∩Yi = ;}
of all pairs separated by the ith set Yi corresponds to an all-1 submatrix of Dn,k, this
implies Cov(Dn,k) ≤ `, as desired. □

Claim 7.18 together with bounds (7.5) and (7.6) implies

COROLLARY 7.19. Let A = Dn,k with k = log2 n. Then both NC(A) and NC(A) are

O(log n), but C(A) = Ω(log2 n).

Recall that the decomposition number Dec(A) of a (0,1) matrix is the smallest
number of its mutually disjoint monochromatic submatrices covering all entries of A.
We already know that C(A)≥ log2 Dec(A). Since both NC(A) and NC(A) do not exceed
log2 Dec(A), Theorem 7.17 implies a partial converse of this inequality.

THEOREM 7.20. For every (0,1) matrix A,

C(A) ≤ 2(log2 Dec(A))2 .
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7.2.1.1. Clique vs. independent set game. In fact, an even stronger fact holds.
In the definition of the decomposition number Dec(A) we require that all 1-entries
and all 0-entries of A be decomposed into monochromatic submatrices. But what if
we only know that all 1-entries of A can be decomposed in a small number of all-1
submatrices—does then C(A) is small?

THEOREM 7.21. If the 1-entries of a (0,1) matrix can be decomposed into m mutually

disjoint all-1 submatrices, then

C(A) = O(log2 m) .

We will derive the theorem from a more general result about the communication
complexity of the following “clique versus independent set” decision game CISG of a
given graph G:

- Alice gets a clique C ⊆ V of G.
- Bob gets an independent set I ⊆ V of G.
- Answer “1” iff C ∩ I = ;.

Note that we always have that |C ∩ I | ≤ 1.

LEMMA 7.22. For every n-vertex graph G, C(CISG) = O(log2 n).

PROOF. Given an n-vertex graph G = (V, E) we describe an appropriate commu-
nication protocol for the game CISG . The protocol works in log n rounds, and in each
round at most O(log n) bits are communicated. The idea is to do binary search for
intersection.

For a subset U ⊆ V of vertices and a vertex v ∈ U , let dU(v) denote the number
of neighbors of v in U . At each stage, the players maintain a subset U ⊆ V of vertices
with the following property:

(∗) If C and I intersect then the intersection is in U .

Initially U = V . In each stage the players do the following:

a. Alice looks for a vertex u ∈ C ∩ U such that dU(u)≤ |U |/2. She sends “0” if no
such vertex exists; otherwise she sends “1” followed by the name of u (log n

bits).
b. If Alice sends a name of a vertex u, then Bob checks whether u ∈ I . If so,

he gives the answer “0” (there is an intersection), and the game is over. If
u 6∈ I then the players update the current set U by removing from it all non-
neighbors of u, and the next round starts. Since dU(u) ≤ |U |/2, the size of the
new set U is at most half of the old size.

c. If Alice fails to find a needed vertex, then it is Bob’s trun. He looks for a vertex
v ∈ I ∩ U such that dU(v) > |U |/2. If there is no such vertex v, then he gives
the answer “1” (C and I are disjoint), and the game is over. Assuming (∗),
this is a correct answer, for if there would be a vertex w ∈ C ∩ I ∩ U then
we would have that dU(w) > |U |/2 (since w does not suited Alice) as well as
dU(w) ≤ |U |/2 (since w does not suited Bob). If there is a vertex v ∈ I ∩ U

such that dU(v)> |U |/2, then Bob sends its name to Alice.
d. Alice checks whether v ∈ C . If so, she gives the answer “1” (there is an intersec-

tion, and the game is over. Otherwise, both players update the set U by remov-
ing from it all neighbors of v, and the next round starts. Since, dU(v)> |U |/2,
the size of the new set U is again at most half of the old size.
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Since after each round the size of U is halved, the number of rounds is at most log2 n,
leading to a total communication of O(log2 n) bits. It remains, therefore, to ensure that
the property (∗) is kept through all rounds. Suppose that C ∩ I 6= ; and let w ∈ C ∩ I

be the unique vertex in their intersection. The vertex w could be lost (removed from
U) if Alice sends a vertex u and this vertex is different than w. But since w ∈ C and
C is a clique, w is a neighbor of u, and hence, cannot be removed when updating U

(only non-neighbors of u are removed during this update). The only other possibility to
“loose” the vertex w is when Bob sends a vertex v and this vertex is different than w.
But since w ∈ I and I is an independent set, w is a non-neighbor of v, and hence,
cannot be removed when updating U (only neighbors of v are removed during this
update). □

PROOF OF THEOREM 7.21. Let R1, . . . ,Rm be a decomposition of 1-entries of A into
m mutually disjoint all-1 submatrices. Consider the graph G on m vertices 1, . . . , m in
which

i and j are adjacent iff Ri and R j intersect in rows.

Now, given an input (x , y), Alice and Bob transform them to sets

X = {i | x is a row of Ri} and Y = {i | y is a column of Ri} .
Note that X is a clique in G. Moreover, since the submatrices R1, . . . ,Rm are disjoint, Y

is an independent set of G. Also, X ∩ Y 6= ; iff (x , y) is in a 1-rectangle. Hence, the
players can use the protocol for CISG . □

The clique vs. independent sets game CISG is important in the context of un-
derstanding the power of linear programming for NP-hard problems. Namely, Yan-
nakakis (1991) has shown that any n-vertex graph G, for which this game requires
ω(log n) bits of nondeterminisitic communication, would give a super-polynomial lower
bound for the size of linear programs expressing Vertex Packing and Traveling Sales-
man Problem polytopes. Note that NC(¬CISG) ≤ log2 n for any n-vertex graph: just
guess a vertex in the intersection. But for the problem CISG itself only graphs G with
NC(CISG) = Ω(log n) are known.

RESEARCH PROBLEM 7.23. Exhibit a sequence Gn of n-vertex graphs such that

NC(CISG) =ω(log n) .

7.2.1.2. Rank upper bound. There is yet another upper bound, similar in its form
to that of Theorem 7.17. Instead of Cov(A) it uses the following matrix parameter. Say
that a square (0,1) matrix ∆ = (δi j) is triangular if δii = 1 and δi j = 0 for i > j. For
example, a 3× 3 triangular matrix has the form:




0 0 1
0 1 ∗
1 ∗ ∗


 .

For a (0,1) matrix A, define

∆(A) =min{d | A contains an d × d triangular submatrix} .
It is clear that ∆(A)≤min{rk(A),Cov(A)}.

THEOREM 7.24. For every (0,1) matrix A we have that

C(A)≤ (2+ NC(A)) · (log2∆(A)) .
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FIGURE 4. Proof of (7.7): Since Ai is an all-0 submatrix, no triangular
submatrix of Ri can share a row or a column with a triangle subma-
trix of Ci . Permute rows and columns of A to “glue” these triangular
submatrices into a triangular submatrix of A.

PROOF. Let r = NC(A), and let A1, . . . ,A2r be the all-0 submatrices of A covering all
0’s of A. For every matrix Ai , consider the matrix Ri formed by the rows of A intersecting
Ai , and Ci be the matrix formed by the columns of A intersecting Ai . Since Ai consists
only of 0’s, we have that (see Fig. 4 for a proof):

∆(Ri) +∆(Ci) ≤∆(A) . (7.7)

The protocol consists of log2∆(A) rounds, in each of which at most 2+ r = 2+NC(A)

bits are communicated.
In each round, the players do the following. First, Alice checks whether there is

an index i such that her row intersects Ai and ∆(Ri)≤ 1
2
∆(A). If yes, then (using 1+ r

bits) she sends “1” and the index i of this submatrix to Bob. If not, then she sends “0”.
Now Bob checks whether there is an index i such that his column intersects Ai and
∆(Ci) ≤ 1

2
∆(A). If yes, then (using 1+ r bits) he sends “1” and the index i to Alice. If

not, then he sends “0”.
If either Alice or Bob find a suitable index i in this round then, by communicating

at most 2+ r bits, they have restricted the problem to a matrix A′ (= Ri or Ci) for which
∆(A′)≤ 1

2
∆(A). Hence, in this case, the theorem follows by induction.

If both players have sent “0” in this round, then they can finish the protocol: the
answer is “A[x , y] = 1”. Indeed, if there would be a 0 in the intersection of Alice’s row
and Bob’s column, then this 0 would belong to some submatrix Ai . However, for this
submatrix we have on the one hand ∆(Ri)>

1
2
∆(A) (since i did not suit Alice), on the

other hand ∆(Ci)>
1
2
∆(A) since i did not suit Bob. But this contradicts (7.7).

Thus, we have shown that C(M)≤ (2+ r) · log2∆(A), as desired. □

Together with Lemma 7.13, Lemma 7.24 implies that nondeterministic communi-
cation complexity with a small number k of witnesses cannot be much smaller than
the deterministic communication complexity. Define

NCk(A) := log2 Covk(A) .

COROLLARY 7.25. There is a constant ε > 0 such that, for any (0,1) matrix A, we

have

NCk(A) ≥ ε
r

C(A)

k
.
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PROOF. Since C(A) = C(A) and rk(A) ≥ rk(A)− 1, Lemma 7.24 implies that C(A)

is at most about NC(A) · log2∆(A) ≤ NCk(A) · log2∆(A), and hence, at most about
NCk(A) · log2 rk(A). On the other hand, by Lemma 7.13, we have that NCk(A) must be
at least about (log2 rk(A))/k. This implies log2 rk(A) = O(NCk(A)/k), and hence, the
desired lower bound on NCk(A) follows. □

7.3. Randomized communication

In a randomized communication protocol, Alice and Bob are allowed to flip a coin.
The coin can be public (seen by both players) or private. Alice and Bob are allowed to
get a wrong result with probability smaller than ε. That is, a randomized communica-
tion protocol P(x , y, r) using a string r of random bits is an ε-error protocol for a (0,1)
matrix A if, for all entries (x , y),

Pr[P(x , y, r) 6= A[x , y]] ≤ ε .

As before, the complexity of the protocol is defined to be the maximal number of bits
sent over all inputs.

For a (0,1) matrix A, let Rε(A) denote the complexity of the best randomized pro-
tocol for A that uses a public random string and errs with probability smaller than ε. If
the players must flip their coins privately, then the corresponding measure is denoted
by Rprivat

ε (A).

EXAMPLE 7.26. To see the difference between these two measures, let n = 2m and
consider the n× n identity matrix In. Then C(In) = m = log2 n since Dec(In) = n. But
randomized protocols can do much better: R1/3(In) = O(1). Indeed, the players pick
a random string r = (r1, . . . , rm) in {0,1}m. Alice sends the salar product 〈r, x〉, Bob
checks whether 〈r, y〉 = 〈r, x〉 and sends the answer. Since every nonzero (0,1) vector
v 6= 0 is orthogonal over GF(2) to exactly half of all vectors, the error probability is
ε = 1/2: juts take v = x ⊕ y . To get error ε < 1/3, just repeat the protocol two times.

If the random strings r are private (a much more realistic situation), the protocol is
less trivial. Still, also in this case it is enough to communicate exponentially fewer bits
than in the deterministic case: R

privat
1/3 (A) = O(log log n). Alice picks a random prime

number p between 1 and m2, and sends 4 log m bits encoding p as well as x mod p to
Bob. He checks whether y mod p = x mod p, and sends the answer to Alice. If x = y

the result is always correct. If x 6= y the protocol can err. The protocol errs when Alice
picks a prime number p such that p divides |x − y |. Since |x − y | < 2m, there are
at most log2 2m = m such “bad” primes numbers. On the other hand, the number of
prime numbers in the interval 1, . . . , k is at least k/ ln k. Hence, Alice is choosing her
number p with equal probability from a collection of at least Ω(m2/ ln m2) numbers.
Therefore the error probability, that is, the probability to pick one of at most m “bad”
primes is ε ≤ (ln m2)/m→ 0.

A note aside: we have completely ignored a subtle issue on how to choose a ran-
dom prime number. In the communication complexity the players are assumed to be
“superior beings:” if an object exists, they can find it immediately—only communica-
tion between these “beings” is costly.

We have seen that randomized protocols with private random bits have harder to
do. Still, Newman (1991) have proved that any randomized communication protocol
with public random bits can be simulated by a protocol with privant random bits at
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the cost of relatively small increase of the number of communicated bits: for every
boolean n× n matrix A and for every constant ε < 1/4,

R
privat
2ε (A)≤ Rε(A) +O(log log n) .

Let us now look at how to prove that some matrices are hard for randomized proto-
cols. Let A be a (0,1) matrix with rows X and columns Y . The result of a randomized
communication protocol of each input (x , y) ∈ X × Y is a random variable. To lower
bound Rε(A) from below, it is often easier to give a lower bound on a “dual” measure.
Instead of requiring that, on each input (x , y), the randomized protocol can err with
probability at most ε, we now consider deterministic protocols and require that they
output correct value everywhere except an ε-fraction of inputs (x , y). Or more gener-
ally, given a probability measure µ : X×Y → [0,1], we require that the (deterministic)
protocol can err on set of inputs of µ-measure at most ε.

Namely, an ε-error distributional complexity Dε(A|µ) of a matrix A with respect to
a measure µ is the smallest communication complexity of a deterministic protocol P

such that
µ
�
{(x , y) | P(x , y) 6= A[x , y]}

�
≤ ε .

It was proved by Yao (1979) for uniform µ and generalized by Babai, Frankl and Simon
(1986) to arbitrary µ that

Rε(A)≥ 1
2
D2ε(A|µ)

for any A, µ and ε > 0.
Consider now the disjointness matrix Dn. This is a 2n×2n (0,1) matrix whose rows

and columns are labeled by subsets x ⊆ [n], and

Dn[x , y] = 1 iff x ∩ y = ; .

THEOREM 7.27. For every ε > 0, the ε-error randomized communication complexity

of the disjointness matrix is

Rε(Dn) = Ω(
p

n) .

This was later substantially improved to Rε(Dn) = Ω(n) by Kalyanasundaram and
Schnitger (1992); a simpler proof was then found by Razborov (1992a). Still the proof
of the weaker bound is more intuitive, and we present it.

PROOF. Let X = Y consist of all subsets of size
p

n of [n]; we assume that n is
a perfect square divisible by 12. We concentrate on the submatrix of Dn with row-
set X and column-set Y . We shall select the pairs (x , y) at random from the uniform
distribution over X×Y . That is, µ(x , y) = 1/|X×Y | for (x , y) ∈ X×Y , and µ(x , y) = 0
for (x , y) 6∈ X × Y . Since the sets in X and in Y have size

p
n, a random pair (x , y)

in X × Y has probability about 1/e to be disjoint: the probability that two random
s-element subsets x and y of [n] are disjoint is
�

n

s

��
n− s

s

��
n

s

�−2

=

�
n− s

s

��
n

s

�−1

≈
�

1−
s

n

�s
≈ e−s2/n .

Take a rectangle R = F × G ⊆ X × Y such that A[x , y] = 1 (that is, x ∩ y = ;) for all
but an ε fraction of R, that is,

|{(x , y) ∈ R | x ∩ y 6= ;}| ≤ ε|R| . (7.8)

To show that Dε(Dn|µ) = Ω(
p

n), it is enough to show that

|R| ≤ |X × Y | · 2−c
p

n (7.9)
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for some constant c. We will prove this by showing that either |F | < |X |2−c
p

n or
|G|< |Y |2−c

p
n (or both) must hold.

Let F1 be the set of all rows x ∈ F such that x intersects fewer than 2ε|G| columns
y ∈ G. Clearly |F1| ≥ |F |/2, for otherwise (7.8) would not hold.

CLAIM 7.28. Given any x1, . . . , xk ∈ F1, at most |G|/2 of the y ∈ G intersect more
than 4εk of the x i .

PROOF. If more than a half of the y ∈ G would intersect more than 4εk of the
x i , then some x i would intersect more than 2ε|G| of the y ∈ G, a contradiction with
x i ∈ F1. □

CLAIM 7.29. If |F | ≥ |X |2−c
p

n then there exists x1, . . . , xk ∈ F such that k ≥ pn/3
and for every p ≤ k, ����xp ∩

⋃

i<p

x i

����<
p

n/2 .

PROOF. Select the x i ∈ F inductively. Suppose x1, . . . , xp−1 have been selected
(p − 1 ≤ pn/3) and let z =

⋃
i<p x i . Then |z| < p

p
n ≤ n/3. The number of those

x ∈ X satisfying |z ∩ x |>pn/2 is therefore less than2

n

�
n/3
p

n/2

��
2n/3
p

n/2

�
<

�
n
p

n

�
2−c
p

n = |X |2−c
p

n ,

where the inequality follows from the well-known estimates
�

n

k

�k ≤
�n

k

�
<
�

en

k

�k
.

Therefore |xp ∩ z|<pn/2 for some xp ∈ F1 −{x1, . . . , xp−1}. □

We now turn to the actual proof of (7.9), and hence, of Theorem 7.27. If the
condition |F | ≥ |X |2−c

p
n of Claim 7.29 does not hold, we are done. Otherwise, there

are at most
� n

4εk

�
ways to select those 4εk of the x i which, by Claim 7.28, a given y ∈ G

is allowed to intersect. By Claim 7.29, the union of the remaining x i (not intersected
by y) has size larger than (k− 4εk)

p
n/2> k

p
n/3≥ n/9. Therefore

|G|< 2

�
n

4εk

��
n− n/9
p

n

�
≤ 2−c

p
n

�
n
p

n

�
= 2−c

p
n|Y | ,

and we again conclude that |R| ≤ |X | · |Y | · 2−c
p

n. □

7.4. P 6= NP∩ co-NP for best-partition games

If f : {0,1}2n → {0,1} is a boolean function, then any balanced partition (x , y) of
its variables into two blocks of equal size gives us a communication matrix M f of f :
this is a 2n × 2n (0,1) matrix with M f [x , y] = f (x , y). The communication complex-
ity of this matrix is then referred to as the communication complexity of f under this
(particular) partition. Note however, that different partitions may result in different
communication matrices of the same boolean function f . The best-partition commu-

nication complexity of f is the minimum, over all balanced partitions (x , y), of the
communication complexity of M f under partition (x , y).

For many functions, this (possibility to chose a suitable partition) can drasti-
cally reduce the number of communicated bits. For example, the equality function
( f (x , y) = 1 iff x i = yi for all i) has maximal possible communication complexity

2Recall that |x | =pn for all x ∈ X .
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equal to n (even nondeterministic), if the players are forced to used this “bad” parti-
tion (x , y). If, however, Alice receives the first half of x and y , and Bob receives the
remaining variables, then they can locally test whether their pieces are equal and tell
this the other player. Thus, under this “good” partition, just two bits of communication
are enough!

Theorem 7.17 implies that P = NP∩ co-NP in the case of fixed partition games.
But what about best-partition complexity? The question is important because it ex-
poses something about the power of lower bound arguments. We can prove a lower
bound on the deterministic communication complexity of a function f by arguing
about either f or ¬ f . But if both the function and its negation have low nondeter-
ministic complexity under some partitions of variables, other arguments are needed to
show that the deterministic communication complexity must be large for any partition.

It turns out that no analogon of Theorem 7.17 holds in the best-partition case.

THEOREM 7.30. For the best-partition games, we have that P 6= NP∩ co-NP.

Recall that in the best-partition case the players can choose different (most suit-
able) partitions for a function f and its negation ¬ f . To visualize the effect of this
choice, we define our function f (X ), separating P from NP∩ co-NP, as boolean func-
tions in n2 variables, arranged into an n × n matrix. Hence, inputs for f are 0/1
matrices A : X → {0,1}. We define f (X ) in such a way that a partition of X according
to columns is suitable for computing f , and that according to rows is suitable for ¬ f .

Say that a row/column of a (0,1) matrix is good if it contains exactly two 1’s, and
bad otherwise. Define f (X ) by: f (A) = 1 if and only if

a. at least one row of A is good and
b. all columns of A are bad.

Theorem 7.30 is a direct consequence of the following two claims.

CLAIM 7.31. The nondeterministic best-partition communication complexities of
both f and ¬ f are O(log2 n).

PROOF. In the protocol for f Alice takes the first half of columns whereas in the
protocol for ¬ f she takes the first half of rows.

To compute f (A) for a given matrix A : X → {0,1}, the protocol first guesses a
row r (a candidate for a good row). Then, using 3 bits, Alice tells Bob whether all
her columns are bad, and whether the first half of the row r contains none, one, two
or more 1’s. After that Bob has the whole information about the value f (A) and can
announce the answer. The negation ¬ f (A) can be computed in the same manner by
replacing the roles of rows and columns. □

CLAIM 7.32. The deterministic best-partition communication complexity of f isΩ(n).

PROOF. The set-disjointness function DISJ(x , y) is a boolean function in 2n vari-
ables which outputs 1 iff

∑n
i=1 x i yi = 0. Since the disjointness matrix has full rank

(see Section 3.3.1), the lower bound (7.1) implies that the deterministic communica-
tion complexity of DISJ, as well as of ¬DISJ, under this partition is Ω(n). (In fact, even
nondeterministic and randomized communication complexity of this function is Ω(n),
but we will not need this important fact.)

Take an arbitrary deterministic protocol for f (X ). The protocol uses some bal-
anced partition of X into two halves where the first half is seen by Alice and the second
by Bob. Say that a column is seen by Alice (resp., by Bob) if Alice (resp., Bob) can see
all its entries.
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A column is mixed if it is seen by none of the two players, that is, if each player
can see at least one its entry. Let m be the number of mixed columns. We consider
two cases depending on how large this number m is. In both cases we describe a
“hard” subset of inputs, i.e. a subset of input matrices on which the players need to
communicate many bits.

Case 1: m < n/2. In this case each player can see at least one column. Take one
column seen by Alice and another column seen by Bob, and let Y be the (n− 3)× 2
submatrix of X formed by these two columns without the last three rows. We restrict
the protocol to input matrices A : X → {0,1} defined as follows. We first set all entries
in the last three rows to 1. This way we ensure that all columns of A are already bad.
Then we set all remaining entries of X outside Y to 0. The columns x and y of Y may
take arbitrary values. Such a matrix looks like:




x1 y1 0 . . . 0
...

...
...

...
xn−4 yn−4 0 . . . 0

1 1 1 . . . 1
1 1 1 . . . 1
1 1 1 . . . 1




.

In each such matrix all columns are bad and, for n ≥ 3, the last three all-1 rows
are also bad. Thus, given such a matrix, the players must determine whether some of
the remaining rows is good. Since all these rows have 0’s outside the columns x and y ,
this means that the players must determine whether x i = yi = 1 for some 1≤ i < n−3.
That is, they must compute ¬DISJ(x , y) which requires Ω(n) bits of communication.

Case 2: m ≥ n/2. Let Y be the n×m submatrix of Y formed by the mixed columns.
Select from the i-th column of Y one entry x i seen by Alice and one entry yi seen by
Bob. Since m ≤ n and we select only 2m entries, there must be a row r with t ≤ 2
selected entries. Let Y be the n× (m− t) submatrix consisting of the mixed columns
with no selected entries in the row r. We may assume that m − t is odd and that
m− t ≤ n− 2 (if not, then just include in Y fewer columns).

Now restrict the protocol to input matrices A : X → {0,1} defined as follows. First
we set to 1 some two entries of the row r lying outside Y , and set to 0 all the remaining
entries of r. This ensures that the obtained matrices will already contain a good row.
After that we set all the remaining non-selected entries of X to 0. A typical matrix
looks like: 



0 0 0 . . . 0 1 1 0 . . . 0
x1 y2 0 . . . xn−t 0 0 0 . . . 0
0 0 0 . . . 0 0 0 0 . . . 0
0 x2 0 . . . yn−t 0 0 0 . . . 0
y1 0 0 . . . 0 0 0 0 . . . 0
0 0 y3 . . . 0 0 0 0 . . . 0
...

... · · ·
...

...
...

...
...

0 0 x3 . . . 0 0 0 0 . . . 0




,

where r is the first row.
Since each obtained matrix A contains a good row (such is the row r) and all

columns outside the submatrix Y are bad (each of them can have a 1 only in the row r),
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the players must determine whether all columns of A in Y are also bad. Since all non-
selected entries of Y are set to 0, the players must determine whether x i + yi ≤ 1 for
all i = 1, . . . , m− t. Hence, the players must decide whether

∑m−t

i=1 x i yi = 0, that is, to
compute the set-disjointness function DISJ(x , y), which again requires Ω(m−t) = Ω(n)

bits of communication.
This completes the proof of Claim 7.32, and thus, the proof of Theorem 7.30. □

Exercises

EX. 7.1 (Threshold matrices). Let A be an n × n (0,1) matrix whose rows and
columns are subsets of [r] = {1, . . . , r}, and whose entries are defined by: A[x , y] = 1
iff |x ∩ y | ≥ k. Show that then either (i) A contains an all-1 submatrix with at least
n2/4
�r

k

�2 entries, or (ii) A contains an all-0 submatrix with at least n2/4 entries.
Hint: Let α = 1/2

�r
k

�
and call a subset S ⊆ [r] row-popular (resp., column-popular) if S is contained

in at least αn subsets corresponding to rows (resp., to columns) of A. Look at what happens if at least one

k-element subset of [r] is both row-popular and column popular, at what happens when this is not the case.

EX. 7.2. For a graph G, let q(G) be the smallest number t with the following
property: There is a sequence S1, . . . ,St of subsets of V such that, for every clique
C ⊆ V and every independent set I ⊆ V of G such that C ∩ I = ;, there is an i such that
C ⊆ Si and I∩Si = ;. Let NC(CISG) be the nondeterministic communication complexity
of the “cliqe vs. independent set” game consideren in Section 7.2.1.1. Prove that

NC(CISG) = log2 q(G) .

EX. 7.3. Let A be a (0,1) matrix with rows X and columns Y . Given a probability
measure µ : X × Y → [0,1], the discrepancy of a submatrix B of A is the absolute value
of the difference between the µ-measure of the set of 1-entries and the µ-measure of
the set of 0-entries of B. Let Discµ(A) denote the maximum discrepancy of a submatrix
of A.
Prove that matrices of small discrepancy have large distributional, and hence, also
randomized communication complexity: for every constant 0≤ ε < 1/2,

Dε(A|µ)≥ log2

1− 2ε

Discµ(A)
.

Hint: Given a deterministic communication protocol P(x , y) for A, achieving Dε(A|µ), estimate the difference

µ
�
{(x , y) | P(x , y) = A[x , y]}

�
−µ
�
{(x , y) | P(x , y) 6= A[x , y]}

�

from above in terms of Discµ(A).

We now consider the discrepancy Disc(A) = Discµ(A) under a uniform distribution
assigning each entry the probability 2−2n.

EX. 7.4. Consider a 2n × 2n Sylvester matrix Sn. Its rows and columns are labeled
by vectors in GF(2)n, and the entries of Sn are the scalar products of these vectors over
GF(2). Show that

Disc(Sn)≤ 2−n/2 ,

and hence, that Rε(Sn) = Ω(n) for any constant ε > 0.
Hint: Use Lindsey’s Lemma (Lemma 10.25) from Section 10.4.1.

EX. 7.5. Consider the following grater than function GTn(x , y): Alice gets a non-
negative n-bit integer x , Bob gets a nonnegative n-bit integer y , and their goal is to
decide whether x ≥ y .
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Show that R1/n(GTn) = O(log2 n).
Hint: Let the players recursively examine segments of their strings until they find the lexicographically

first bit in which they differ—this bit determines whether x ≥ y. Alice can randomly select a prime number

p ≤ n3, compute x ′ (mod p) where x ′ is the first half of x , and send p and x ′ (mod p) to Bob; this can

be done using O(log n) bits. If x ′ (mod p) 6= y′ (mod p), then x ′ is different from y′, and the players can

continue on the first half of their strings. Otherwise the players assume that x ′ = y′, and they continue on

the second half of their strings. The players err in this later case when x ′ 6= y′ but x ′ (mod p) = y′ (mod p).

Estimate the probability of this error, keeping in mind that there are Θ(m/ ln m) primes p ≤ m.
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CHAPTER 8

Communication and Circuit Depth

We now consider a generalization of communication games which captures the
depth of boolean circuits as well as the leafsize of DeMorgan formulas. These games
are played on combinatorial rectangles.

8.1. Karchmer–Wigderson games

Recall that an n-dimensional combinatorial rectangle, or just a rectangle, is a non-
empty Cartesian product S = A×B of two disjoint subsets A and B of vectors in {0,1}n.
Vector pairs e = (x , y) with x 6= y are referred to as edges. The rectangle of a boolean
function f : {0,1}n→ {0,1} is the rectangle

S f := f −1(0)× f −1(1) .

A rectangle S is monochromatic if there exists a position i ∈ {1, . . . , n} such that x i 6= yi

for all edges (x , y) ∈ S; in this case we say that i is a separating position of S.
The communication game on a rectangle S = A× B, introduced by Karchmer and

Wigderson (1990), is the following game.
- Alice gets a vector x ∈ A.
- Bob gets a vector y ∈ B.
- The goal is to find a position i such that x i 6= yi .

These games constitute an extension of the communication games for (0,1) matrices,
considered in Section 7.1, to matrices whose entries are sets. This time we have an
|A| × |B| matrix M (the communication matrix of this game) whose entries are subsets
M[x , y] = {i | x i 6= yi} of positions, and the goal of players, on input (x , y), is to find
an element in M[x , y].

The game itself can be looked at as a procedure of covering the rectangle S by
disjoint monochromatic subrectangles. Recall that a rectangle R is monochromatic if
there is a position i such that x i 6= yi for all pairs (x , y) ∈ R. (see Section 2.5). As
in the case of (0,1) matrices, a communication protocol (or a communication tree) of
a Karchmer–Wigderson game is a binary tree, each inner node of which correspond
to a decision made by one of the players at this node. The only difference is that
now, instead of submatrices, the nodes are labeled by subrectangles of S so that the
following holds:

a. The root is labeled by the whole rectangle S.
b. If a node u is labeled by a rectangle R, then the sons of u are labeled by the

corresponding subrectangles S and T of R. Moreover, these subrectangles are
obtained from R by splitting the rows of R (if u is Alice’s node) or by splitting
the columns of R (if u is Bob’s node).

c. Leafs are labeled by monochromatic rectangles.

106
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Since at each node, the rows (or columns) of the corresponding submatrix are splitted
into disjoint parts, the protocol is deterministic: each edge (x , y) ∈ S will reach pre-
cisely one leaf. The depth of a tree is the maximum number of edges from the root to
a leaf. The minimum depth of a communication tree is the communication complexity

cc(S) of the game on the rectangle S.
Recall that the partition numberD(S) of a rectangle S is the smallest number t such

that S can be decomposed into t disjoint monochromatic rectangles (see Section 2.5).
Since each protocol for the game on S gives such a decomposition, we immediately
have

PROPOSITION 8.1. For every rectangle S, cc(S)≥ log2D(S).
To give an example of a communication protocol, let us consider the game on a

parity rectangle S = A× B, where all vectors in A haven an even and all vectors in B an
odd number of 1’s.

PROPOSITION 8.2. For every n-dimensional parity rectangle S, we haveD(S)≤ 4n2 .

PROOF. We will only show that D(S) ≤ n2 if n is a power of two. The general
case then follows by adding redundant zeroes to the strings so that their length is a
power of two. The resulting strings will have length at most 2n, and the upper boundD(S f )≤ 4n2 follows.

Consider the communication game for the rectangle S f . That is, given a pair (x , y)

of binary strings of length n such that x has a even and y and odd number of 1’s, the
goal of Alice and Bob is to find an i with x i 6= yi .

The basic idea is binary search. Bob begins by saying the parity of the left half of y .
Alice then says the parity of the left half of x . If these parities differ, then they continue
playing on the left half, otherwise they continue playing on the right half. With each
round they halve the size of the playing field, and use two bits of communication. Thus
after log2 n rounds and 2 log2 n bits of communication they determine an i on which
x and y differ. This gives a partition of S f into 22 log2 n = n2 disjoint monochromatic
rectangles. □

8.2. Games and circuit depth

Let Depth( f ) be the minimum depth of a circuit with AND, OR and NOT gates com-
puting f . The following theorem, which is much in a spirit of Khrapchenko–Rychkov
approach (cf. Lemma 1.8) connects communication with computation.

THEOREM 8.3. For every boolean function f ,

Depth( f ) = cc(S f ) .

We prove lower and upper bounds on Depth( f ) separately.

LEMMA 8.4 (Circuit to protocol). cc(S f )≤ Depth( f ).

PROOF. We may assume that Alice and Bob have agreed on a circuit of smallest
depth computing f . Further, we may assume, using de Morgan’s laws, that negations
are applied only to the variables. That is, inputs to the circuit are variables and negated
variables, and there are only AND and OR gates otherwhere. This does not increase
the depth of a circuit.
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Now suppose Alice gets an input x such that f (x) = 0, and Bob gets an input
y such that f (y) = 1. In oder to find an i such that x i 6= yi , the players use the
information provided by the underlying circuit. At AND gates speaks Alice, and at OR
gates speaks Bob.

Suppose the output gate is an AND gate, that is, we can write f = f0 ∧ f1. Then
Alice sends a bit i corresponding to a function fi such that fi(x) = 0; if both f0(x) and
f1(x) output 0, then Alice sends 0. We know that we must have fi(y) = 1. We can
then repeat this step at the gate corresponding to the output gate of fi , where Alice
sends a bit if the gate is an AND gate and Bob sends a bit if the gate is an OR gate (he
sends a bit corresponding to a function which outputs 1). Alice and Bob repeat this
process until they reach a leaf of the circuit. This leaf is labeled by some variable x i or
its negation ¬x i . Hence, x i 6= yi implying that i is a correct answer. □

Recall that a boolean function f separates a rectangle S = A× B if f (x) = 0 for all
x ∈ A, and f (y) = 1 for all y ∈ B.

LEMMA 8.5 (Protocol to circuit). For every rectangle S = A× B there is a boolean

function f such that f separates S and Depth( f )≤ cc(S). In particular,

Depth( f ) ≤ cc(S f ) .

PROOF. We prove the lemma by induction on c = cc(S). Suppose c = 0. Then we
must have, for some index i, that x i 6= yi for all pairs (x , y) ∈ S. Thus we may choose
either f = x i or f = ¬x i according to which function satisfies f (A) = 0 and f (B) = 1.

Next, we prove the claim is true for c assuming it is true for c − 1. Consider a
protocol for the communication game on S that uses at most c bits. Let us assume
Alice sends the first bit. Then there is a partition A= A0∪A1, A0∩A1 = ;, such that for
x ∈ A0, Alice sends the bit 0 and for x ∈ A1, Alice sends the bit 1. After that we are left
with two disjoint rectangles A0 × B and A1 × B whose communication complexity is at
most c − 1. Applying our induction hypothesis, we find there exists a function f0 such
that

f0(A0) = 0, f0(B) = 1 and Depth( f0)≤ c− 1 ,

and there exists a function f1 such that

f1(A1) = 0, f1(B) = 1 and Depth( f1)≤ c− 1 .

We define f = f0 ∧ f1. Then f (A) = 0, f (B) = 1, and

Depth( f )≤ 1+max{Depth( f0), Depth( f1)} ≤ c

as desired. Note that, if Bob had sent the first bit, we would have partitioned B and
defined f = f0 ∨ f1. □

In a monotone version of Karchmer–Wigderson game on a rectangle S, given an
input pair (x , y) ∈ S, the players must find an i such that x i = 0 and yi = 1. In
general, this game may be not well defined: if x is the all-1 vector and y is the all-0
vector, then no valid answer exists. However, if S ⊆ S f for a monotone boolean function
f , then every pair (x , y) has a valid answer.

In the case of monotone boolean functions f the game can be described as a
search for an element in the intersection of 0-terms and 1-terms of f . Recall that a
0-term of a monotone boolean function is a set of its variables such that, if we set
these variables to 0, the function will output 0 independent of the values of other
variables. 0-terms whose no proper subset is a 0-term are called maxterms of f . The
concept of 1-terms and minterms are defined dually. Main property of these terms is
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their “cross intersection:” if p is a 1-term and q a 0-term of the same boolean function,
then p ∩ q 6= ;. Given a monotone boolean function f , the game is a follows. 1

- Alice gets a 1-term p of f .
- Bob gets a 0-term q of f .
- The goal is to find a variable in p ∩ q.

For a monotone boolean function f , let cc+( f ) be the communication complexity
of a monotone version of the Karchmer–Wigderson game on the rectangle S f . Let
also Depth+( f ) be the minimum depth of a boolean formula with AND and OR gates
computing f .

The same argument as in the proof of Theorem 8.3 gives

THEOREM 8.6. For every monotone boolean function f ,

Depth+( f ) = cc+(S f ) .

For a boolean function, let (as before) S f denote the rectangle S f = f −1(0) ×
f −1(1). Recall that L( f ) denotes the smallest size of a DeMorgan formula computing f .
Let Γ(S) be the smallest number of leaves in a communication tree for the Karchmer–
Wigderson game on the rectangle S.

THEOREM 8.7. For every boolean function f ,

L( f ) = Γ(S f ) .

EXERCISE 8.8. Prove this theorem. Hint: Argue as in the proof of Theorem 8.3 using the fact

that the underlying graph of a formula is a tree.

Recall that the partition numberD(S) of a rectangle S is the smallest number t such
that S can be decomposed into t disjoint monochromatic rectangles. We already know
that cc(S) ≥ log2D(S) (Proposition 8.1), just because each protocol for the rectan-
gle S produces a decomposition of S into monochromatic rectangles. In the opposite
direction we have the following

LEMMA 8.9. For every rectangle S,

cc(S)≤ 2(log2D(S))2 .

PROOF. Let R be an optimal covering of S f by disjoint monochromatic rectangles.
Since each R ∈ R is monochromatic, there must be a position i ∈ {1, . . . , n} such that
x i 6= yi for all (x , y) ∈ R. Label each R by the smallest i with this property. Since all
rectangles in R are disjoint, this is a legal labeling (in the sense of Section 7.2). By
Lemma 7.16, for every input (x , y), the players can find out the (unique) rectangle
containing (x , y) by communicating at most 2(log2 |R|)2 = 2(log2D(S f ))

2 bits. □

8.3. Games on graphs

Given an n-vertex graph G = (V, E) and an integer 2 ≤ k ≤ n, let GAME(G, k) be
the following Karchmer–Wigderson type communication game:

- Alice gets an edge x ∈ E.
- Bob gets an independent set I ⊆ V of size |I | ≤ k.
- The goal is to find a vertex v ∈ x − S; this vertex must known to both players.

1For convenience, we have reversed the roles of players (now Alice gets inputs from f −1(1), not from
f −1(0)). This does not change anything: since we consider only deterministic games, a function and its
complement have the same complexity.
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Let ck(G) denote the communication complexity of GAME(G, k).
It is clear that ck(G)≤ 1+2 log2 n for any k: Alice just sends the codes of both end-

points of her edge. Moreover, log2 n bits are also necessary just because both players
must know an answer v ∈ x − S.

THEOREM 8.10. Let G = (V, E) be a triangle-free graph without 4-cycles, and let

k = 2(d − 1) where d is the maximum degree of its vertices. Then

ck(G)≥ log2 |E| − 1 .

PROOF. The proof is essentially the same as that of Theorem 3.4 in Section 3.2. As
in that proof we look at vertices as one-element and edges as two-element sets. For a
vertex y ∈ V , let I y be the set of its neighbors. For an edge y ∈ E, let I y be the set of
all its proper neighbors; that is, v ∈ I y precisely when v 6∈ y and v is adjacent with an
endpoint of y . Since G has no triangles and no 4-cycles, the sets I y are independent
sets. Moreover, |I y | ≤ 2(d − 1). Hence, for any two edges x , y ∈ E, the protocol must
output a vertex v ∈ x − I y .

Consider the rectangle R = R1×R0 where R1 = E is the set of edges and R0 = {I y |
y ∈ E ∪ V} is the set of all independent sets defined by edges and vertices of G. A
subrectangle M = M1×M0 of R is monochromatic if there is a vertex v ∈ V such that,
for all x ∈ M1 and I ∈ M0, we have that v ∈ x and v 6∈ I .

As in the proof of Theorem 3.4, associate with the rectangle R a (0,1) matrix
A whose rows correspond to edges x ∈ E, and columns to independent sets I y with
y ∈ V ∪ E. The entries are defined by

A[x , y] =

¨
1 if x ∩ y 6= ;,
0 if x ∩ y = ;.

We have already shown that this matrix has full column-rank; hence, rk(A) = |E|.
On the other hand, if M is a monochromatic subrectangle of R, then we also know
(Claim 3.5) that the matrix AM , obtained from A by setting to 0 all entries outside
M , has rank at most 2. The subadditivity of rank therefore implies that we need at
least rk(A)/2 = |E|/2 mutually disjoint monochromatic rectangles to cover the whole
rectangle R. Hence, at least log2(|E|/2) bits must be communicated. □

As we mentioned in Section 3.2, explicit n-vertex graphs G of degree d = Θ(
p

n)

with Ω(n3/2) edges and no 4-cycles, are known; such are, for example, the point-line
incidence graphs of projective planes. Taking k = 2d = Θ(

p
n), Theorem 8.10 yields

that c2d(G) ≥ 1.5 log2−O(1). Most interesting, however, is the case k = 2, that is,
when Bob gets non-edges.

RESEARCH PROBLEM 8.11. Find an explicit bipartite n× n graph G such that

c2(G)≥ log2 n+ c · log2 log2 n for c > 3 .

By the Magnification Lemma (Lemma 1.12) for graph complexity, this would give
us an explicit boolean function f2m in 2m variables (with m = log2 n) such that any
DeMorgan formula for f2m must have leafsize Ω(mc).

Why the rank argument does not work in case k = 2? Just because we don’t
know what matrix should we associate with the corresponding rectangle. If we take a
matrix AG whose rows correspond to non-edges x and columns to edges y , and define
AG[x , y] = 1 iff x ∩ y 6= ;, then we are already lost because then AG is a matrix of
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scalar products (over the reals) of vectors of length n, implying that rk(AG)≤ n for any
graph G.

Note that the communication game corresponding to the matrix AG is a special
version of the “clique vs. independent” game for the graph G, which we considered in
Section 7.2.1.1: edges are cliques (of size 2) and non-edges are independent sets (of
size 2).

An interesting question is: how the communication complexity C(AG) the matrix
AG (a decision problem) is related to the communication complexity c2(G) of the edge-
nonedge game on G (a search problem)?

It is not difficult to see that C(AG)≤ c2(G)+log2 n+1. Indeed, having an endpoint
v ∈ x of her edge y = {u, v} such that v 6∈ y , Alice can just send the binary code of
the other endpoint u of her edge (using log2 n bits) to Bob, and he just replies (using
one bit) whether u is in his non-edge x . Much more interesting is the other direction:
how, knowing that x ∩ y = ; or not, to determine a vertex v ∈ x − y using fewer than
2 log2 n bits of communication?

If x ∩ y = ;, then Alice can just announce (using log2 n bits) any one of the
endpoints of her edge x , and the game is over. But what if x∩ y 6= ;? It seems like then
the original task of the players has not been made simpler: they must still determine
the unique vertex, the endpoint of Alice’s edge which is not present in Bob’s non-edge.
Kushilevitz and Weinreb (2009) have recently shown that this is not true: knowing a
communication protocol for the matrix AG one can design a protocol for GAME(G, 2)
which uses fewer than 2 log2 n bits of communication. Namely, for every graph G,

c2(G)≤ 0.886 · C(AG) + log2 n+O(log log n) .

8.4. A cn lower bound for matching

Let MATCHn(x) be a monotone boolean function in
�n

2

�
variables encoding the

edges of a graph on n = 3m vertices. The function computes 1 iff the graph contains
an m-matching, that is, a set of m vertex disjoint edges.

THEOREM 8.12. For the function f =MATCHn we have

Depth+( f ) = Ω(n) .

PROOF. Minterms of this function are m-matchings. What are its 0-terms? If q is a
subset of m− 1 vertices, then the clique cq on its complement q = [n]− q is a 0-term:
if we set all edges of that clique to 0 then no m-matching is possible since every such
matching p must have at least one edge lying in that clique.

In a monotone version of Karchmer–Wigderson game for MATCH, Alice (holding a
minterm p) and Bob (holding a maxterm cq) must find a variable in their intersection
(recall that variables correspond to edges, not to vertices). It will be convenient to give
Bob not cliques cq but rather the sets q themselves; then p ∩ cq 6= ; iff some edge of p

has no endpoint in q.
Thus, Depth+( f ) is at least the communication complexity C(MATCHn) of the fol-

lowing game.

MATCHn: Alice gets an m-matching p and Bob gets an (m−1)-element set q of vertices.
Find an edge e such that e ∈ p and e ∩ q = ;.

This is a search problem: find a desired edge. Our proof strategy is to reduce
this problem to a decision problem: given two subsets of [m] decide whether they
are disjoint. Since this last problem is known to have randomized communication
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FIGURE 1. x = (2,0,1,2) and y = (1,2,0,2)

complexity at least Ω(m) (see Theorem 7.27 and the comment after it), we will be
done. To construct the desired reduction, we consider several intermediate decision
problems.

MATCH′
n
: Alice gets an m-matching p and Bob gets an m-element set q′ of vertices.
Is there an edge e such that e ∈ p and e ∩ q′ = ;?

DISTm: Alice gets x ∈ {0,1,2}m and Bob gets y ∈ {0,1,2}m.
Is x i 6= yi for all i = 1, . . . , n?

DISJm: Alice gets x ∈ {0,1}m and Bob gets y ∈ {0,1}m.
Is x i ∧ yi = 0 for all i = 1, . . . , m?

Through a series of reductions we will show that

Ω(m)
(a)
= R1/3(DISJm)

(b)
≤ R1/3(DISTm)

(c)
≤ R1/3(MATCH′

n
)
(d)
≤ C(MATCHn) .

The lower bound (a) was proved by Kalyanasundaram and Schnitger (1992), and by
Razborov (1992a) (see Theorem 7.27 for the proof of a slightly weaker bound).

(b) R1/3(DISJm) ≤ R1/3(DISTm). Transform an input (x , y) ∈ {0,1}2m for DISJm

into an input (x , y ′) ∈ {0,1,2}2m for DISTm by setting y ′
i
= 1 if yi = 1, and

y ′
i
= 2 if yi = 0. Then ∃i x i = yi = 1 iff ∃i x i = y ′

i
.

(c) R1/3(DISTm) ≤ R1/3(MATCH′
n
). Since each randomized protocol for a function

f is also a randomized protocol for its negation ¬ f , it is enough to reduce
DISTm to ¬MATCH′

n
. For this, it is again enough to encode inputs for DISTm as

inputs for MATCH′
n
. To do this, split all n = 3m vertices into m vertex-disjoint

triples, and number the three vertices in each triple by 0,1,2. Given a vector
x ∈ {0,1,2}m, Alice chooses from the ith triple the edge e = {0,1,2} − {x i}.
Similarly, given a vector y ∈ {0,1,2}m, Bob chooses from the ith triple the
vertex yi . Since the triples are vertex-disjoint, Alice obtains an m-matching px ,
and Bob obtains an m-element set q′

y
of vertices. It remains to observe that

an edge e with e ∈ px and e ∩ q′
y
= ; exists iff x i = yi for some i ∈ [m] (see

Fig. 1).

(d) R1/3(MATCH′
n
) ≤ C(MATCHn). This is the only non-trivial reduction. Let P

be a deterministic protocol for MATCHn. We first turn it into a randomized
protocol eP for MATCHn as follows. Alice has an m-matching p and Bob has an
(m−1)-element set q. The players flip coins publicly and choose a permutation
π : [n] → [n] on the set of vertices of the graph. Then they execute the
protocol P on π(p) and π(q). If e1, . . . , ek ∈ p were the edges in p which do not
intersect q, then eP returns each edge from {e1, . . . , ek} with equal probability.
Note that k ≥ 1 since |q| ≤ m− 1.

We now construct a randomized protocol P ′ for MATCH′
n

as follows.
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e’q = q’ − {v}

vv
e e

FIGURE 2. In the situation left the gamble is correct: e ∩ q′ 6= ; for all
e ∈ p. In the situation right the gamble is wrong since e′∩q′ = ;. But
the error probability is then ≤ 1/2 since, in this case, the protocol eP
with not choose e with probability at least 1/|{e, e′}|= 1/2.

a Given an m-matching p (for Alice) and an m-element set q′ of vertices (for
Bob), Bob chooses a random vertex v ∈ q′ and defines q := q′ −{v}.

b Alice and Bob run eP on p and q, and eventually agree on an edge e such
that e ∈ p and e∩q = ;. Bob checks whether v ∈ e and reports this to Alice.

c If v 6∈ e then e ∩ q′ = ;, and the players know that the answer is “1”.
Otherwise they gamble on “0”.

It remains therefore to show that the gamble can only be wrong with proba-
bility at most 1/2. Let C be the set of all edges in p that contain no endpoint
in q′. The gamble is wrong if C 6= ; and v ∈ e (see Fig. 2). But the protocol eP
outputs each edge in C ∪ {e} with the same probability p = 1/|C ∪ {e}| ≤ 1/2.
In particular, it will pick the edge e (and not some edge in C) with such a
probability. So the probability of error is at most 1/2. To decrease the error
probability, just repeat the protocol P ′ twice.

This completes the reductions, and thus, the proof of Theorem 8.12. □

Theorem 8.12, together with the monotone version of Spira’s theorem (Theo-
rem 2.3) gives an exponential lower bound on the monotone size of DeMorgan for-
mulas. Recall that fN = MATCHn is a monotone boolean function in N =

�n
2

�
= Θ(n2)

variables.

COROLLARY 8.13.

L+( fN ) = 2Ω(
p

N) .

Borodin et al. (1982) observed that a randomized algorithm for matching, pro-
posed by Lovász (1979b), can be implemented by shallow circuits, that is, Depth( fN ) =

O(log2 N). Together with the lower bound Depth+( fN ) = Ω(
p

N) of Theorem 8.12, this
gives an exponential gap between the depth of monotone and non-monotone circuits,
just like Theorem 4.16 gave such a gap for the size of circuits.

Yet another consequence of Theorem 8.12 is for switching networks. Such a net-
work is monotone if it has no negated variables as contacts.

COROLLARY 8.14. Every monotone switching network for fN must have 2Ω(N
1/4) con-

tacts.

PROOF. Every switching network with s contacts can be simulated by a DeMorgan
circuit of depth O((log s)2). We leave this as an exercise. (Hint: binary search.) □



114 8. COMMUNICATION AND CIRCUIT DEPTH

8.5. A log2 n lower bound for connectivity

We already know (Proposition 1.1) that switching networks are not weaker than
DeMorgan formulas. In this section we will show that monotone switching networks
can be even exponentially more powerful than monotone formulas.

We consider directed graphs on n vertices with two additional vertices s (the
source) and t (the target). The st-connectivity problem STCONn is, given a directed
graph on these n vertices with a source node s and a target node t, to determine
whether it contains a path from s to t. Hence, this is a boolean function in Θ(n2) vari-
ables, and is monotone: if we add edges we cannot disconnect an existing path from s

to t.

EXERCISE 8.15. Show that STCONn can be computed by a monotone switching net-
work of size O(n2). Hint: Take a contact for each potential edge.

We will use the communication complexity approach to show that any monotone
circuit solving this problem has depth Ω((log2 n)2), and hence, any monotone DeMor-
gan formula has super-polynomial leafsize nΩ(log n).

We will do this by proving this lower bound on the communication complexity of
the corresponding game:

◦ Alice gets a graph G with s-t path and Bob gets a graph H with no s-t paths.
Find an edge which is present in G but is absent in H.

Note that this is a monotone game: an edge which is present in H but absent
in G is not a correct answer. Since we are interested in proving lower bounds on the
communication complexity of this game, we can restrict our attention to special inputs.

◦ Game STCONn: Alice gets a directed path p form s to t and Bob gets a coloring
c of vertices by the colors 0 and 1 such that c(s) = 0 and c(t) = 1. Find an
edge (u, v) ∈ p such that c(u) = 0 and c(v) = 1.

Note that the path p must have at least one such edge (u, v) because the path p starts
in the node s colored 0 and ends in the node t colored 1.

Let C(STCONn) denote the communication complexity of this last game. Note that
every protocol for the original game can be used to solve this (restricted) game: given
a coloring c, Bob converts it into a graph H in which (u, v) is an edge iff c(u) = c(v).

EXERCISE 8.16. Prove that C(STCONm) = O((log2 n)2). Hint: Use binary search; in fact one

of the players may do most of the talking, with the other player communicating only O(log2 n) bits overall.

So as it is, the second game is no more “symmetric” since the players receive
objects of different types: Alice receives paths and Bob colorings. Still, it is possible to
reduce this game to a symmetric one.

Let n = km, and assume that the n vertices are partitioned into k levels (layers)
L1, . . . , Lk with m vertices in each layer. We also have the 0-th layer L0 = {s} containing
only the source vertex s, and the (k+ 1)-th layer Lk+1 = {t} containing only the target
vertex t. Each s-t path then corresponds to a string in the grid [m]k consisting of all
strings a = (a1, . . . , ak) with ai ∈ [m] = {1, . . . , m}.

Given two paths (strings) a and b in [m]k, say that i ∈ [k] is a fork position of
a, b if either i = 1 and a1 6= b1, or i > 0 and ai−1 = bi−1 but ai 6= bi . Note that any
two distinct strings must have at least one fork position: either they differ in the first
coordinate, or there must be a coordinate where they differ “for the first time”, that is,
the proceeding coordinate is the same in both strings.

We will be interested in the following symmetric games on subsets S ⊆ [m]k.
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◦ Game FORK(S): Alice gets a string a ∈ S and Bob gets a string b ∈ S. Find a
fork position i of a and b, if ak 6= bk. If ak = bk then i = k + 1 is also a legal
answer.

If, for example, a = (1,2,4,3,4) and b = (3,2,2,5,4) then i = 1, i = 3 and i = 4
are legal answers, and players can output any of them.

Let C(FORKm,k) denote the communication complexity of the fork game on the
whole set S = [m]k.

We can relate this game to the previous (s-t connectivity) game as follows. When
doing this, we restrict our attention to graphs on n= m · k vertices, where only edges,
connecting nodes from adjacent levels, are allowed.

LEMMA 8.17. C(FORKm,k) ≤ C(STCONn).

PROOF. Suppose we have a protocol Π for STCONn. We will show that this protocol
can be used for the game FORKm,k. To use the protocol Π, the players must convert
their inputs a = (a1, . . . , ak) and b = (b1, . . . , bk) (for the fork game) to inputs for the
s-t connectivity game.

Alice converts her input (a1, . . . , ak) into a path p = (u0,u1, . . . ,uk,uk+1) where
u0 = s, uk+1 = t, and ui = ai for 1 ≤ i ≤ k. Bob converts his input (b1, . . . , bk) into a
coloring c by assigning color 0 to all vertices s, b1, . . . , bk , and assigning color 1 to the
remaining vertices; hence, c(s) = 0 and c(t) = 1 (because t 6∈ {s, b1, . . . , bk}).

The players now can use the protocol Π for STCONn to find an edge (ui−1,ui) in p

such that c(ui−1) = 0 and c(ui) = 1. This means that ui−1 is in the path (s, b1, . . . , bk)

and ui is not. We claim that i is a valid answer for the fork game on the pair a, b.
If i = 1 then ui−1 = u0 = s and u1 = a1. Hence, c(s) = 0 and c(a1) = 1 6= 0= c(b1),

implying that a1 6= b1 (no vertex can receive two colors).
Let now 1< i ≤ k. Recall that c assigns color 0 to exactly one vertex in each layer

Li , namely, to the vertex bi . Hence, the fact that c(ai−1) = c(ui−1) = 0 means that
ai−1 = bi−1, and the fact that c(ai) = c(ui) = 1 6= 0= c(bi) means that ai 6= bi .

Finally, let i = k + 1. Then ui−1 = ak and ui = t. Since c(ak) = c(ui−1) = 0 and
since only the vertex bk on the kth layer can receive color 0, this implies ak = bk.
Since, in this case, i = k+ 1 is a legal answer for the form game, we are done. □

By Lemma 8.17 and Exercise 8.16 we know that the communication complexity
of the fork game on [m]k is at most about (log2(km))2. We will show that this upper
bound is almost optimal.

THEOREM 8.18.
C(FORKm,k) = Ω((log2 m) · (log2 k)) .

PROOF. Call a two-player protocol an (α, k)-protocol if it is a protocol for the game
FORK(S) on some subset S ⊆ [m]k such that |S| ≥ αmk. Denote by C(α, k) the min-
imum communication complexity of an (α, k)-protocol. That is, if C(α, k) = d then
there exists a subset S ⊆ [m]k of |S| ≥ αmk strings and a protocol Π of communication
complexity d such that Π works correctly on S. In particular, C(1, k) = C(FORKm,k).

We start with two simple claims.

CLAIM 8.19. For any k ≥ 1 and any α > 1/m, C(α, k) > 0.

PROOF. Suppose that C(α, k) = 0. Thus, there exists a subset of strings S ⊆ [m]k
such that |S| ≥ αmk > mk−1 and the players must know the unique answer i ∈
{1, . . . , k, k + 1} for all input pairs a, b ∈ S without any communication. Since |S|
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is strictly larger than mk−1, there must be two strings a, b ∈ S with ak 6= bk. Hence, on
this input pair (a, b) the answer must be some i ≤ k. But on input pair (a, a) the only
legal answer is i = k+ 1, a contradiction. □

CLAIM 8.20. For every k ≥ 1 and α, if C(α, k) > 0 then C(α, k) ≥ C(α/2, k) + 1.

PROOF. Let d = C(α, k). Thus, there exists a subset S ⊆ [m]k such that |S| ≥ αmk

and there is a protocol Π such that for all a, b ∈ S, the protocol correctly solves the
game on these inputs. Assume w.l.o.g. that Alice speaks first (the case when Bob speaks
first is similar). Hence Alice sends either 0 or 1. After this (first) bit is communicated,
the set S is splitted into two parts S0 and S1. Assume w.l.o.g. that |S0| ≥ |S1|. Let
Π0 be the rest of the protocol Π, after assuming that the first bit send by Alice was
0. That is, Π0 works exactly like Π, but without sending the first bit, and continuing
as if the value of the first bit was 0. The communication complexity of Π0 is at most
d − 1. Obviously, Π0 must work correctly on S0, because Π does this on the whole set
S = S0 ∪ S1. Hence, Π0 is an (α/2, k)-protocol. Thus, C(α/2, k) ≤ d − 1= C(α, k). □

Starting with α = 1 and applying Claim 8.20 t = (log2 m)/2 times, we obtain that
C(1, k) ≥ C(α, k) + t with α = 1/

p
m. Since α > 1/m, Claim 8.19 yields C(FORKm,k) =

C(1, k) = Ω(log2 m). This lower bound is, however, too weak. What we claim in
Theorem 8.18 is that the actual lower bound is about log k times larger.

The reason why Claims 8.19 and 8.20 alone cannot yield larger lower bounds
is that, when compared to the whole universum [m]k, the density of the sets S (on
which a protocol is still correct) drops down very fast. In such situations it is usually
helpful to take a projection S ↾I of S onto some subset I ⊆ [k] and work in smaller
universum [m]I . A hope is that then the relative density of S↾I within [m]I will be
much larger than that of S within the whole universum [m]k. This trick is usually
called the “amplification” of density.

We now turn to an amplification step: given an (α, k)-protocol (with k ≥ 2 and
α not too small), we convert it to a (

p
α/2, k/2)-protocol. Thus α may be amplified

greatly2 while k is cut in half. By amplifying α after every about log2 k steps, we may
keep α > 1/m until k reaches 1, showing the protocol must have a path of length at
least log2 m times log2 k.

LEMMA 8.21 (Increasing Density). For every k > 0 and α≥ 16/m,

C(α, k) ≥ C(
p
α/2, k/2) .

PROOF. We are given an (α, k)-protocol working correctly on some set S ⊆ [m]k of
|S| ≥ αmk strings (paths). Consider a bipartite graph G = (U , V,S) with parts U and
V where U consists of all mk/2 possible strings on the first k/2 levels, and V consists
of all mk/2 possible strings on the last k/2 levels. We connect u ∈ U and v ∈ V if their
concatenation u◦v is a string in S; in this case we say that v is an extension of u. Hence,
G is a bipartite graph with parts of size mk/2 and |S| ≥ αmk = α|U × V | edges.

We need the following combinatorial fact about dense matrices. Let A be an M×N

(0,1) matrix. We say that A is α-dense if at least an α-fraction of all its entries are 1’s.
Similarly, a row (or column) is α-dense if at least an α-fraction of all its entries are 1’s.

CLAIM 8.22. If A is 2α-dense then either: (a) there exists a row which is
p
α-dense,

or (b) at least a fraction
p
α of the rows are α-dense.

2Note that
p
α is at least twice larger than α, if α ≤ 1/4.
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FIGURE 3. Two cases for constructing a protocol for strings of length k/2.

PROOF. Suppose that the two cases do not hold. We calculate the density of the
entire matrix. Since (b) does not hold, less than

p
αM of the rows are α-dense. Since

(a) does not hold, each of these rows has less than
p
αN 1’s; hence, the fraction of 1’s

in α-dense rows is strictly less than (
p
α)(
p
α) = α. We have at most M rows which

are not α-dense, and each of them has less than αN 1’s. Hence, the fraction of 1’s in
these rows is also less than α. Thus, the total fraction of 1’s in the matrix is less than
2α, a contradiction with the 2α-density of A. □

By Claim 8.22, when applied to the adjacency matrix

A[u, v] =

¨
1 if uv ∈ S;

0 if uv 6∈ S,

of our bipartite graph G = (U , V,S), at least one of the following two must hold:
(a) There is an u0 ∈ U with

��{v ∈ V | u0 ◦ v ∈ S}
��≥
p

α

2
|V |=
p

α

2
mk/2 .

(b) There is an S′ ⊆ U such that |S′| ≥
p

α

2
mk/2 and

��{v ∈ V | u ◦ v ∈ S}
��≥ α

2
|V |= α

2
mk/2 for all u ∈ S′ .

In both cases (a) and (b), we show how to construct a (
p
α/2, k/2)-protocol (see

Fig. 3).

Case (a): In this case, we have one string u0 on the left that has many extensions

v on the right such that u0 ◦ v ∈ S. Thus we can recover a (
p
α/2, k/2)-protocol as

follows: let S′ be the set of all extensions of u0. Given two strings v, w ∈ S′, the
players can play the S′-game on these inputs by following the S-protocol for the pair of
strings u0 ◦ v and u0 ◦ w. Since these strings are identical on the first k/2 coordinates,
the answer i must correspond to a point where (the paths corresponding to) v and w

diverge.

Case (b): In this case, we take a random partition of the km/2 nodes in the right
k/2 levels. More precisely, take m/2 nodes at random from each of the right k/2 levels,
and call their union X ; call the set of remaining km/4 right nodes Y . Say that a string
u ∈ U is good if it has an extension vX (u) lying entirely in X and another extension
vY (u) lying entirely in Y .

CLAIM 8.23. The expected number of good strings in S′ is at least 0.9|S′|.
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PROOF. We can construct a subset of X as follows. Take m/2 uniformly distributed
paths p1, . . . , pm/2 of the right k/2 layers, color their vertices red and let X be the union
of these vertices. The paths are not necessarily vertex disjoint and some layers may
have fewer than m/2 vertices. To correct the situation, we randomly color additional
vertices red in each layer to ensure that all layers have exactly m/2 red vertices. Finally,
we color all remaining vertices blue.

Take now a path u ∈ S′. By (b) we know that each red path pi is an extension of
u with probability at least α/2. That is, pi is not and extension of u with probability at
most 1−α/2. Since α ≥ 12/m, the union bound implies that the probability that none
of m/2 red paths is an extension of u does not exceed

(1−α/2)m/2 ≤ (1− 6/m)m/2 ≤ e−3 < 0.05 .

Since the red and blue vertices are identically distributed, the same also holds for blue
paths. Therefore, each u ∈ S′ is good with probability at least 1 − 2 · 0,05 = 0.9,
implying that the expected fraction of good strings in S′ is at least 0.9. □

This yields a (
p
α/2, k/2)-protocol as follows. Let S′′ ⊆ S′ be the set of all good

strings in S′. By Claim 8.23 and since 0.9/
p

2 > 0.5, the density of the set S′′ within

[m]k/2 is at least 0.9
p
α/2 ≥ pα/2, as desired. Given strings a, b ∈ S′′, the players

follow the S-protocol on the inputs a ◦ vX (a) and b ◦ vY (b). Since the S-protocol is
correct on these strings, and since they share no vertices in the right k/2 levels, the
protocol must return an answer i in the first k/2 levels, hence the answer is in fact
valid for a and b.

This completes the proof of Lemma 8.21. □

Now we can finish the proof of Theorem 8.18 as follows.
By r = blog2(

p
m/8)c applications of Claim 8.20 and one application of Lemma 8.21,

we obtain that

C(2/
p

m, k)≥ C(16/m, k) + r ≥ C(2/
p

m, k/2) + r .

Applying the last inequality s = blog2 kc times, we obtain

C(2/
p

m, k) ≥ C(2/
p

m, 1) + r · s ≥ r · s .

Hence,

C(FORKm,k) = C(1, k) ≥ C(2/
p

m, k)≥ r · s = Ω((log2 m) · (log2 k)) . □

Eercises

EX. 8.1. The game FORMULA is a game of two players Up (upper) and Lo (lower),
Up will try to prove an upper bound for the formula size of a boolean function; Lo will
try to interfere him. A position in this game is a triplet (U , V, t) where U , V ⊆ {0.1}n,
U ∩ V = ; and t ≥ 1 is an integer. Up begins the game. He obtains a position (U , V, t),
chooses one of the two sets U , V (say, U), somehow represents U and t in the form

U = U ′ ∪ U ′′ t = t ′+ t ′′ (t ′, t ′′ ≥ 1)

and hands to Lo the two positions (U ′, V, t ′) and (U ′′, V, t ′′). If Up chooses the set V,
the description of his actions is given in the analogous way.

Lo chooses one of the two positions offered to him and returns it to Up (the re-
maining position is thrown out). Then Up moves as above (in the new position) and
so on. The game is over when Up receives a position of the form (U∗, V ∗, 1). Up wins
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if U∗ × V ∗ forms a monochromatic rectangle, that is, if there is an i ∈ [n] such that
x i 6= yi for all x ∈ U∗ and y ∈ V ∗.

Prove that Up has a winning strategy in a position (U , V, t) iff there exists a boolean
function f : {0,1}n → {0,1} such that: f (U) = 0, f (V ) = 1 and f has a DeMorgen
formula of leafsize ≤ t.

Hint: Argue by induction on t as in the proof of Theorem 8.3.

EX. 8.2. Say that a string x ∈ [m]k is a limit for a subset S ⊆ [m]k of strings if
x ∈ S and for every position i = 1, . . . , k there is a string y ∈ S such that x 6= y and
x i = yi .

Prove: If S ⊆ [m]k and |S|> km then S has a limit for itself.
Hint: What does it mean that S does not have a limit for itself?

EX. 8.3. One somewhat artificially looking thing in the definition of the fork game
is that the players need not necessarily output a fork position, even when a 6= b (note
that then at least one fork position must exist). Instead, they are also allowed to
answer “k + 1”, if ak = bk. It makes therefore sense to look at what happens if we
consider the following modified fork game:

a. Alice gets a string a ∈ S and Bob gets a string b ∈ S.
b. Find a fork position i of a and b, if there is one.

That is, the only difference from the original fork game is that, if an input pair a 6= b

coincides in the last position (i.e., ak = bk) i = k + 1 was allowed as a legal answer
whereas in the modified game they must output some other position i ≤ k (such a fork
position exists since a 6= b).

Prove: the modified fork game on [m]k has communication complexity Ω(k·log m).
Hint: Assume that d bits of communication are enough, where 2d < mk/(km). Use the previus exercise

to get a contradiction.

EX. 8.4. Let G be a bipartite n × n graph, and consider the following “edge-
nonedge” game on it:

a. Alice gets an edge x of G.
b. Bob gets a non-edge y of G (a pair y of two nonadjacent vertices).
c. Find a vertex v ∈ x − y .

Let (as before) c2(G) be the communication complexity of this game. Let also A be the
adjacency matrix of G. Prove that

c2(G)≤ log2 Cov(A) + log2 n+ 1 .

Hint: Alice can tell in which of the all-1 submatrices of A her edge lies.

EX. 8.5. Given a graph G = (V, E), consider now a decision version of the “edge-
nonedge” game, where the playerst must give answer “1” iff x ∩ y = ;. Let nc2(G) be
the nondeterministic communication complexity of this game.

Let q(G) be the smallest number t with the following property: There is a sequence
S1, . . . ,St of subsets of V such that, for every edge x and every non-edge y of G, there
is an i such that x ⊆ Si and y ∩ Si = ;.

Prove that nc2(G) = log2 q(G).
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CHAPTER 9

Many Players

A general scenario of a k-party communication is as follows. We have some func-
tion f (x) whose input x is splitted into k equal sized parts x = (x1, . . . , xk). There are
k players who wish to collaboratively evaluate a given function f on every input x .
Each player has unlimited computational power and full knowledge of the function.
As in the case of two players, the players are not adversaries—they help and trust each
other. Depending on what parts of the input x each player can see, there are two main
models of communication:

a. In the “number in the hand” model, the ith player can only see x i .
b. In the “number on the forehead” model, the ith player can see all the x j ex-

cept x i .

Note that for k = 2 (two players) there is no difference between these two models. The
difference comes when we have k ≥ 3 players. In this case the second model seems
to be (and actually is) more difficult to analyze because players share some common
information. For example, the first two players both can see all inputs x3, . . . , xk.

Players can communicate by writing bits 0 and 1 on a blackboard. The blackboard
is seen by all players. The game starts with the empty blackboard. For each string
on the blackboard, the protocol either gives the value of the output (in that case the
protocol is over), or specifies which player writes the next bit and what that bit should
be as a function of the inputs this player knows (and the string on the board). During
the computation on one input the blackboard is never erased, players simply append
their messages. The objective is to compute the function with as small amount of
communication as possible.

The communication complexity of a k-party game for f is the minimal number c

such that on every input x ∈ X the players can decide whether f (x) = 1 or not, by
writing at most c bits on the blackboard. Put otherwise, the communication complexity
is the minimal number of bits written on the blackboard on the worst-case input.

Note a big difference between the two models of communication. If the number
k of players increases, the communication complexity in the “number in hand” model
can only increase (the pieces of input each player can see is smaller and smaller),
whereas it can only decrease in the “number on the forehead” (the pieces of seen input
are larger and larger). This is why the first model deserved much less attention. Still,
the model becomes interesting if instead of computing a given function f exactly, the
players are only required to approximate its values.

9.1. The “number in the hand” model

Consider the following approximate disjointness problem Disjn. Each X i consists of
all subsets ai of [n] = {1, . . . , n}. Given a sequence a = (a1, . . . , ak) the k players are
required to distinguish between the following two extreme cases:

121
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- Answer “input is positive” if
⋂k

i=1 ai 6= ;.
- Answer “input is negative” if ai ∩ a j = ; for all i 6= j.
- If neither of these two events happens, then any answer is legal.

LEMMA 9.1. In the “bit in hand” model, the approximate disjointness problem Disjn
requires Ω(n/k) bits of communication.

PROOF. First note that any c-bit communication protocol for the approximate dis-
jointness problem partitions the space of inputs into at most 2c “boxes”, where a box
is a Cartesian product S1 × S2 × · · · × Sk with Si ⊆ 2[n] for each i. Each box must be
labeled with an answer, and thus the boxes must be “monochromatic” in the following
sense: no box can contain both a positive instance and a negative instance. (There are
no restrictions on instances that are neither negative nor positive.)

We will show that there are exactly (k + 1)n positive instances, but any box that
does not contain a negative instance can contain at most kn positive instances. It then
follows that there must be at least

(k+ 1)n/kn = (1+ 1/k)n ≈ en/k

boxes to cover all positive instances and thus the number of bits communicated must
be at least the logarithm Ω(n/k) of this number, giving the desired lower bound.

To count the number of positive instances, note that any partition of the n items
in [n] between k players, leaving some items “unlocated”, corresponds to a mapping
g : [n]→ [k+ 1], implying that the number of positive instances is exactly (k+ 1)n.

Now consider a box S = S1 × S2 × · · · × Sk that does not contain any negative
instance. Note that for each item x ∈ [n] there must be a player i = ix such that x 6∈ a

for all a ∈ Si . This holds because otherwise there would be, in each Si , a set ai ∈ Si

containing x , and we would have that
⋂k

i=1 ai ⊇ {x} 6= ;—a negative instance in the
box S.

We can now obtain an upper bound on the number of positive instances in S by
noting that any such instance corresponds to a partition of the n items among k players
and “unlocated”, but now with an additional restriction that each item x ∈ [n] can not
be in the block given to the ix -th player. Thus each item has only k possible locations
for it and the number of such partitions is at most nk. □

9.1.1. Approximate set packing problem. The set packing problem is, given a
collection A of subsets of [n] = {1, . . . , n}, to find the largest packing—that is, largest
collection of pairwise disjoint sets. The packing number of A, is the largest number of
sets of A in a packing of [n].

The set packing communication problem is as follows: we have k players each
holding a collection Ai of subsets of [n], and the players are looking for the largest
packing in the union A = A1 ∪ · · · ∪ Ak of their collections. The goal of players is to
approximate the packing number of A to within a given multiplicative factor λ.

PROPOSITION 9.2. There is a k-player protocol approximating the packing number

within a factor of λ=min{k,
p

n} and using O(kn2) bits of communication.

PROOF. Getting an approximation factor k is easy by just picking the single player
with the largest packing in her collection. If k >

p
n, we can do better by using the

following simple greedy protocol: at each stage each player announces the smallest set
ai ∈ Ai that is disjoint from all previously chosen sets; this requires n bits of commu-
nication from each of k players. The smallest such set is chosen to be in the packing.
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This is repeated until no more disjoint sets exist; hence, the protocol ends after at most
n stages. It remains to verify that this packing is by at most a factor of

p
n smaller than

the number of sets in an optimal packing.
Let a1, . . . , at be the sets in A chosen by out protocol. The sets

Bi = {a ∈ A | a ∩ ai 6= ;}
form a partition of A. Moreover, since all sets in Bi contain an element of ai , the
maximum number of disjoint sets in Bi is at most the cardinality of ai . On the other
hand, every set in Bi is of size at least |ai |, so the maximum number of disjoint sets in
Bi is also at most bn/|ai |c. Thus, the optimal solution can contain at most

min{|ai |, bn/|ai |c} ≤max
x∈N

min{x , bn/xc} = b
p

nc

sets from each Bi . □

On the other hand we have the following lower bound.

THEOREM 9.3. Any k-player protocol for approximating the packing number to within

a factor less than k requires 2Ω(n/k
2) bits of communication.

In particular, as long as k ≤ n1/2−ε for ε > 0, the communication complexity is
exponential in n.

PROOF. We have k players, each holding a collection Ai of subsets of [n]. It is
enough to prove a lower bound on the communication complexity needed in order to
distinguish between the case where the packing number is 1 and the case where it is
k. That is, to distinguish the case where there exist k disjoint sets ai ∈ Ai , and the case
where any two sets ai ∈ Ai and a j ∈ A j intersect (packing number is 1).

Suppose now that ` bits of communication are enough to distinguish these two
cases. We will show that then the approximate disjointness problem DisjN for N =

eΩ(n/k
2) can be also solved using at most ` bits of communication. Together with

Lemma 9.1 this will immediately yield the desired lower bound ` = Ω(N/k)
The reduction uses a set of partitions A = {as | s = 1, . . . , N}, where each as is

a partition as = (as
1, . . . , as

k
) of [n] into k disjoint blocks. Say that such a set A of

partitions is cross-intersecting if

a
si

i
∩ a

s j

j
6= ; for all 1≤ i 6= j ≤ k and 1≤ si 6= s j ≤ N ,

that is, if different blocks from different partitions have non-empty intersection.

CLAIM 9.4. A cross-intersecting set of N = en/(2k2)/k partitions exists.

PROOF. Let f1, . . . , fN be independent copies of a random function f : [n] → [k]
where Pr[ f (x) = i] = 1/k for every x ∈ [n] and i ∈ [k]. Each function fs gives us a
partition as = (as

1, . . . , as
k
) of [n] with as

i
= {x | fs(x) = i}. Now fix 1 ≤ i 6= j ≤ k and

two indices of partitions 1 ≤ si 6= s j ≤ N . For every fixed x ∈ [n], the probability that

fsi
(x) 6= i or fs j

(x) 6= j is 1− 1/k2. Since a
si

i
∩ a

s j

j
= ; holds iff this happens for all n

elements x , we obtain that

Pr[asi

i
∩ a

s j

j
= ;] = (1− 1/k2)n < e−n/k2

.

Since there are at most k2N2 such choices of indices, we get that the desired set of
partitions exist, as long as k2N2 ≤ en/k2

. □
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FIGURE 1. k = 9 players, the ith one with x i with on his/her forehead.

We now describe the reduction of the approximate disjointness problem DisjN to
the problem of distinguishing whether the packing number is 1 of k. Player i, who gets
as input a set bi ⊆ [N] in the problem DisjN , constructs the collection Ai = {as

i
| s ∈ bi}

of subsets of [n].
Now, if there exists s ∈

⋂k
i=1 bi , then a k-packing exists: as

1 ∈ A1, . . . as
k
∈ Ak. On

the other hand, if bi ∩ b j = ; for all i 6= j, then for any two sets a
si

i
∈ Ai and a

s j

j
∈ A j ,

we have that si 6= s j , and thus a
si

i
∩ a

s j

j
6= ;, meaning that the packing number is 1. □

9.2. The “number on the forehead” model

This model is related to many other important problems in circuit complexity, and
is much more difficult to deal with than the previous one. Recall that in this model
the information seen by players on a given input x = (x1, . . . , xk) can overlap: the ith
player has access to all the x j ’s except x i . Recall also that each x i is an element from
some (fixed in advance) n-element set X i . Thus, we have two parameters: the size n

of a domain for each players, and the number k of players.
We can imagine the situation as k poker players sitting around the table, and each

one is holding a number to his/her forehead for the others to see. Thus, all players
know the function f but their access to the input vector is restricted: the first player
sees the string (∗, x2, . . . , xk), the second sees (x1,∗, x3, . . . , xk), . . ., the kth player sees
(x1, . . . , xk−1,∗).

Let Ck( f ) denote the minimum communication complexity of f in this “bit on
forehead” model.

It is clear that Ck( f ) ≤ log2 n+ 1 for any f : the first player writes the binary code
of x2, and the second player announces the result. But what about the lower bounds?
The twist is that (for k ≥ 3) the players share some inputs, and (at least potentially)
can use this overlap to encode the information in some wicked and non-trivial way
(see Exercises 2 and 3).

The lower bounds problem for Ck( f ) can be re-stated as a Ramsey type problem
about the minimal number of colors in a coloring of the hypercube which leaves no
“forbidden sphere” monochromatic.

A Hamming sphere, or just a sphere in X around a vector x = (x1, . . . , xk) is a set S

of k vectors of the form:

x1 = (x ′1, x2, . . . , xk), x2 = (x1, x ′2, . . . , xk), . . . , xk = (x1, x2, . . . , x ′
k
) ,

where for each i, x ′
i
6= x i and x i , x ′

i
∈ X i . The vector x is a center of this sphere. Hence,

there are exactly (n− 1)k spheres around each vector x .
Such a sphere is forbidden (for f ) if it lies entirely in one of the parts f −1(0) or

f −1(1), whereas its center belongs to the other part.
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An r-coloring c : X → {1, . . . , r} of X is legal (with respect to f ) if it:

a. leaves no forbidden sphere monochromatic;
b. uses different colors for vectors in f −1(0) and in f −1(1).

Let χk( f ) denote the minimal number of colors in a legal coloring of X .
This measure is motivated by the fooling-set bound in the case of k = 2 players

(see (7.3) in Section 7.1.3). In this case each function f : X → {0,1} with X = X1×X2

can be looked at as an |X1| × |X2| matrix. A sphere x1 = (x ′1, x2), x2 = (x1, x ′2) around
an entry x = (x1, x2) (as well as around the entry x ′ = (x ′1, x ′2)) of this matrix has then
the form

(x ′1, x2) · · · (x ′1, x ′2)
...

...
(x1, x2) · · · (x1, x ′2)

Such a sphere is forbidden if one of the following two configurations appear:‘

1 ∗
...
0 · · · 1

or

0 ∗
...
1 · · · 0

Being forbidden in this case means that the sphere cannot entirely lie in one monochro-
matic rectangle.

Our starting point is the following combinatorial lower bound of the k-party com-
munication complexity.

PROPOSITION 9.5. For every f : X → {0,1}, Ck( f ) ≥ log2χk( f ).

PROOF. Take an optimal protocol of the communication game for f . Color each
vector x ∈ X by the string, which is written on the blackboard at the end of commu-
nication between the players on the input x . We have 2Ck( f ) colors and it remains to
verify that the coloring is legal for f .

To show this, assume that some forbidden sphere S = {x1, . . . , xk} around some
vector x is monochromatic. Assume w.l.o.g. that f (x1) = . . . = f (xk) = 1 and f (x) =

0. An important fact is that given the first l bits communicated by the players, the
(l + 1)-th bit of communication (transmitted, say, by the ith player) must be defined
by a function which does not depend on the ith coordinate of the input: player Pi

cannot see it. Therefore, for every l, there is an i (1 ≤ i ≤ k) such that the (l + 1)-th
communicated bit is the same for both inputs x and x i . Since on all inputs x1, . . . , xk

the players behave in the same way (i.e., write the same string on the blackboard), it
follows that they will also behave in the same way on the input x . But this means that
the players will accept x , a contradiction. □

9.3. Discrepancy bound

Let X1, . . . , Xk be finite sets, and X = X1×· · ·×Xk . A subset Ti of X is called a cylin-

der in the ith dimension if membership in Ti does not depend on the ith coordinate.
That is,

(x1, . . . , x i , . . . , xk) ∈ Ti implies that (x1, . . . , x ′
i
, . . . , xk) ∈ Ti for all x ′

i
∈ X i .

A subset T ⊆ X is a cylinder intersection if it is an intersection T = T1 ∩ · · · ∩ Tk,
where Ti is a cylinder in the ith dimension. The (normalized) discrepancy of a function
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f : X → {−1,1} on a set T is defined by

DiscT ( f ) =
1

|X |
∑

x∈T

f (x).

The discrepancy Disc( f ) of f is the maximum, over all cylinder intersections T , of the
absolute value
��DiscT ( f )
��.

The case k = 2 is more intuitive. In this case, X = X1 × X2 is just an n× n grid,
and f : X → {−1,1} is an n× n ±1 matrix. Cylinder intersections T in this case are
precisely the submatrices of X . Hence, in this case, DiscT ( f ) is just the sum of all
entries in the submatrix T divided by the size |X | of the entire matrix.

The importance of the discrepancy stems from the fact that functions with small
discrepancy have large multi-party communication complexity. For a function F : X →
{0,1}, its ±1 version f : X → {−1,1} is defined by f (x) = 1− 2 · F(x).

PROPOSITION 9.6. For every F : X → {0,1}, Ck(F)≥− log2 Disc( f ).

PROOF. It can be shown (see Exercise 9.8) that a set T is a cylinder intersection
if and only if it does not separate a sphere from its center, i.e., if for every sphere S

around a vector x , S ⊆ T implies x ∈ T . Thus, a coloring c : X → {1, . . . , r} is legal for
a given function F : X → {0,1} if and only if each color class T = c−1(i) is a cylinder
intersection and the function F is constant on T . Since this last event is equivalent
to
��DiscT ( f )
�� = |T |/|X |, no color class can have more than |X | · Disc( f ) vectors. This

implies that we need at least 1/Disc( f ) colors, and Proposition 9.5 yields the desired
lower bound on Ck( f ). □

However, this fact alone does not give immediate lower bounds for the multi-party
communication complexity, because Disc( f ) is very hard to estimate. Fortunately, the
discrepancy can be bounded from above using the following more tractable measure.

A k-dimensional cube is defined to be a multi-set D = {a1, b1}×· · ·×{ak, bk}, where
ai , bi ∈ X i (not necessarily distinct) for all i. Being a multi-set means that one element
can occur several times. Thus, for example, the cube D = {a1, a1} × · · · × {ak, ak} has
2k elements.

Given a function f : X → {−1,1} and a cube D ⊆ X , define the sign of f on D to
be the value

f (D) =
∏

x∈D

f (x) .

Hence, f (D) = 1 if and only if f (x) = 1 for an even number of vectors x ∈ D. We
choose a cube D at random according to the uniform distribution. This can be done by
choosing ai , bi ∈ X i for each i according to the uniform distribution. Let

E ( f ) = E
�

f (D)
�
= E

�∏

x∈D

f (x)

�
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be the expected value of the sign of a random cube D. To stress the fact that the
expectation is taken over a particular random object (this time, over D) we will also
write ED

�
f (D)
�

instead of E
�

f (D)
�

.

THEOREM 9.7. For every f : X → {−1,1},

Disc( f )≤ E ( f )1/2k

,

and hence,

Ck( f )≥
1

2k
log2

1

E ( f ) .

The theorem is very useful because E ( f ) is a much simpler object than Disc( f ). For
many functions f , it is relatively easy to compute E ( f ) exactly; we will demonstrate
this in the next sections.

PROOF. We will only prove the theorem for k = 2; the general case is similar.
So let X = X1 × X2 and f : X → {−1,1} be a given function. Our goal is to show
that Disc( f ) ≤ E ( f )1/4. To do this, pick at random (uniformly and independently) an
element x ∈ X . The proof consists of showing two claims.

CLAIM 9.8. For all functions h : X → {−1,1}, E (h)≥ (Ex [h(x)])
4.

CLAIM 9.9. There exists h such that Ex [h(x )]≥ Disc( f ) and E (h) = E ( f ).

Together, these two claims imply the theorem (for k = 2). In the proof of these
two claims we will use two known facts about the mean value of random variables:

E
�
ξ2
�
≥ E [ξ]2 for any random variable ξ; (9.1)

and
E
�
ξ · ξ′
�
= E [ξ] · E
�
ξ′
�

if ξ and ξ′ are independent. (9.2)

The first one is a consequence of the Cauchy–Schwarz inequality, and the second is a
basic property of expectation.

PROOF OF CLAIM 9.8. Take a random 2-dimensional cube D = {a, a′} × {b, b′}.
Then

E (h) = ED [h(D)] = ED

�∏

x∈D

h(x)

�

= Ea,a′Eb,b′
�

h(a, b) · h(a, b′) · h(a′, b) · h(a′, b′)
�

= Ea,a′
��

Eb

�
h(a, b) · h(a′, b)

��2� by (9.2)

≥
�

Ea,a′Eb

�
h(a, b) · h(a′, b)

��2
by (9.1)

=
�

EaEb

�
h(a, b)2
��2

Pr[a′] = Pr[a]

=
�

Ea

�
Eb [h(a, b)]
�2�2 by (9.2)

≥
�

Ea,b [h(a, b)]
�4

by (9.1). □

PROOF OF CLAIM 9.9. Let T = A× B be a cylinder intersection (a submatrix of X ,
since k = 2) for which Disc( f ) is attained. We prove the existence of h by the proba-
bilistic method. The idea is to define a random function g : X1 × X2 → {−1,1} such
that the expected value E

�
g (x)
�
= Eg

�
g (x)
�

is the characteristic function of T . For



128 9. MANY PLAYERS

this, define g as the product g (x) = g 1(x) · g 2(x) of two random functions, whose
values are defined on the points x = (a, b) ∈ X1 × X2 by:

g 1(a, b) =

¨
1 if a ∈ A;

set randomly to ±1 otherwise

and

g 2(a, b) =

¨
1 if b ∈ B;

set randomly to ±1 otherwise.

These function have the property that g 1 depends only on the rows and g 2 only on the
columns of the grid X1 × X2. That is, g 1(a, b) = g 1(a, b′) and g 2(a, b) = g 2(a

′, b) for
all a, a′ ∈ X1 and b, b′ ∈ X2. Hence, for x ∈ T , g (x) = 1 with probability 1, while for
x 6∈ T , g (x) = 1 with probability 1/2 and g (x) = −1 with probability 1/2; this is so
because the functions g 1, g 2 are independent of each other, and x 6∈ T iff x 6∈ A×X2 or
x 6∈ X1 × B. Thus, the expectation E

�
g (x)
�

takes the value 1 on all x ∈ T , and takes
the value 1

2
+ (− 1

2
) = 0 on all x 6∈ T , i.e., E

�
g (x)
�

is the characteristic function of the
set T :

E
�

g (x)
�
=

¨
1 if x ∈ T ;

0 if x 6∈ T .

Let now x be a random vector uniformly distributed in X = X1 × X2. Then

DiscT ( f ) = Ex

�
f (x) · Eg

�
g (x)
��
= Ex Eg

�
f (x ) · g (x )
�
= Eg Ex

�
f (x) · g (x)
�

.

So there exists some choice of g = g1 · g2 such that

Ex

�
f (x) · g(x)
�
≥ DiscT ( f ) = Disc( f )

and we can take h(x) := f (x)·g(x). Then Ex [h(x)]≥ Disc( f ). Moreover, E (h) = E ( f )
because g1 is constant on the rows and g2 is constant on the columns so the product
g(D) =
∏

x∈D g(x) cancels to 1. □

This completes the proof of Theorem 9.7 in case k = 2. To extend it for arbitrary
k, just repeat the argument k times. □

9.4. Generalized inner product

Say that a (0,1) matrix A is odd if the number of its all-1 rows is odd. Note that,
if the matrix has only two columns, then it is odd iff the scalar (or inner) product of
these columns over GF(2) is 1. By this reason, a boolean function, detecting whether
a given matrix is odd, is called “generalized inner product” function. We will assume
that input matrices have n rows and k columns.

That is, the generalized inner product function GIP(x) is a boolean function in kn

variables, arranged in an n× k matrix x = (x i j), and is defined by:

GIP(x) =

n⊕

i=1

k∧

j=1

x i j .

We consider k-party communication gates for GIP(x), where the the jth player can see
all but the jth column of the input matrix x .

THEOREM 9.10. The k-party communication complexity of GIP is Ω
�

n4−k
�

.

It can be shown (see Exercise 9.6) that this lower bound is almost optimal: Ck(GIP) =

O(kn/2k).
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PROOF. Since we want our function to have range {−1,1}, we will consider the
function

f (x) = (−1)GIP(x) =

n∏

i=1

(−1)x i1 x i2···x ik . (9.3)

By Theorem 9.7, it is enough to prove that E ( f ) ≤ 2−Ω(n2−k). In fact we will prove that

E ( f ) =
�

1−
1

2k

�n
. (9.4)

In our case, the function f is a mapping f : X1 × X2 × · · · Xk → {−1,1}, where the
elements of each set X j are column vectors of length n. Hence, a cube D in our case is
specified by two n× k (0,1) matrices A= (ai j) and B = (bi j). The cube D consists of
all 2k n× k matrices, the jth column in each of which is either the jth column of A or
the jth column of B. By (9.3), we have that

f (D) =
∏

x∈D

f (x) =
∏

x∈D

n∏

i=1

(−1)x i1 x i2···x ik with x i j ∈ {ai j , bi j}

=

n∏

i=1

∏

x∈D

(−1)x i1 x i2···x ik

=

n∏

i=1

(−1)(ai1+bi1)(ai2+bi2)···(aik+bik) .

Note that the exponent (ai1+ bi1)(ai2+ bi2) · · · (aik+ bik) is even if ai j = bi j for at least
one 1 ≤ j ≤ k, and is equal to 1 in a unique case when ai j 6= bi j for all j = 1, . . . , k,
that is, when the ith row of B is complementary to the ith row of A. Thus,

f (D) = −1 iff the number of complementary rows in A and B is odd.

Now, E ( f ) is the average of the above quantity over all choices of matrices A and B.
We fix the matrix A and show that the expectation over all matrices B is precisely the
right-hand side of (9.4). Let a1, . . . , an be the rows of A and b1, . . . , bn be the rows of
B. Then f (D) =

∏n

i=1 g(bi), where

g(bi) := (−1)(ai1+bi1)(ai2+bi2)···(aik+bik) =

¨
+1 if bi 6= ai ⊕ 1,

−1 if bi = ai ⊕ 1.

Thus, for every fixed matrix A, we obtain that

EB

� n∏

i=1

g(bi)

�
=

n∏

i=1

Ebi
[g(bi)] by (9.2)

=

n∏

i=1

1

2k

∑

bi

g(bi)

=

n∏

i=1

1

2k

�
2k − 1
�

=

�
1−

1

2k

�n
. □
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9.5. Matrix multiplication

Let X = X1 × · · · Xk, where each X i is the set of all m×m matrices over the field
GF(2); hence, |X i |= n= 2m2

. For x1 ∈ X1, . . . , xk ∈ Xk, denote by x1 · · · xk the product
of x1, . . . , xk as matrices over GF(2). Let F(x1, . . . , xk) be a boolean function whose
value is the element in the first row and the first column of the product x1 · · · xk.

THEOREM 9.11. Ck(F) = Ω
�

m/2k
�

.

The theorem is a direct consequence of Theorem 9.7 and the following lemma.
Define the function f : X → {−1,1} by

f (x1, . . . , xk) = (−1)F(x1,...,xk) = 1− 2F(x1, . . . , xk) .

LEMMA 9.12. E ( f )≤ (k− 1)2−m.

PROOF. For every cube D = {a1, b1}× · · · × {ak, bk},

f (D) =
∏

x∈D

f (x) =
∏

x∈D

(−1)F(x) = (−1)
⊕

x∈D F(x) .

Since F is linear in each variable,

f (D) = (−1)F(a1⊕b1 ,...,ak⊕bk) = 1− 2F(a1 ⊕ b1, . . . , ak ⊕ bk),

where ai ⊕ bi denotes the sum of matrices ai and bi over GF(2). If we choose D at
random according to the uniform distribution, then (a1 ⊕ b1, . . . , ak ⊕ bk) is a random
vector x = (x1, . . . , xk) uniformly distributed over X . Therefore,

E ( f ) = ED

�
f (D)
�
= E
�

1− 2F(a1 ⊕ b1, . . . , ak ⊕ bk)
�

= Ex [1− 2F(x )] = Ex

�
f (x )
�

.

To estimate the expectation Ex

�
f (x )
�

, where x = (x1, . . . , xk) is uniformly distributed
over X sequence of m× m matrices, let Ed denote the event that the first row of the
matrix x1 · · · xd contains only 0’s. Define pd = Pr[Ed]. Since p1 is determined by x1

and since x1 is uniformly distributed, we have

p1 = Pr[E1] = 2−m .

Clearly we also have Pr[Ed+1|Ed] = 1. On the other hand, since xd+1 is uniformly
distributed, Pr[Ed+1|¬Ed] = 2−m. Therefore, for all 1≤ d < k,

pd+1 = Pr[Ed+1|Ed] · Pr[Ed] + Pr[Ed+1|¬Ed] · Pr[¬Ed]

= pd + (1− pd) · 2−m ≤ pd + 2−m,

implying that pd ≤ d · 2−m for all d = 1, . . . , k.
If Ek−1 occurs then F(x1, . . . , xk) is always 0, and hence, f (x1, . . . , xk) is always 1.

If Ek−1 does not occur then, since the first column of xk is uniformly distributed, the
value F(x1, . . . , xk) is uniformly distributed over {0,1}, and hence, f (x1, . . . , xk) is
uniformly distributed over {−1,1}. Therefore,

E ( f ) = Ex

�
f (x )
�
= Pr[Ek−1] = pk−1 ≤ (k− 1) · 2−m . □
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9.6. What about more than log n players?

Both lower bounds on the k-party communication complexity of the generalized
inner product function GI Pm,k and the matrix product function are useless when we
have k ≥ log2 n players. To prove lower bounds for more than logarithmic number of
players is a an old open problem. This problem remains open even for very special
communication protocols, known as simultaneous messages protocols or SM-protocols.
In this case no communication between the players is allowed. Instead of that, seeing
his/her part of the input, each player sends a message to a “referee” who, having the
messages from all k players, announces the answer.

Besides its own importance, proving lower bounds on the k-party communication
complexity, when there are k ≥ log2 n players, is important since this would re-solve
some other old open problems in circuit complexity. One of them is to prove super-
polynomial lower bounds for ACC circuits. Recall that such circuits have unbounded
fanin AND, OR and MODp gates, where

MODp(x1, . . . , xm) = 1 iff x1 + . . .+ xm = 0 mod p .

When p is a prime power, exponential lower bounds for such circuits were proved by
Razborov (1987) and Smolensky (1987). (We will do this for p = 3 in Section 11.4.)
However, the case of composite moduli p—even the case of circuits with AND, OR and
MOD6 gates—remains widely open. On the other hand, ACC circuits are related to
depth-2 circuits of the following special type.

A depth-2 symmetric (r, s)-circuit is a circuit of the form ϕ(g1, . . . , gs), where ϕ is
a symmetric boolean function, and each gi is an AND of at most r literals. Based on an
earlier result of Yao (1990), Beigel and Tarui (1994) have shown that every ACC circuit
can be simulated by a symmetric (r, s)-circuit with r = polylog(n) and s = 2polylog(n).

Symmetric depth-2 circuits are related to communication games via the following
fact, which actually holds for symmetric circuits with the gi being arbitrary boolean
functions of at most k− 1 variables, not just AND gates.

LEMMA 9.13. If a boolean function f in n= km variables can be computed by a sym-

metric (k−1, s)-circuit then, for any equal-sized partition of the input among the players,

the k-party communication complexity of f is O(k log s), and the SM-communication

complexity of f is O(log s).

PROOF. Since each bottom gate of our symmetric circuit has fanin at most k − 1,
there is at least one player who can evaluate that gate. Partition the bottom gates
among the players such that all the gates assigned to a player can be evaluated by that
player. Now each player broadcasts the number of her gates that evaluate 1. This takes
O(log s) bits per player since the top gate has fanin at most s. Finally, one of the players
can add up all the numbers broadcasted to compute the symmetric function given by
the top gate and announce the answer.

It is obvious that this works in the SM model as well: each player sends to the
referee the number of gates evaluating to 1 among her gates, and the referee adds
these numbers to compute f . □

RESEARCH PROBLEM 9.14. Prove a larger than polylog(n) lower bound on the SM-

communication complexity for more than polylog(n) players.



132 9. MANY PLAYERS

9.7. Best-partition k-party communication

Let f : {0,1}n → {0,1} be a boolean function on n = km variables. The “number
on the forehead” communication protocols work with a fixed partition x = (x1, . . . , xk)

of the input vector x ∈ {0,1}n into k blocks x i ∈ {0,1}m.
We now consider the situation where, given a function f , the players are allowed

to choose the best, most suited for this particular function f balanced partition of its
variables.

Say that a partition of a finite set into k disjoint blocks is balanced if the sizes of
blocks differ by at most one. Note that, if there were no restriction on the sizes of the
blocks, then the communication complexity of any function would be zero.

Let Cbest
k
( f ) denote the smallest possible k-party communication complexity of f

over all balanced partitions of its input vector.
Recall that the generalized inner product function GIPm,k is a boolean function in

n = km variables which takes m× k (0,1) matrix x as its input, and outputs 1 iff the
number of all-1 rows in it is odd. We have already shown in Section 9.4 that, if we
split the input matrix in such a way that the ith player can see all its columns but the
ith one, then

Ck(GIPm,k) = Ω(n/k4k) . (9.5)

On the other hand, the best-partition communication complexity of this function is
very small: for every k ≥ 2 we have that

Cbest
k
(GIPm,k)≤ 2 .

To see this, split the rows of the input m × k matrix x into m/k blocks and give to
the ith player all but the ith block of these rows. Then the first player can write the
parity of the number of all-1 rows she can see, and the second player can announce
the answer.

So, what boolean functions have large k-party communication complexity under
the best-partition of their inputs? To answer this question we use a graph theoretic
approach.

Let H be a hypergraph on an n-element vertex set V , that is, a family of subsets
e ⊆ V ; the members of H are usually called hyperedges. Associate with each vertex
v ∈ V a boolean variable xv and consider the following boolean function in these
variables:

GIPH (x) =
⊕

e∈H

∧

v∈e

xv .

Note that, ifM is a k-matching, that is, if the edges ofM form a partition of V into
m= n/k blocks e1, . . . , ek of size |ei |= k, then (up to renaming of variables),

GIPM (x) = GIPm,k(x) . (9.6)

We have however just showed that for such hypergraphs, Cbest
k
(GIPM ) ≤ 2. Still, we

could force Cbest
k
(GIPH ) be large is we could show that, for any balanced partition

of vertices into k parts, the hypergraph H must containsan induced k-matching on
sufficiently many vertices.

If H is a hypergraph on a set V of vertices, and S ⊆ V is a set of vertices, then
the sub-hypergraph induced by S is the hypergraph F with the vertex set S and edge
set F = {e ∈ H | e ⊆ S}. It is easy to see that then the function GIPF is a subfunction
of GIPH , and hence, the communication complexity of GIPH is lower bounded by the
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communication complexity of GIPF : just set xv = 0 for all v 6∈ S. We fix this observation
as

PROPOSITION 9.15. Let H be a hypergraph on a set V of vertices. Suppose that

for every balanced partition V = V1 ∪ · · · ∪ Vk there is a subset S ⊆ V of vertices such

that |S ∩ Vi | = 1 for all i = 1, . . . , k, and the sub-hypergraph of H induced by S is a

k-matching. Then

Cbest
k
(GIPH ) = Ω

� |S|
k24k

�
.

PROOF. The induced by S k-matchingM must have at least |S|/k hyperedges, and
the desired lower bound follows from (9.5) and (9.6). □

We will construct the desired hypergraphs H starting from (ordinary) “mixed
enough” graphs G = (V, E). Namely, call a graph s-mixed if, for any pair of disjoint
s-element subsets of vertices, there is at least one edge between these sets. A k-star of
a graph G is a set of its k vertices such that at least one of them is adjacent to all of the
remaining k− 1 of these vertices.

THEOREM 9.16. Let G be an s-mixed regular graph of degree d ≥ 2 on n vertices. Let

2≤ k ≤min{d, n/s} and letH be the hypergraph whose hyperedges are all k-stars of G.

Then

Cbest
k
(GIPH ) = Ω

�
n− sk

dk24k

�
.

Proof. Say that an n-vertex graph G = (V, E) is s-starry if for any 2 ≤ k ≤ n/s and
for any pairwise disjoint sets S1, . . . ,Sk ⊆ V , each of size |Si | ≥ s, there exist vertices
v1 ∈ S1, . . . , vk ∈ Sk such that {v1, . . . , vk} forms a k-star of G.

Note that every s-starry graph is also s-mixed, since we can let k = 2. Interestingly,
the converse is also true:

CLAIM 9.17. Every s-mixed graph is s-starry.

PROOF. Let G = (V, E) be a s-mixed graph, and let S1, . . . ,Sk ⊆ V be pairwise
disjoint subsets of its vertices each of size |Si | ≥ s. For i ∈ {1, . . . , k} let Ti be the set of
all vertices v ∈ V − Si that are not not adjacent to any vertex in Si . Since |Si | ≥ s and
since G is s-mixed, we have that |Ti | ≤ s− 1. Hence, the set T =

⋃k
i=1 Ti can have at

most

|T | ≤ (s− 1)k < sk ≤
k∑

i=1

|Si |=
����

k⋃

i=1

Si

����

vertices. Thus, there must exist a vertex v ∈
�⋃k

i=1 Si

�
− T . That is, v belongs to some

Si and does not belong to T . By the definition of T , v ∈ Si and v 6∈ T means that v

must be connected by an edge with at least one vertex in each of the sets S j, j 6= i. But
then v is a center of the desired star. □

Let now G be a graph satisfying the conditions of Theorem 9.16, and letH be the
hypergraph of its k-stars. To finish the proof of Theorem 9.16, it is enough to prove
the following

CLAIM 9.18. There is a subset S ⊆ V of vertices satisfying the conditions of Propo-
sition 9.15 and such that

|S| ≥
n− sk

kd
.
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PROOF. Let V = V1 ∪ · · · ∪ Vk be an arbitrary balanced partition of the set V into k

blocks. Hence, |Vj | ≥ n/k ≥ s for all j.
We define S recursively. Initially, let S be empty. In each stage, apply Claim 9.17

to find a k-star with vertices in each set of the partition. Add these k vertices to S.
Delete the k vertices, and all their neighbors, from G. Repeat the procedure restricting
the given partition to the remaining vertices of G.

After i stages, at most idk vertices have been removed from V , which means that
each block in the partition (of the remaining vertices) has size at least n/k− idk. Since
G is s-mixed, Claim 9.17 will apply as long as n/k− idk ≥ s. Thus, the algorithm will
run for at least i ≥ (n− sk)/(dk2) stages.

Because all hyperedges ofH (the k-stars of G) have exactly k vertices, and in each
stage we remove all neighbors of the k vertices we added to S, the sub-hypergraph of
H induced by S contains only one hyperedge for each stage, and these are pairwise
disjoint. This, the absence of any other hyperedge ofH lying in S, is the main reason
to take k-stars as hyperedges ofH : since in each stage we remove all neighbors of the
actual star, none of the remaining k-stars can intersect it.

This completes the proof of Claim 9.18, and thus, the proof of Theorem 9.16. □

Thus, what we need are explicit graphs satisfying the following two conditions:

(i) the graph must have small degree, but
(ii) any two sufficiently large subsets of vertices must be joined by at least one

edge.

Graphs with these properties are known as expander graphs.
The following useful bound, observed by many researchers, ensures property (ii),

as long as the second largest eigenvalue1 of adjacency matrix is small enough.

LEMMA 9.19 (Expander Mixing Lemma). If G is a d-regular graph on n vertices and

λ= λ(G) is the second largest eigenvalue of its adjacency matrix, then the number e(S, T )

of edges between every two (not necessarily disjoint) subsets S and T of vertices satisfies
���e(S, T )−

d|S| · |T |
n

���≤ λ
p
|S| · |T | .

PROOF. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of the adjacency matrix M of
G, and let x 1, . . . , x n be the corresponding orthonormal basis of eigenvectors; here x 1

is 1p
n

times the all-1 vector 1. Let vS and v T be the characteristic vectors of S and T .
Expand these two vectors as linear combinations

vS = 〈a, vS〉 =
n∑

i=1

ai x i and v T = 〈b, v T 〉=
n∑

i=1

bi x i

of the basis vectors. Since the x i are orthonormal eigenvectors,

e(S, T ) = v>
S

M v T =
� n∑

i=1

ai x i

�>
M
� n∑

i=1

bi x i

�
=

n∑

i=1

λi ai bi . (9.7)

Since the graph G is d-regular, we have λ1 = d. The first two coefficients a1 and b1 are
scalar products of x 1 =

1p
n
1 with vS and v T ; hence, a1 = |S|/

p
n and b1 = |T |/

p
n.

Thus, the first term λ1a1 b1 in the sum (9.7) is precisely d|S||T |
n

. Since λ = λ2 is the
second largest eigenvalue, the absolute value of the sum of the remaining n− 1 terms

1Recall that λ is an eigenvalue of M if M x = λx for some vector x 6= 0.
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in this sum does not exceed λ
∑n

i=2 |ai bi | which, by Cauchy–Schwarz inequality, does
not exceed

λ‖a‖ · ‖b‖ = λ‖vS‖ · ‖v T‖ = λ
p
|S| · |T | . □

Thus, a graph G is mixed enough if λ = λ(G) is small enough. Examples of such
graphs are Ramanujan graphs RG(n,q). These are (q + 1)-regular graphs with the
property that λ≤ 2

p
q.

COROLLARY 9.20. Ramanujan graphs RG(n,q) are s-mixed for s = 2n/
p

q.

PROOF. If |S| = |T | = s then, by Lemma 9.19, there is at least one edge between
S and T as long as ds2/n− λs > 0, which happens if λ < ds/n. Since for Ramanujan
graph RG(n,q), we have d = q + 1 and λ ≤ 2

p
q, this graph is s-mixed as long as

(q+ 1)s/n > 2
p

q which, in particular, is the case for s = 2n/
p

q. □

Explicit constructions of Ramanujan graphs on n vertices for every prime q ≡
1 mod 4 and infinitely many values of n were given in Margulis (1973), Lubotzky,
Phillips and Sarnak (1988); these were later extended to the case where q is an arbi-
trary prime power in Morgenstern (1994) and Jordan and Livné (1997).

Let q be a prime number lying between 16k2 and 32k2. Then the Ramanujan
graph G = RG(n,q) has degree d = q + 1 and (by Corollary 9.20) is s-mixed for
s = 2n/

p
q ≤ n/2k. Using such graphs, Theorem 9.16 yields the following

COROLLARY 9.21. IfH is the hypergraph of k-stars in G, then

Cbest
k
(GIPH ) = Ω

�
n

k44k

�
.

It can be shown that, this bound is tight with respect to the number k of players:
for any balanced partition of n vertices into k+1 parts, we have that Ck(GIPH ) ≤ k+1
(Exercise 9.9). Thus, for every constant k ≥ 2 there is an explicit boolean function
f = GIPH such that

Cbest
k
( f ) = Ω(n) but Ck+1( f ) = O(1) .

Exercises

EX. 9.1. The set cover communication problem is as follows: we have k players
each holding a collection Ai of subsets of [n] = {1, . . . , n}, and the players are looking
for the smallest covering of [n] using the sets in their collections. That is, the goal is
to find the smallest number r of subsets a1, . . . , ar of [n] such that each a j belongs to
at least one Ai , and a1 ∪ · · · ∪ ar = [n].

Show that O(kn2) bits of communication are enough to construct a covering using
at most (ln n+1) times larger number of sets than an optimal covering algorithm would
do.
Hint: Use a greedy protocol, like in the proof of Lemma 7.10.

EX. 9.2. For a fixed vector x ∈ X , there are many (how many?) spheres around it.
How many colors do we need to leave none of them monochromatic?

EX. 9.3. Consider the function f : X1 × X2→ {0,1} such that f (x1, x2) = 1 if and
only if x1 = x2. Show that χ( f ) = n. Hint: If χ( f )< n then some color class contains two distinct

vectors (x1 , x1) and (x2, x2). What about the color of (x1, x2)?
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EX. 9.4. Three players want to compute the following boolean function f (x , y, z)
in 3m variables. Inputs x , y, z are vectors in {0,1}m, and the function is defined by:

f (x , y, z) =
m⊕

i=1

Maj(x i , yi , zi) .

Prove that C3( f )≤ 3. Hint: Show that the following protocol is correct. Each player counts the number

of i’s such that she can determine the majority of xi , yi , zi by examining the bits available to her. She writes

the parity of this number on the blackboard, and the final answer is the parity of the three written bits.

EX. 9.5. Consider the following k-party communication game. Input is an n× k

(0,1) matrix A, and the ith player can see all A except its ith column. Suppose that the
players a priori know that some string v = (0, . . . , 0, 1, . . . , 1) with the first 1 in position
t + 1, does not appear among the rows of A. Show that then the players can decide if
the number of all-1 rows is even or odd by communicating only t bits.

Hint: Let yi denote the number of rows of A of the form (0, . . . , 0, 1, . . . , 1), where the first 1 occurs

in position i. For every i = 1, . . . , t, the ith player announces the parity of the number of rows of the form

(0, . . . , 0,∗, 1, . . . , 1), where the ∗ is at place i. Observe that this number is yi + yi+1. Subsequently, each

player privately computes the mod 2 sum of all numbers announced. The result is (y1+ yt+1)mod 2, where

yt+1 = 0.

EX. 9.6. Prove that Ck(GIP) = O(kn/2k).
Hint: Use the previous protocol to show that (without any assumption) k-players can decide if the

number of all-1 rows in a given n× k (0, 1) matrix is even or odd by communicating only O(kn/2k) bits. To

do this, divide the matrix A into blocks with at most 2k−1 − 1 rows in each. For each block there will be a

string v′ of length k−1 such that neither (0, v′) nor (1, v′) occurs among the rows in that block. Using k bits

the first player can make the string (0, v′) known to all players, and we are in the situation of the previous

exercise.

EX. 9.7. Consider the following multiparty game with the referee. As before, we
have an n × k 0-1 matrix A, and the ith player can see all A except its ith column.
The restriction is that now the players do not communicate with each other but simul-
taneously write their messages on the blackboard. Using only this information (and
without seeing the matrix A), an additional player (the referee) must compute the
string P(A) = (x1, . . . , xn), where x i is the sum modulo 2 of the number of 1′s in the
ith row of A.

Let N be the maximal number of bits which any player is allowed to write on any
input matrix. Prove that N ≥ n/k.

Hint: For a matrix A, let f (A) be the string (p1, . . . , pk), where pi ∈ {0, 1}N is the string written by the

ith player on input A. For each possible answer x = (x1 , . . . , xn) of the referee, fix a matrix Ax for which

P(Ax) = x . Argue that f (Ax ) 6= f (Ay ) for all x 6= y.

EX. 9.8. Show that a set T ⊆ X is a cylinder intersection if and only if, for every
sphere S around a vector x , S ⊆ T implies x ∈ T . Hint: For the “if” part consider the sets Ti of

all vectors (x1 , . . . , xi , . . . , xk) such that (x1 , . . . , x ′
i
, . . . , xk) ∈ T for at least one x ′

i
∈ X i .

EX. 9.9. Let H be a hypergraph on n vertices, and 2 ≤ k ≤ n be a divisor of n

Suppose that |e| ≤ k − 1 for all e ∈ H . Show that then, for any balanced partition
of the input into k parts, there is a k-party communication protocol evaluating GIPH
using at most k bits of communication.
Hint: Given a partition of n vertices into k blocks, each e ∈H must lie outside at least one of these blocks.
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EX. 9.10. Let us consider simultaneous messages n-party protocols for the parity
function f (x) = x1 ⊕ x2 ⊕ · · · ⊕ xn, where the referee makes his life easier: he just
outputs the majority of the answers of players. That is, we have n people, each with
a random bit 0 or 1 on his (or her) forehead. Everybody can see everybody’s else
bit except his own. We are interested in how the group can coordinate their guesses
so that the majority of people in the group guesses the correct answer. More precisely,
each person casts a private vote (1 or 0); the outcome of the election is the value which
the majority of voters cast. The voters are said to win the election when the outcome
is equal to the parity of the n bits. Consider the following strategy for players:

Each voter looks around at everybody else. If a voter sees as many 0’s as 1’s, she
casts a vote 0. Otherwise, she assumes that the bit on her forehead is the same as the
majority of the bits she sees; she then casts a vote consistent with this assumption.

Show that this strategy has a success probability 1− 1
θ (
p

n)
, that is, will correctly com-

pute the parity for all 2n but a fraction 1/θ(
p

n) of input vectors.
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CHAPTER 10

Depth-3 Circuits

We consider boolean circuits with unbounded fanin AND and OR gates. Inputs are
variables x1, . . . , xn and their negations x1, . . . , xn. A Π3 circuit is a circuit of depth 3
whose gates are arranged in three layers: AND gate at the top of the circuit (this is the
output gate), OR gates on the next (middle) layer, and AND gates on the bottom (next
to the inputs) layer (see Fig. 1). A Σ3 circuit is defined dually by interchanging the OR
and AND gates. The size of such a circuit is the total number of gates in it.

Exponential lower bounds for depth-2 circuits (DNFs and CNFs) are easy to prove.
So, for example, any DNF for the parity function x1⊕x2⊕· · ·⊕xn must have 2n−1 ANDs:
every AND gate must have all n variables as inputs, for otherwise the DNF would make
an error—accept two inputs of different parities. The situation with depth-3 circuits is
much more complicated—this is the first nontrivial case.

10.1. Why depth 3 is interesting?

In last two decades several important methods of proving lower bounds for depth-
3 circuits, and even for depth-d circuits with an arbitrary constant d, emerged. We will
discuss these methods in this and the next chapter. For depth-d the obtained lower
bounds have the form 2Ω(n

1/(d−1))
. This however does not solve the problem completely,

since easy counting shows that boolean functions requiring much larger number of
gates—namely, about 2(1−ε)n—exist.

To find an explicit boolean function f in n variables such that any depth-3 circuit
for f requires 2αn/ log log n gates for some α→∞, is one of intriguing open problems. By
a seminal result of Valiant (1977), this would give the first super-linear lower bound on
the size of log-depth circuits with NOT and fanin-2 AND and OR gates, thus resolving
one of the central problems in circuit complexity. We now show how does this happen.
By a graph we will mean a directed graph.

A labeling of a graph is a mapping of the nodes into the integers. Such a labeling
is legal if for each edge (u, v) the label of v is strictly greater than the label of u. The
depth a graph is the largest number of nodes on directed path.

A canonical labeling is to assign each node the total number of edges on a longest
directed path that terminates at that node. If the graph has depth d then this gives
us a labeling using only d labels 0,1, . . . , d − 1. It is easy to verify that this is a valid
labeling: if (u, v) is an edge then any path terminating in u can be prolonged to a path
terminating in v.

OBSERVATION 10.1. The depth of a graph does not exceed the number of labels
used by any legal labeling.

PROOF. All labels along a directed path must be distinct. □

140
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FIGURE 1. Depth-3 circuit for Parity x1 ⊕ x2 ⊕ x3 ⊕ x4 of n= 4 variables.

LEMMA 10.2. Let d = 2k and 1 ≤ r ≤ k be integers. In any directed graph with s

edges and depth d it is possible to remove rs/k edges so that the depth of the resulting

graph does not exceed d/2r .

PROOF. Consider any directed graph with s edges and depth d, and consider the
canonical labeling using labels 0,1, . . . , d − 1. For i = 1, . . . , log2 d = k, let X i be the
set of all edges, the binary representations of labels of whose endpoints differ in the
ith position (from the left) for the first time. If X i is removed from the graph then we
can relabel the nodes using integers 0,1, . . . , d/2− 1 by simply deleting the ith bit in
the binary representation of the of labels. It is not difficult to see that this is a legal
labeling (of a new graph): if an edge (u, v) survived, then the first difference between
the binary representations of the old labels of u and v were not in the ith position.
Consequently, if any r ≤ k of the X i ’s are removed, Observation 10.1 implies that a
graph of depth at most d/2r remains. □

An important consequence is that any log-depth circuit of linear size can be re-
duced to a Σ3 circuit of moderate fanin of middle layer gates and not too large fanin
of the top gate.

LEMMA 10.3. For every ε > 0, c1 and c2, there exists a constant K such that, if a

boolean function f in n variables can be computed by a fanin-2 circuit of depth c1 log n

using c2n gates, then f can be written as a sum of exp(Kn/ log log n) CNFs each with at

most exp(nε) clauses.

Note that the top gate is now a sum gate (over the reals), not just an OR gate.
Thus, what we obtain is a restricted version of a Σ3 circuit: for every input, at most
one AND gate on the middle layer is allowed to output 1.

PROOF. Take a circuit C of depth c1 log n with c2n fanin-2 gates. Hence, the circuit
has at most s ≤ 2c2n wires. Apply Lemma 10.2 with k about log(c1 log n) and r about
log(c1/ε) (a constant). This gives us a set S of |S| ≤ sr/k = O(n/ log log n) wires whose
removal leaves us with a circuit of depth at most d = 2−r · c1 log n= ε log n.

Take a set of new variables y = (ye | e ∈ S), one for each cut wire. For each
such wire e = (u, v) ∈ S, let Ce be the subcircuit of C whose output gate is u. Each
such subcircuit Ce depends on some x-variables and some y-variables. Moreover, each
subcircuit Ce depends on at most 2d = nε variables because each of these subcircuits
has depth at most ε log2 n, and each gate has fanin at most 2. Hence, the test ye =

Ce(x , y) can be written as a CNF φe(x , y) with at most 22d

= 2nε clauses. Consider the
CNF

ψ(x , y) = φ0(x , y)∧
∧

e∈S

φe(x , y) ,
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where φ0 is the CNF of the last subcircuit, rooted in the output gate of the whole
circuit. The CNF φ has (|S|+ 1)2nε clauses, and for every assignment α = (αe | e ∈ S)

in {0,1}S , we have that ψ(x ,α) = 1 iff C(x) = 1 and the computation of C on input
x is consistent with the values assigned to cut wires by α. Since the computation of C

on a given vector x cannot be consistent with two assignments α1 6= α2, the function
computed by our circuit C can be written as a sum

C(x) =
∑

α∈{0,1}S
ψ(x ,α)

of s = 2|S| CNFs, each with at most (|S|+ 1)2nε clauses. □

The consequence, which makes depth-3 circuits interesting, is the following.

COROLLARY 10.4. If a boolean function f in n variables requires Σ3 circuits of size

larger than exp(n/ log log n), then f cannot be computed by a log-depth circuit using a

linear number of fanin-2 gates.

10.2. An easy lower bound for Parity

A binary vector is odd if it has an odd number of 1’s; otherwise the vector is even.
A parity function is a boolean function x1⊕ x2⊕· · · ⊕ xn which accepts all odd vectors
and rejects all even vectors. Recall that a formula is a circuit in which all gates have
fanout at most 1. The top fanin is the fanin of the output gate.

LEMMA 10.5. Every Π3 formula computing x1⊕ x2⊕· · ·⊕ xn with top fanin t requires

at least t2(n−1)/t AND gates on the bottom layer.

PROOF. Let si be the fanin of the ith OR gate on the middle layer. The ANDs at
bottom layer can be labeled with (i, j) for 1 ≤ i ≤ t and 1 ≤ j ≤ si(see Fig. 1). Let hi, j

denote the (i, j)-th AND. Then the circuit computes the function
∧t

i=1

∨si

j=1 hi, j. By the
distributive rule x ∧ (y ∨ z) = (x ∧ y)∨ (x ∧ z), this is an OR of ANDs of the form

H = h1, j1 ∧ h2, j2 ∧ · · · ∧ ht , jt . (10.1)

We call these “big” ANDs H the monomials produced by the circuit. We claim that:
each monomial H accepts at most one odd vector. To show this, say that a variable x i is
seen by a gate, if either x i or x i is an input to this gate.

Case 1: Each of n variables is seen by at least one of h1, j1 ,h2, j2 , . . . ,ht , jt . In this
case, H is a (possibly inconsistent) product of all n variables, and hence, can accept at
most one vector.

Case 2: Some variable x i is seen by none of the gates h1, j1 ,h2, j2 , . . . ,ht , jt . We
claim that in this case H−1(1) = ;. Indeed, if the set H−1(1) of accepted inputs is not
nonempty, that is, if the monomial H contains no variable together with its negation,
then H−1(1) must contain a pair of two vectors that only differ in the ith position. But
this is impossible, since one of these two vectors must be even, and the circuit would
wrongly accept it.

Hence, we have s1s2 · · · st monomials H, and each of them can accept at most one
odd vector. Since we have 2n−1 odd vectors, this implies s1s2 · · · st ≥ 2n−1. Since our
circuit is a formula, the total number of AND gates on the bottom layer is s1 + · · · +
st . Using the fact that the arithmetic mean (a + b)/2 is greater than or equal to the
geometric mean (a · b)1/2 , we can conclude that

s1 + · · ·+ st ≥ t(s1s2 · · · st)
1/t ≥ t2(n−1)/t . □
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10.3. The method of finite limits

The above argument only works for circuits with small top fanin, much smaller
that n. We now describe another, less trivial argument which works for circuits with
arbitrary top fanin.

Let B ⊆ {0,1}n be a set of vectors. A vector y 6∈ B is a k-limit for a set B if for any
k-element subset S ⊆ {1, . . . , n} of positions there exists a vector x ∈ B such that y ≤ x

and x i = yi for all i ∈ S. In particular, if y is a k-limit for B then the fact that y does
not belong to B cannot be detected by looking at k of fewer bits of y .

The following lemma reduces the lower bounds problem for depth-3 circuits to a
purely combinatorial problem about finite limits. We say that a circuit C separates a
pair A, B ⊆ {0,1}n, A∩ B = ; if

C(x) =

¨
1 for x ∈ A,

0 for x ∈ B.

We also say that a circuit has bottom fanin k if each gate, next to the inputs, has at
most k negated inputs (the whole number of inputs to the gate may be n). By a Πk

3
circuit we will mean a Π3 circuit of bottom fanin at most k.

LEMMA 10.6 (Limits and circuit size). If every 1/` fraction of vectors in B has a

k-limit in A, then every Πk
3 circuit separating (A, B) must have more than ` gates.

PROOF. Suppose, for the sake of contradiction, that (A, B) can still be separated by
a Πk

3 circuit of size `. Since the last (top) gate is an AND gate, some of the OR gates g

on the middle layer must separate the pair (A, B′) for some B′ ⊆ B of size |B′| ≥ |B|/`.
By our assumption, the set A must contain a vector y which is a k-limit for the set B′.
Hence,

g(y) = 1 and g(x) = 0 for all x ∈ B′.

To obtain the desired contradiction, we will show that then g, and hence, the whole
circuit C , is forced to (incorrectly) reject the limit y .

Take an arbitrary AND gate h on the bottom layer feeding in g, and let S be the
corresponding set of negated inputs to h. Since |S| ≤ k and since y is a k-limit for
B′, we know that y coincides on these inputs with some vector xS ∈ B′. Since g is
an OR gate and since g must reject all vectors in B′, we also know that h(xS) = 0.
If some negated variable feeding in h computes 0 on xS then it does the same on y

(since y coincides with xS on all positions in S), and hence, h(y) = 0. Otherwise,
the 0 is produced on xS by some non-negated variable. Since y ≤ xS , this variable
must produce 0 also on y , and hence, h(y) = 0. Since this holds for every AND
gate h feeding into g, this implies that also the gate g must (incorrectly) reject y , a
contradiction. □

In oder to show that a given boolean function f cannot be computed by a Π3

circuit with fewer than ` gates, we can now argue as follows.

a. Assume that f can be computed by such a circuit.
b. Assign some variables of f to constants in order to reduce the bottom fanin of

the circuit till k.
c. Choose and appropriate subsets A ⊆ f −1(1) and B ⊆ f −1(0), and show that

every subset B′ ⊆ B of size |B′| ≥ |B|/` has a k-limit vector y ∈ A.
d. Apply Lemma 10.6 to get a contradiction.

The bottom fanin can be reduced using the following simple lemma.
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LEMMA 10.7. Let F be a family of ` subsets of [n] each of cardinality more than k.

If

` <

�
n

e1/6m

�k
, (10.2)

then some subset T of [n] of size |T |= n−m intersects all members of F .

PROOF. We construct the desired set T via the following "greedy" procedure. Since
each set in F has more than k elements, and since we only have n elements in total,
at least one element x1 must belong to at least k/n fraction of sets in F . Include such
an element x1 in T , remove all sets from F containing x1 (hence, at most a (1− k/n)

fraction of sets inF remains), and repeat the procedure with the remaining sub-family
of F , etc. Our goal is to show that, if the initial family F had ` sets, and ` satisfies
(10.2), then after n−m steps all the sets of F will be removed.

The sub-family resulting after n−m steps has at most ` · α sets, where

α =

�
1−

k

n

��
1−

k

n− 1

�
· · ·
�

1−
k

m+ 1

�

≤ e−
k

n
− k

n−1
−···− k

m+1 ≤ e−k(ln n−ln m−1/6)

=

�
n

e1/6m

�−k

,

where the last inequality follows from known estimates Hn = ln+γn on harmonic
series Hn = 1+ 1/2+ /3+ · · ·+ 1/n with 1

2
< γn <

2
3
. □

Now, having a Π3 circuit of size ` satisfying (10.2), we can reduce its bottom fanin
to k by just setting to 1 all variables in T . By Lemma 10.7, this will evaluate all bottom
AND gates with more than k negated inputs to 0.

The next task—forcing a k-limit—depends on a boolean function we are dealing
with. To demonstrate how this can be done, let us consider the Majority function
Majn(x1, . . . , xn) which accepts an input vector iff it contains at least so many 1’s as
0’s.

10.3.1. A lower bound for Majority. Let
�[n]

r

�
denote the r-th slice of the binary

n-cube, that is, the set of all vectors in {0,1}n with precisely r ones.

LEMMA 10.8. For every subset B ⊆
�[n]

r

�
of size |B| > kr there is a k-limit y with

fewer than r ones.

PROOF. Induction on r. If B ⊆
�[n]

1

�
and |B| ≥ k+1 then 0= (0, . . . , 0) is the desired

k-limit of A. Suppose now that the lemma holds for all slices smaller that r and prove
it for the r-th slice. So, take a set B ⊆

�[n]
r

�
of size |B|> kr . If 0 is a k-limit for B, then

we are done.
Otherwise, by the definition of a k-limit, there must be a set of k coordinates such

that every vector in B has at least one 1 among these coordinates. Hence, at least
k−1 fraction of vectors in B must have a 1 in some, say ith, coordinate. Replace in all
these vectors the ith 1 by 0, and let B′ be the resulting set of vectors. Since B′ ⊆

� [n]
r−1

�

and |B′| ≥ |B|/k > kr−1, we have by the induction hypothesis that some vector y with
fewer than r − 1 ones is a k-limit for B′. The ith coordinate of y is 0. Replacing this
coordinate by 1 we obtain a vector with at most r−1 ones and this vector is the desired
k-limit for B. □
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THEOREM 10.9. Any depth-three circuit computing the majority function Majn has

size at least 2Ω(
p

n).

PROOF. Let ` be the minimal size of a depth-three circuit computing ¬Majn, the
negation of majority, and hence, the minimal size of a depth-three circuit computing
Majn itself. Since ¬Majn is self-dual (complementing the output and all inputs does
not change the function), we can w.l.o.g. assume that we have a Π3-circuit.

Let k ≤ n and r ≤ n/2 be parameters (to be specified later). Set m := n/2+ r

and assume that the size ` of our circuit satisfies the inequality (10.2). Then, by
Lemma 10.7, it is possible to set n − m = n/2 − r of the variables to 1 so that the
resulting circuit has bottom fanin at most k. The new circuit computes a boolean
function f : {0,1}m → {0,1} in m variables such that f (x) = 1 iff x has fewer than
n/2− (n−m) = r ones. Hence, the new circuit separates the pair (A, B) of sets

A= {all vectors in {0,1}m with fewer than r ones}
and

B = {all vectors in {0,1}m with precisely r ones} .
Since the new circuit has size at most ` and its bottom fanin is at most k, Lemma 10.6
implies that no 1/` fraction of vectors in B can have a k-limit in A. Together with
Lemma 10.8, this implies that |B|/` =

�m
r

�
/` cannot be larger than kr . Hence,

` ≥
�

m

r

�
· k−r ≥
�

m

kr

�r
. (10.3)

By our assumption (10.2), this lower bound holds for any parameters k, r and m =

n/2+ r satisfying �
m

kr

�r/k
<

n

e1/6m
. (10.4)

To ensure this, we can take, say, k about
p

n and r about
p

n/2. Under this choice,
(10.4) is fulfilled, and we obtain the desired lower bound

` ≥
�

m

kr

�r
= 2Ω(r) = 2Ω(

p
n) . □

10.3.2. NP 6= co-NP for depth-3 circuits. In this section we will exhibit a boolean
function f in n variables such that f has a Σ3 circuit of size O(n) but its complement
¬ f requires Σ3 circuits of size 2Ω(

p
n). Note that we cannot take the majority function

Majn for this purpose just because it is self-dual:

¬Majn(¬x1, . . . ,¬xn) =Majn(x1, . . . , xn) .

Hence, by Theorem 10.9, both Majn and ¬Majn require Σ3 circuits of exponential size.
We therefore must use another function.

So, let Ss,m be the boolean function with n= 2sm variables defined by

Ss,m(x , y) =

s∨

i=1

m∧

j=1

(x i, j ∨ y i, j) . (10.5)

This is an important function, known as iterated disjointness function. The func-
tion takes two sequences x = (x1, . . . , xs) and y = (y1, . . . , ys) of subsets of [m] =
{1, . . . , m}, and accepts the pair (x , y) iff x i ∩ yi = ; for at least one i ∈ [s].

It is clear (from its definition) that Ss,m can be computed by a Σ3 circuit of size
1 + s(m + 1) = O(n). We shall show that, for s = m =

p
n, this function requires
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Π3-circuits of size 2Ω(
p

n), implying that any Σ3 circuit for its negation requires this
size.

LEMMA 10.10. If fs,m(x) =
∨s

i=1

∧m
j=1 x i, j is computed by a Π3 circuit of size ` and

bottom fanin k, then

`≥
�

m

k

�s
.

PROOF. Any circuit for fs,m must separate the pair (A, B) where A⊆ {0,1}sm is the
set of all vectors with at most s−1 ones and B is the set of ms vectors with exactly s ones
killing all ANDs in f . Assume now that ` <

�
m

k

�s
. Then, by Lemma 10.6, no subset

B′ ⊆ B of size |B′| ≥ |B|/` > ms/
�

m

k

�s
= ks can have a k-limit in A, a contradiction

with Lemma 10.8. □

LEMMA 10.11. For any k ≤ sm, any Π3-circuit computing Ss,m has size at least

min
§

2k,
�

m

k

�sª
.

PROOF. Take a Π3-circuit computing Ss,m(x , y), let ` be its size and assume that
`≤ 2k. We claim that then there exists a setting of constants to variables such that the
resulting circuit has bottom fanin k and computes fs,m. Together with Lemma 10.10,

this claim implies that either ` ≥ 2k or ` ≥
�

m

k

�s
, and we are done. So it remains to

prove the claim.
The most natural way is to randomly set one variable from each pair x i, j , yi, j to

1. Any such setting will leave us with a circuit computing fs,m. It remains therefore to
show that at least one of such settings will leave no bottom AND gate with more than
k negated inputs.

If a bottom AND gate contains both x i, j and yi, j negatively for some i, j then it
is always reduced to 0. Otherwise such an AND gate with > k negated inputs is not

reduced to 0 with probability ≤ 2−(k+1). Since we have at most ` ≤ 2k such AND
gates, the probability that some of them will be not reduced to 0 does not exceed
` · 2−(k+1) ≤ 1/2. This, in particular, means that such a setting of constants exists. □

COROLLARY 10.12. Any Π3-circuit computing Spn,
p

n has size at least 2Ω(
p

n).

PROOF. Take s = m=
p

n and k =
p

n/2 in Lemma 10.11. □

REMARK 10.13. Recently, Razborov and Sherstov (2008) have shown that the it-
erated disjointness function (10.5) is hard in yet another respect: if A = (ax ,y) in an

n×n ±1 matrix with n= m3 and ax ,y = 1−2·Sm,m2 (x , y), then A has sign-rank 2Ω(n
1/3).

Recall that the sign-rank of a real matrix A with no zero entries is the least rank of a ma-
trix B = (bx ,y) such that ax ,y · bx ,y > 0 for all x , y . This result resolved an old problem
about the power of probabilistic unbounded-error communication complexity.

The highest lower bounds for depth-3 circuits computing explicit boolean func-
tions in n variables have the form 2Ω(

p
n). We have seen how such lower bound can

be derived for the majority function. To break this “square root barrier” is an impor-
tant open problem. It is especially interesting in view of possible consequences for
log-depth circuits (see Corollary 10.4).

RESEARCH PROBLEM 10.14. Prove an explicit lower bound for Σ3 circuits larger than

2Ω(
p

n).
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To get such lower bounds, one could try to use the graph theoretic approach in-
troduced in Section 1.8.

10.4. Graph theoretic lower bounds

Recall first what does it means that a boolean function g (or a circuit) “represents”
a given graph G. The variables of g correspond to vertices of G, one for each vertex.
The function g accepts/rejects subsets of vertices. We say that g represents the graph
G if it accepts all edges and rejects all non-edges. On other subsets of vertices g may
output arbitrary values.

The characteristic function of a bipartite n× n graph G with n = 2m is a boolean
function fG(x , y) in 2m variables such that fG(x , y) = 1 iff the vertices corresponding
to vectors x and y are adjacent in G.

Define the size of a Σ3 circuit as the maximum max{s, r}, where s is the fanin of
its top OR gate, and r is the maximum fanin of its AND gates on the middle layer.
Let Σ3(G) denote the smallest size of a monotone Σ3 representing the graph G. For a
boolean function f , let Σ⊕3 ( f ) denote the smallest size of a Σ⊕3 circuit computing f .

Magnification Lemma (Lemma 1.12 in Section 1.8) immediately yields:

PROPOSITION 10.15. For every bipartite graph G, Σ3( fG)≥ Σ3(G).

This motivates the following problem.

RESEARCH PROBLEM 10.16. Prove that an explicit bipartite n× n graph cannot be

represented by a monotone Σ3 circuit using fewer than n1/k gates, where k = log log log n.

By Corollary 10.4 and Proposition 10.15, this would re-solve an old problem in
circuit complexity, namely, give an explicit boolean function which cannot be computed
by a log-depth circuit using a linear number of fanin-2 gates.

Using counting arguments it can be shown that almost all bipartite n× n graphs
require monotone Σ3 circuits of size Ω(

p
n) (Exercise 10.3). The problem therefore is

to exhibit a specific graph.
Each monotone Σ3 circuit for a graph G is just an OR of monotone CNFs

F =

� ∨

v∈S1

xv

�
∧
� ∨

v∈S2

xv

�
∧ · · · ∧
� ∨

v∈Sr

xv

�
.

Such a CNF rejects a pair (u, v) of vertices iff at least one of the complements Ii = Si

covers this pair, that is, contains both endpoints u and v. Hence, F represents a graph
H iff I1, . . . , Ir are independent sets of H whose union covers all non-edges of H.

Thus, if cnf(H) denotes the minimum number of clauses in a monotone CNF rep-
resenting the graph H, and if A is the adjacency matrix of H, then

cnf(H) = Cov(A) ,

where A is the complement of A, and Cov(B) is the smallest number of all-1 submatrices
of B covering all its ones.

We have already considered the cover number Cov(B) in Section 7.1.3 and showed
(see Lemma 7.9) that, for every (0,1) matrix B,

Cov(B) = O(d ln |B|) ,
where |B| is the total number of ones in B, and d is the maximal number of zeroes in
a line (row or column) of B. When translated to the language of graphs, this yields:
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PROPOSITION 10.17. For every bipartite n × n graph G of maximum degree d, we

have that cnf(G) = O(d log n) and Σ3(G) = O(
p

d log n).

Thus, all graphs of small degree can be represented by small monotone Σ3 circuits.
This also means that in order to solve Problem 10.16 above, we must consider graphs
of large degree. In particular, good candidates must be dense enough, that is, have
many edges.

It is conjectured that dense K2,2-free graphs, that is bipartite graphs without 4-
cycles, could be good candidates.

As we already mentioned in Section 3.3, explicit constructions of dense triangle-
free graphs without 4-cycles are known. Such is, for example, the point-line incidence
n× n graph Gn of a projective plane PG(2,q) for a prime power q. Such a plane has
n = q2 + q+ 1 points and n subsets of points (called lines). Every point lies in q + 1
lines, every line has q+1 points, any two points lie on a unique line, and any two lines
meet is a unique point. Now, if we put points on the left side and lines on the right,
and joint a point x with a line L by an edge iff x ∈ L, then the resulting bipartite n× n

graph will have (q+ 1)n=Θ(n3/2) edges and contain no 4-cycles.

RESEARCH PROBLEM 10.18. Prove or disprove: Σ3(Gn)≥ nΩ(1).

If the bound is true, this would clearly resolve Problem 10.16, and hence, yield
the first super-linear lower bound for log-depth circuits.

In the next section we will prove the desired lower bounds for modified Σ3 circuits,
where all gates on the bottom level are Parity gates (not OR gates).

10.4.1. Depth-3 circuits with parity gates. Let us consider Σ⊕3 circuits. These
are Σ3 circuits with the OR gates on the bottom (next to the inputs) layer replaced by
Parity gates. Hence, at each AND gate on the middle layer a characteristic function
of some affine subspace over GF(2) is computed. The fanin of the top OR gate tells
therefore how many affine subspaces, lying within f −1(1), do we need to cover the
whole set f −1(1).

Let Σ⊕3 (G) denote the smallest top fanin of a Σ⊕3 representing the graph G. For a
boolean function f , let Σ⊕3 ( f ) denote the smallest top fanin of a Σ⊕3 circuit comput-
ing f .

Our starting point is the following immediate consequence of the Magnification
Lemma (Lemma 1.12):

PROPOSITION 10.19. For every bipartite graph G, Σ⊕3 ( fG)≥ Σ⊕3 (G).

Hence, if Σ⊕3 (G) ≥ nε , then Σ⊕3 ( fG) ≥ 2εm; recall that fG is a boolean function in
2m variables.

We are going to prove a general lower bound: any dense graph without large
complete subgraphs requires large top fanin of Σ⊕3 circuits. This immediately yields
exponential lower bounds for many explicit functions.

A graph is Ka,b-free if it does not contains a complete a× b subgraph. For a graph
G, by |G| we will denote the number of edges in it.

THEOREM 10.20. If an n× n graph G is Ka,b-free, then

Σ⊕3 (G)≥
|G|

(a+ b)n
.
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(c)
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A
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B

(a) (b)

FIGURE 2. (a) An adjacency matrix of a fat matching, (b) the adja-
cency matrix of a graph represented by an OR gate g =

∨
v∈A∪B xv ,

and (c) the adjacency matrix of a graph represented by a Parity gate
g =
⊕

v∈A∪B xv .

To prove the theorem, we first give a combinatorial characterization of the top
fanin of Σ⊕3 circuits, representing bipartite graphs, and then give a general lower bound
on this characteristic.

A fat matching is a union of vertex-disjoint bipartite cliques (these cliques need
not to cover all vertices). A fat covering of a graph G is a family of fat matchings such
that each of these fat matchings is a subgraph of G and every edge of G is an edge of
at least one member of the family.

Let fat(G) denote the minimum number of fat matchings in a fat covering of G.
Theorem 10.20 is a direct consequence of the following two lemmas.

LEMMA 10.21. For every bipartite graph G, fat(G) = Σ⊕3 (G).

PROOF. Let U and V be the color classes of G, and let g =
⊕

v∈A∪B xv with A⊆ U

and B ⊆ V be a gate on the bottom level of a Σ⊕3 circuit representing G. Since g is a
parity gate, it accepts a pair uv of vertices u ∈ U , v ∈ V iff either u ∈ A and v 6∈ B, or
u 6∈ A and v ∈ B. Thus, g represents a fat matching (A× B)∪ (A× B) where A= U − A

and B = V −B (see Fig 2(b)). Since the intersection of two fat matchings is again a fat
matching (show this!), each AND gate on the middle level represents a fat matching.
Hence, if the circuit has top fanin s, then the OR gate on the top represents a union of
these s fat matchings, implying that s ≥ fat(G).

To show Σ⊕3 (G) ≤ fat(G), let M =
⋃r

i=1 Ai × Bi be a fat matching. Set A=
⋃r

i=1 Ai

and B =
⋃r

i=1 Bi . We claim that the following AND of Parity gates represents M :

F =

�⊕

u∈A

xu

��⊕

v∈B

xv

�� ⊕

w∈A1∪B1

xw

�
· · ·
� ⊕

w∈Ar∪Br

xw

�
.

Indeed, if a pair e = uv of vertices belongs to M , say, u ∈ A1 and v ∈ B1, then the first
three sums accept uv because u ∈ A1 and v 6∈ B1. Moreover, the mutual disjointness
of the Ai as well as of the Bi implies that u 6∈ Ai and v ∈ B1 ⊆ Bi for all i = 2, . . . , r.
Hence, each of the last sums accepts the pair uv as well. To prove the other direction,
suppose that a pair uv of vertices is accepted by F . The last r sums ensure that, for
each i = 1, . . . , r, one of the following must hold:

(a) u ∈ Ai and v ∈ Bi;
(b) u 6∈ Ai and v 6∈ Bi .

The first two sums of F ensure that (b) cannot happen for all i. Hence, (a) must
happen for some i, implying that uv belongs to M .

Thus, every graph G can be represented by a Σ⊕3 circuit of top fanin fat(G). □
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LEMMA 10.22. Let G be a bipartite n× n graph. If G is Ka,b-free then

fat(G)≥
|G|

(a+ b)n
.

PROOF. Let H =
⋃t

i=1 Ai × Bi be a fat matching, and suppose that H ⊆ G. By
the definition of a fat matching, the sets A1, . . . ,At , as well as the sets B1, . . . , Bt are
mutually disjoint. Moreover, since G contains no copy of Ka,b, we have that |Ai |< a or
|Bi |< b for all i. Hence, if we set I = {i : |Ai |< a}, then

|H|=
t∑

i=1

|Ai × Bi |=
t∑

i=1

|Ai | · |Bi | ≤
∑

i∈I

a · |Bi |+
∑

i 6∈I

|Ai | · b ≤ (a+ b)n.

Thus, no fat matching H ⊆ G can cover more than (a+ b)n edges of G, implying that
we need at least |G|/(a+ b)n fat matchings to cover all edges of G. □

There are many explicit bipartite graphs which are dense enough and do not have
large complete bipartite subgraphs. By Theorem 10.20 and Proposition 10.19, each of
these graphs immediately give us an explicit boolean function requiring an exponential
(in the number of variables) lower bound on the top fanin of their Σ⊕3 circuits.

To give an example consider the disjointness function. This is a boolean function
DISJ2m in 2m variables such that

DISJ2m(y1, . . . , ym, z1, . . . , zm) = 1 if and only if
m∑

i=1

yizi = 0 .

THEOREM 10.23. Every Σ⊕3 circuit for DISJ2m has top fanin 20.08m.

PROOF. The graph G f of the function f = DISJ2m is Kneser-type bipartite graph
Km ⊆ U × V where U and V consist of all n = 2m subsets of [m] = {1, . . . , m}, and
uv ∈ Km iff u∩ v = ;. The graph Km can contain a complete bipartite a× b subgraph
A× B 6= ; only if a ≤ 2k and b ≤ 2m−k for some 0 ≤ k ≤ m, because then

�⋃
u∈A xu

�
∩�⋃

v∈B xv

�
= ;. In particular, Km can contain a copy of Ka,a only if a ≤ 2m/2 =

p
n.

Since this graph has

|Km|=
∑

u∈U

d(u) =
∑

u∈U

2m−|u| =
m∑

i=0

�
m

i

�
2m−i = 3m ≥ n1.58

edges, Theorem 10.20 yields that any Σ⊕3 circuit representing Km—and hence, any Σ⊕3
circuit computing DISJ2m—must have top fanin at least

|Km|
2an
≥

n1.58

n1.5 = n0.08 = 20.08m . □

We now consider a generalization of Σ⊕3 circuits, where we allow to use an arbi-
trary threshold gate, instead of an OR gate, on the top. To analyze such circuits, we
need the so-called “discriminator lemma” for threshold gates.

Let B be a family of subsets of a finite set X . A family B1, . . . , Bt of members of
B is threshold cover of a set A ⊆ X , it there exists a number 0 ≤ k ≤ t such that, for
every x ∈ X , x ∈ A if and only if x belongs to at least k of Bi . Let thrB (A) denote the
minimum number t of members ofB in a threshold cover of A.

To lower bound thrB(A) the following measure turned out to be very useful:

∆B (A) =max
B∈B

∆B(A) ,
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(b)

A

B B

A A

(a)

A

FIGURE 3. Schematic description of discriminators: ∆B(A) is large in
case (a), and is small in case (b).

where

∆B(A) =

�����
|A∩ B|
|A| −

|A∩ B|
|A|

����� .

Small ∆B (A) means that every member B of B is splitted between the set A and its
complement A rather balanced: the portion of B ∩ A in A is almost the same as the
portion of B ∩ A in A. That is, the set A does not “discriminate” any member ofB .

LEMMA 10.24 (Discriminator Lemma).

thrB (A)≥
1

∆B (A)
.

PROOF. Let B1, . . . , Bt ∈ B be a threshold-k covering of A, i.e. x ∈ A iff x belongs
to at least k of Bi ’s. Our goal is to show that then ∆B (A)≥ 1/t.

Since every element of A belongs to at least k of the sets A∩ Bi , the average size of
these sets must be at least k. Since no element of A belongs to more than k− 1 of the
sets A∩ Bi , the average size of these sets must be at most k− 1. Hence,

1≤
1

|A|

t∑

i=1

|A∩ Bi | −
1

|A|

t∑

i=1

|A∩ Bi | ≤ t · max
1≤i≤t

�����
|A∩ Bi |
|A| −

|A∩ Bi |
|A|

����� . □

The next fact which we need is one fact about Hadamard matrices.
An Hadamard matrix of oder n is an n× n matrix with entries ±1 and with row

vectors mutually orthogonal.

LEMMA 10.25 (Lindsey’s Lemma). The absolute value of the sum of all entries in any

a× b submatrix of an n× n Hadamard matrix H does not exceed
p

abn.

PROOF. By the definition of H, the matrix M = 1p
n
H is unitary: M t M = I . Since

such matrices preserve the Euclidean norm, for every real vector v, we have ‖M v‖ =
‖v‖, and hence, ‖Hv‖ =pn‖v‖.

Now, if we denote by vS the characteristic 0-1 vector of S ⊆ {1, . . . , n}, with vS(i) =

1 iff i ∈ S, then the absolute value of the sum of all entries in an |S| × |T | submatrix
of H is the absolute value of the scalar product of vectors vS and HvT . By the Cauchy–
Schwarz inequality, this value does not exceed

‖vS‖ · ‖HvT‖ =
p

n‖vS‖ · ‖vT‖ =
p

n|S||T | . □

Now we are able to prove high lower bounds on the size of Σ⊕3 with an arbitrary
threshold gate on the top.
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A graph associated with an Hadamard matrix M (or just an Hadamard graph) of
oder n is a bipartite n× n graph where two vertices u and v are adjacent if and only if
M[u, v] = +1.

THEOREM 10.26. Any Σ⊕3 circuit which has an arbitrary threshold gate on the top

and represents an n× n Hadamard graph must have top fanin Ω(
p

n).

PROOF. Let A be an n× n Hadamard graph. Take an arbitrary Σ⊕3 circuit which
has an arbitrary threshold gate on the top and represents A. Let s be the fanin of this
threshold gate, and let B be the set of all fat matchings. Then, by Lemma 10.21,
s ≥ thrB (A). To prove s = Ω(

p
n) it is enough, by the Discriminator Lemma, to show

that, for every fat matching B =
⋃t

i=1 Si × Ri ,�����
|A∩ B|
|A| −

|A∩ B|
|A|

�����= O(n−1/2) .

Since both the graph A and its bipartite complement 1 A have Θ(n2) edges, it is enough
to show that ��|A∩ B| − |A∩ B|

�� ≤ n3/2 .

By Lindsey’s lemma, the absolute value of the difference

|A∩ (Si × Ri)| − |A∩ (Si × Ri)|
does not exceed

p
si ri n, where si = |Si | and ri = |Ri |. Since both sums

∑t
i=1 si and∑t

i=1 ri are at most n, we obtain
����|A∩ B| − |A∩ B|

���� =
����

t∑

i=1

|A∩ (Si × Ri)| −
t∑

i=1

|A∩ (Si × Ri)|
����

≤
t∑

i=1

p
si rin≤

p
n

t∑

i=1

si + ri

2
≤ n3/2 . □

Recall that the inner product function is a boolean function in 2m variables defined
by

I P2m(x1, . . . , xm, y1, . . . , ym) =

m∑

i=1

x i yi mod 2 .

Since the graph G f of f = I P2m is a Hadamard n×n graph with n= 2m, Theorem 10.26
immediately yields

COROLLARY 10.27. Any Σ⊕3 circuit which has an arbitrary threshold gate on the top

and computes I P2m must have top fanin Ω(2m/2).

10.4.2. Small depth-2 circuits for Ramsey graphs. Results above could wake
an impression that Ramsey type graphs—that is graphs without large cliques in them
and in their complements—could be good candidates of graphs requiring large depth-3
circuits. We will now show that this is not the case!

THEOREM 10.28. There exist bipartite m×m graphs H such that

a. both H and H are Kt ,t-free for t = 2 log2 m, but

b. H can be represented as a parity of 2 log2 m OR gates.

1A bipartite complement H of a bipartite graph H is obtained by complementing its adjacency matrix.
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PROOF. Let F2 = GF(2) and r be a sufficiently large even integer. With every subset
S ⊆ Fr

2 we associate a bipartite graph HS ⊆ S×S such that two vertices u ∈ S and v ∈ S

are adjacent if and only if 〈u, v〉 = 1, where 〈u, v〉 is the scalar product over GF(2).
Such graphs are known as Sylvester graphs. For n = 2r , the graph HS with S = Fr

2 is
denoted by Hn. We first show that Hn can be represented as a parity of r = log2 n OR
gates:

r⊕

i=1

∨

v∈Ii

xv (10.6)

with Ii = {v | v(i) = 0}. Indeed, two vertices u ∈ S and v ∈ S are adjacent in Hn iff2

|v ∧ u| is odd iff r − |u∧ v| is odd iff the number of sets Ii containing at least one of u

and v is odd iff the number of clauses
∨

v∈Ii
xv accepting the pair uv is odd.

We are now going to show that Hn contains an induced m×m subgraph HS with
m =
p

n satisfying the first claim of Theorem 10.28. The fact that HS is an induced

subgraph implies that (10.6) is also a representation of HS: just set to 0 all variables
xv with v 6∈ S.

To prove that such a subgraph exists, we first establish one Ramsey type property
of graphs HS for arbitrary subsets S ⊆ Fr

2.

LEMMA 10.29. Suppose every vector space V ⊆ Fr
2 of dimension b(r+1)/2c intersects

S in less than t elements. Then neither HS nor the bipartite complement HS contains Kt ,t .

PROOF. The proof is based on the observation that any copy of Kt ,t in HS would
give us a pair of subsets X and Y of S of size t such that 〈u, v〉 = 1 for all u ∈ X and
v ∈ Y . Viewing the vectors in X as the rows of the coefficient matrix and the vectors in
Y as unknowns, we obtain that the sum dim(X ′)+dim(Y ′) of the dimensions of vector
spaces X ′ and Y ′, spanned by X and by Y , cannot exceed r + 1. Hence, at least one of
these dimensions is at most (r + 1)/2, implying that either |X ′ ∩ S|< t or |Y ′ ∩ S|< t.
However, this is impossible because both X ′ and Y ′ contain subsets X and Y of S of
size t. □

It remains therefore to show that a subset S ⊆ Fr
2 of size |S|= 2r/2 =

p
n satisfying

the condition of Lemma 10.29 exists. We show this by probabilistic arguments. For
this, we use the following versions of Chernoff’s inequalities: if X is the sum of n

independent Bernoulli random variables with the success probability p, then

Pr[|X | ≤ (1− c)pn] ≤ e−c2 pn/2 for 0< c ≤ 1,

and
Pr[|X | ≥ cpn] ≤ 2−cpn for c > 2e.

Let S⊆ Fr
2 be a random subset where each vector u ∈ Fr

2 is included in S indepen-
dently with probability p = 21−r/2 = 2/

p
n. By Chernoff’s inequality, |S| ≥ pn/2= 2r/2

with probability at least 1− e−Ω(pN ) = 1− o(1).
Let now V ⊆ Fr

2 be a subspace of Fr
2 of dimension b(r + 1)/2c = r/2 (remember

that r is even). Then |V |= 2r/2 =
p

n and we may expect p|V |= 2 elements in |S∩V |.
By Chernoff’s inequality, Pr[|S∩ V | ≥ 2c] ≤ 2−2c holds for any c > 2e. The number of
vector spaces in Fr

2 of dimension r/2 does not exceed
� r

r/2

�
≤ 2r/

p
r. We can therefore

take c = r/2 and conclude that the set S intersects some r/2-dimensional vector space
V in 2c = r or more elements with probability at most 2r−(log r)/2−r = r−1/2 = o(1).

2|v ∧ u| is the number of common 1’s of vectors u and v.
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Hence, with probability 1−o(1) the set S has cardinality at least 2r/2 and |S∩V |< r for
every r/2-dimensional vector space V . Fix such a set S′ and take an arbitrary subset
S ⊆ S′ of cardinality |S| = 2r/2. By Lemma 10.29, neither HS nor HS contains a copy
of Kr,r . □

10.5. Depth-3 threshold circuits

We now consider depth-3 circuits whose inputs are literals and gates are un-
bounded fanin threshold functions

Thm
k
(x1, . . . , xm) = 1 iff x1 + x2 + · · ·+ xm ≥ k .

These circuits are important by at least two reasons. The first reason is that threshold
circuits are closely related to neural nets, an active area in computer science. The
second reason (important in the context of circuit complexity) is that such circuits are
unexpectedly powerful. Perhaps the most impressive result along these lines is due
to Yao (1990) who showed that the whole class ACC is doable by depth-3 threshold
circuits of

a. size 2(log n)O(1) and
b. AND gates of fanin at most (log n)O(1) at the bottom.

The class ACC consist of all boolean functions computable by constant-depth poly-
nomial size circuits with NOT and unbounded fanin AND, OR and MODm gates for an
arbitrary but fixed m. The function MODm computes 1 iff the number of 1’s in the
inputs vector is divisible by m.

Exponential lower bounds for ACC circuits are only known when m is a prime
power (we will show this for m = 3 in the next chapter (see Section 11.4). But no
such bound is known for a composite number m, say, for m = 6. This is why depth-3
threshold circuits with AND gates at the bottom are of particular interest. Below we
will prove the largest known (superpolynomial) lower bound for such circuits.

Our starting point is the following theorem due to Hastad and Goldmann (1991),
derived using a powerful result in multiparty communication complexity due to Babai,
Nisan and Szegedy (1992); see Lemma 9.13 in Section 9.6 for the proof.

Recall that the generalized inner product function is defined by:

GI Pn,s(x) =

n⊕

i=1

s∧

j=1

x i j .

THEOREM 10.30 (Hastad–Goldmann). Any depth-3 threshold circuits which com-

putes GI Pn,s and has bottom fanin at most s− 1, must be of size exp(Ω(n/s4s)).

The consequence of this theorem is that the generalized inner product circuit re-
quires depth-3 circuits of exponential size, as long as bottom fanin is smaller than log n.
We state this observation as

COROLLARY 10.31. Any depth-3 threshold circuit which computes GI Pn,log n and has

bottom fanin at most (log n)/3, must be of size exp(nΩ(1)).

We are now going to use this result to prove a super-polynomial lower bound in
the case when bottom gates are AND gates of arbitrary fanin. For this, consider now



10.5. DEPTH-3 THRESHOLD CIRCUITS 155

the following boolean function

fn(x) =

n⊕

i=1

log n∧

j=1

n⊕

k=1

x i jk .

THEOREM 10.32. Any depth-3 threshold circuit which computes fn(x) and has un-

bounded fanin AND gates at the bottom, must be of size nΩ(log n).

PROOF. Let C be a depth-3 threshold circuit computing fn(x). The strategy of the
proof is to hit C with a random restriction in order to reduce the bottom fanin. Then
we apply Corollary 10.31 to the resulting sub-circuit.

Set p := (2 ln n)/n. Let % be the random restriction which assigns independently
each variable to ∗ with probability p, and to 0,1 with probabilities (1− p)/2. Given
a boolean function g in n variables and a restriction %, we will denote by g ↾% the
function we get by doing the substitutions prescribed by %.

Let K be a monomial, that is, a conjunction of literals. Denote by |K | the number
of literals in K . We are going to show that for each K we have

Pr[|K↾% | ≥ 1
3

log n] ≤ n−Ω(log n) . (10.7)

To show this, consider two cases.
Case 1: |K | ≤ (log n)2. In this case we have

Pr[|K↾% | ≥ 1
3

log n]≤
�
(log n)2

1
3

log n

�
· p

1
3

log n ≤ O(p log n)(log n)/3 ≤ n−Ω(log n) .

Case 2: |K | ≥ (log n)2. In this case we have

Pr[|K↾% | ≥ 1
3

log n] ≤ Pr[K↾% 6≡ 0] =

�
1+ p

2

�|K |
≤ n−Ω(log n) .

Now, when we have (10.7), the reduction to Corollary 10.31 becomes easy. Namely,
if our original circuit C would have size at most nε log n for a sufficiently small ε > 0
then, by (10.7), the probability that C ↾% has an AND gate on the bottom level of
fanin larger than 1

3
log n would tend to 0. On the other hand, we have n log n sums

g(x) =
⊕n

k=1 x i jk in fn, and the probability that some of them will be evaluated by %
to a constant, is also at most

(1− p)nn log n≤ e−pnn log n= e−2 ln nn log n=
log n

n
→ 0 .

So, there exists an assignment % such that both these events happen. That is, after this
assignment % we are left with a depth-3 threshold circuit C ′ which has bottom fanin at
most 1

3
log n and computes a subfunction f ′

n
of fn where none of the sums g(x) is set to

a constant. By setting (in necessary) some more variables to constant, we will obtain a
circuit of bottom fanin at most 1

3
log n computing GI Pn,log n. By Corollary 10.31, this is

only possible if size(C ′), and hence also size(C), is at least exp(nΩ(1)), a contradiction
with our assumption that size(C)≤ nε log n. □

The reason why Theorem 10.32 does not imply large lower bounds for ACC cir-
cuits3 is that Yao’s reduction (mentioned above) requires much larger lower bounds,
namely, bound of the form exp((log n)α) for α→∞.

3And could not imply since, by its definition, the function fn itself can be computed using n2 log n AND
and MOD2 gates.
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Exercises

EX. 10.1. For a bipartite graph G, let (as before) cnf(G) denote the smallest num-
ber of clauses in a monotone CNF representing G. Define the intersection number int(G)
of G as the smallest number r for which it is possible to assign each vertex v a subset
Sv ⊆ {1, . . . , r} such that u and v are adjacent in G iff Su ∩ Sv = ;.

Prove that cnf(G) = int(G).
Hint: Given a monotone CNF C1 ∧ · · · ∧ Cr , let Su = {i | xu 6∈ Ci}.

EX. 10.2. Show that a bipartite graph can be represented by a monotone Σ3

circuits with top fanin s and middle fanin r iff it is possible to assign each vertex v an
s× r (0,1) matrix Av such that u and v are adjacent in G iff the product-matrix Au ·A>v .
(over the reals) has at least one 0 on the diagonal. Hint: Previous exercise.

EX. 10.3. Show that almost all bipartite n× n graphs require monotoneΣ3 circuits
of size Ω(

p
n). Hint: Previous exercise.

EX. 10.4. A ⊕-decision tree for a boolean function f (x1, . . . , xm) is a binary tree
whose internal nodes are labeled by subsets S ⊆ [m] and whose leaves have labels
from {0,1}. If a node has label S then the test performed at that node is to examine
the parity
⊕

i∈S x i . If the result is 0, one descends into the left subtree, whereas if the
result is 1, one descends into the right subtree. The label of the leaf so reached is the
value of the function (on that particular input). Let DISJ2m(x , y) be a boolean function
in 2m variables defined by DISJ2m(x , y) = 1 iff x i yi = 0 for all i = 1, . . . , m.

Show that any ⊕-decision tree for DISJ2m requires 2Ω(m) leaves.
Hint: Transform the decision tree into a Σ⊕3 circuit.

EX. 10.5. Research problem. Prove or disprove: there exists a bipartite 2m × 2m

graph G such that G can be represented by a monotone Σ3 circuit of size 2polylog(m), but
its bipartite complement G cannot be represented by a monotone Σ3 circuit of such
size.

Comment: Note that here G needs not be explicit—a mere existence would be
enough! This would separate the second level of the communication complexity hier-
archy introduced by Babai, Frankl and Simon (1986), and thus, solve an old problem
in communication complexity.
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CHAPTER 11

Large Depth Circuits

We now consider circuit of depth d ≥ 3. As before, gates are unbounded fanin
ORs and ANDs, and inputs are variables and their negations. We may assume that the
underlying graph is layered so that: (i) inputs for gates on one layer are gates from the
previous layer, and (ii) each layer consists of either OR gates or of AND gates. Hence,
we have d alternating layers of OR and AND gates. Moreover, the first two (nearest to
inputs) layers consist of CNFs (or of DNFs).

Lower bounds for such circuits are proved by reducing the depth one by one, until
a circuit of depth-2 (or depth-1) remains. The key is the so-called Switching Lemma
which allows to replace a CNF on the first two layers by a DNF, thus reducing the
depth by 1. This is achieved by setting some variables to constants. If the total number
of gates in a circuit is not large enough and the depth is constant, then we will end
with a circuit computing a constant function, although a fair number of variables were
not set to constants. For functions, like the Parity function, this yields the desired
contradiction.

11.1. Switching lemma for non-monotone forms

Recall that a boolean function is a t-CNF function if it can be written as an AND
of an arbitrary number of clauses, each being an OR of at most t literals. Dually, a
boolean function is an s-DNF if it can be written as an OR of an arbitrary number of
monomials, each being an AND of at most s literals.

Suppose we have a t-CNF function. Our goal is to find its dual representation as
an s-DNF with s as small as possible. If we just multiply the clauses we can get very
long monomials, much longer than s. So, the function itself may not be an s-DNF. We
can try to assign constants 0 and 1 to some variables and “kill off” all long monomials
(i.e., evaluate them to 0). If we set some variable x i , say, to 1, then two things will
happen: the literal x i gets value 0 and disappears from all clauses, and all the clauses
containing the literal x i disappear (they get value 1).

Of course, if we set all variables to constants, then we are done – there will remain
no monomials at all. The question becomes interesting if we must leave some fairly
large number of variables not assigned. This question is answered by the following
lemma.

Recall that a restriction is a map % of the set of variables to the set {0,1,∗}. The
restriction % can be applied to a function f = f (x1, . . . , xn), then we get the function
f ↾% (called a subfunction of f ) where the variables are set according to %, and %(x i) =

∗ means that x i is left unassigned.

LEMMA 11.1 (Switching Lemma). Let f be a t-CNF on n variables, and let % be a

random restriction leaving a fraction p of variables unassigned. Then

Pr[ f ↾% is not an s-DNF ]≤ (γpt)s , (11.1)

157
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input literals

CNFs DNFs

can be

collapsed

input literals

FIGURE 1. After the Switching Lemma is applied, levels 2 and 3 can
be collapsed into one level.

where γ is an absolute constant.

We will prove this lemma in the next section. Now we apply it to show that the
parity function cannot be computed by constant depth circuits of polynomial size.

THEOREM 11.2. Any depth-d circuit with unbounded fanin AND and OR gates com-

puting a parity of n variables requires 2Ω(n
1/(d−1)) gates.

PROOF. Let C be a depth-d circuit for parity of size S. Our first goal is to reduce the
fanin of gates on the first (next to the inputs) layer. Suppose that they are OR gates; a
symmetric argument applies if they are AND gates.

We think of each such gate as a 1-DNF. We apply the Switching Lemma with t = 1,
s = 2 log2 S and p = 1/(2γ), and deduce that after a random restriction each of the
these 1-DNFs becomes an s-CNF (in fact, a single clause of length ≤ s) with probability
at least

1− (γpt)s = 1− 2s = 1− S−2 .

Since we have at most S of the these 1-DNFs, this in particular implies that there is a
restriction that makes all these 1-DNFs expressible as an OR of at most s input literals.
We apply such a restriction, and what we obtain is a circuit of depth d such that each
bottom gate has fanin at most

b := 2 log2 S

and the circuit still computes parity of n′ = n/(2γ) variables.
We now apply the Switching Lemma to the first two bottom layers with

p = 1/(2γb)

and both s and t equal to b. We get that, for each AND gate on layer 2, after the
restriction the gate can be replaced by an s-DNF with probability at least 1− 2−b =

1−S−2. Hence, there is a restriction for which this is true for all the at most S gates at
layer 2. We apply this restriction, replace each layer-2 gate with a s-DNF, and and use
associativity to collapse the OR gate of each DNF into an OR gates of the second layer
of the original circuit. This way we collapse layer 2 with layer 3 (see Fig. 1).

Now we have a circuit of depth d − 1 that computes parity of

pn′ =
n

4γ2 b

variables, and such that every bottom gate has fanin at most b.
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If we repeat the same argument another d − 3 times, we will eventually end up
with a circuit of depth 2 such that the fanin of the bottom gates is at most b = 2 log2 S

and the circuit computes parity of

m =
n

(4γ2 b)d−2
=

n

(4γ2 log2 S)d−2

variables. Since in any DNF (or CNF) computing parity of m variables, each monomial
(clause) must have length m, this implies that

2 log2 S = b ≥ m=
n

(4γ2 log2 S))d−2
,

from which the desired lower bound S = 2Ω(n
1/(d−1)) follows. □

Note that the only property of the parity function, we used in the proof, is that the
function cannot be made constant by setting fewer than n− 1 variables to constants.
Hence, we in fact have a more general result:

THEOREM 11.3. If a boolean function f in n variables cannot be made constant by set-

ting all but Ω(n1/d ) variables to constants, then any depth-(d+1) circuit with unbounded

fanin AND and OR gates computing f requires 2Ω(n
1/d ) gates.

11.2. Razborov’s proof of switching lemma

We denote by R` the set of all restrictions assigning exactly ` stars. Hence

|R`|=
�

n

`

�
2n−`.

A minterm of f is a restriction % such that f ↾%≡ 1 and which is minimal in the sense
that un-specifying every single value %(i) ∈ {0,1} already violates this property. The
length of a minterm is the number n− |%−1(∗)| of assigned variables.

Let min( f ) be the length of the longest minterm of f , and let

Bad`(s, t) :=
¦
% ∈ R` : min( f ↾%)> s

©
.

In particular, Bad`(s, t) contains all the restrictions % ∈ R` for which f ↾% is not an
s-DNF.

LEMMA 11.4. Let f be a t-CNF on n variables. Then, for any 1≤ s ≤ ` ≤ n,

|Bad`(s, t)| ≤ |R`−s| · (4t)s. (11.2)

Before we merge into the proof of Lemma 11.4, let us show that it indeed implies
Switching Lemma. To show this, take a random restriction % in R` for ` = pn. Then,
by Lemma 11.4, the probability that f ↾% is not an s-Or-And function, is at most

|Bad`(s, t)|
|R`|

≤
� n
`−s

�
2n−`+s(4t)s

�n
`

�
2n−` ≤
�

8t`

n− `

�s
=

�
8t p

(1− p)

�s

which is at most1 (16pt)s as long as p ≤ 2/3.
We now turn to the proof of Lemma 11.4. A general idea is to apply the following:

1More precise calculations yield (7pt)s but we will not care about this.
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Coding Principle: In order to prove that some set A is not very large try to construct
an injective mapping Code : A→ B of A to some set B which is a priori known
to be small, and give a way how to retrieve the element a ∈ A from its code
Code(a). Then |A| ≤ |B|.

PROOF OF LEMMA 11.4. Let F be a t-CNF formula. Fix an order of its clauses and
fix an order of literals in each clause. Suppose that % is a bad restriction, i.e., % ∈
Bad`(s, t). Then there must be a minterm π of F ↾% whose length is at least s. We
truncate π so that it has length exactly s.

Our goal is to show, how using the minterm π and the formula F plus a “small”
additional information, to reconstruct the restriction %.

Consider the first clause C1 of F that is not set to 1 by %; hence, % does not set any
literal of C1 to 1 and does not set all literals of C1 to 0. Let π1 be the portion of π that
assigns values to variables in C1 (actually, to variables in C1↾% since π is a minterm of
F↾%, not of the whole formula F). Let also π1 be the uniquely determined restriction
which has the same domain as π1 and does not set the clause C1↾% to 1. That is, π1

evaluates all the literals “touched” by π1 to 0.
Define the string a1 ∈ {0,1}t based on the fixed ordering of the variables in clause

C1 by letting the j-th component of a1 be 1 if and only if the j-th variable in C1 is set
by π1 (and hence, also by π1). Note that since C1↾% is not an empty clause there is at
least one 1 in a1. Here is a typical example:

C1 = x3 ∨ x4 ∨ x6 ∨ x7 ∨ x12

π1 = ∗ 1 ∗ 1 0
π1 = ∗ 1 ∗ 0 0
a1 = 0 1 0 1 1

The main property of the string a1 is that knowing C1 and a1 we can reconstruct π1.
Now, if π1 6= π, we repeat the above argument with π−π1 in place of π, %π1 in

place of % and find a clause C2 which is the first clause of F not set to 1 by %π1. Based
on this we generate π2, π2 and a2 as before. Continuing this way we get a sequence
of clauses C1, C2, . . .. Each Ci contains some variable that was not in C j for j < i, so we
must stop after we have identified at most s clauses. Say we have identified m clauses.
Hence, π= π1π2 . . .πm.

Let b ∈ {0,1}s be a vector that indicates for each variable set by π (which are the
same as those set by π) whether it is set to the same value as π sets it. (Recall that πi

must set at least one literal of Ci to 1 and may set some of them to 0, whereas πi sets
all these literals to 0.) We encode the restriction % by a string

Code(%) :=


%π1π2 . . .πm, a1, . . . , am, b

�
.

Our goal is to show that the mapping % 7→ Code(%) is injective. For this, it is enough
to show how to reconstruct % uniquely, given Code(%).

First note that it is easy to reconstruct π1. Identify the first clause of F that is not
set to 1 by %π1π2 . . .πm. Since none of the πi sets a clause to 1, this must be clause
C1. Now use a1 to identify the variables of C1 that are set by π1, and use b to identify
how π1 would set these variables. Thus we have reconstructed both sub-restriction π1

and π1. Knowing these sub-restrictions and the entire restriction %π1π2 . . .πm we can
construct the restriction %π1π2 . . .πm.
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Now we can identify C2: it is the first clause of F that is not set to 1 by %π1π2 . . .πm.
Then we use a2 to identify the variables of C2 set by π2, and use b to identify how π2

would set these variables.
Continuing this way, we can reconstruct the restriction π1π2 . . .πm and thus the

original restriction %.
To finish the proof of Lemma 11.4, it is enough to upper bound the range of

Code(%). First, observe that restrictions %π1π2 . . .πm belong to R`−s. Hence, the
number of such restrictions does not exceed |R`−s|. The number of strings b ∈ {0,1}s
is clearly at most 2s. Finally, each (a1, . . . , am) is a string in {0,1}mt with the property
that each a j has at least one 1 and the total number of 1’s in all a j is s. The number of
such strings (a1, . . . , am) with ki ones in ai is

m∏

i=1

�
t

ki

�
≤

m∏

i=1

tki = t
∑m

i=1 ki = t s .

The number of integer solutions k1, . . . , km ≥ 1 of k1+ · · ·+ km = s is
� s−1

m−1

�
≤ 2s (show

this!). Thus, the range of Code(%), and hence, the number |Bad`(s, t)| of restrictions
% ∈R` for which min( f ↾%)> s, does not exceed |R`−s| × (4t)s, as desired. □

11.3. Circuits with parity gates

We already know that Parity function cannot be computed by constant depth cir-
cuits using a polynomial number of unbounded fanin AND and OR gates. Let us there-
fore extend the model and allow Parity functions be also used as gates. What functions
are then difficult to compute? We will show that such is the Majority function Majn
which accepts an input vector of length n iff it has at least as many 1’s as 0’s. The gen-
eral idea is similar as in the case of monotone circuits, but this time with an algebraic
“flavour.” The proof consists of two steps:

a. prove that the majority function is hard to approximate by such polynomials;
b. show that functions, computable by small circuits, can be approximated by low

degree polynomials.

We first establish the first goal (a). In fact we will apply this argument not to
Majority function itself but rather to a closely related function, the k-threshold function

Thn
k
. This function is 1 when at least k of the inputs are 1. Note that each such function

is a subfunction of the Majority function in 2n variables: just set some n− k variables
to 1 and some k of the remaining variables to 0. It is therefore enough to prove a
hight lower bound on Thn

k
for at least one threshold value 1≤ k ≤ n. We will consider

k = d(n+ h+ 1)/2e for an appropriate h.
To achieve the first goal (a), we have to show that any polynomial of low degree

over GF(2) has to differ from k-threshold function on a large fraction of inputs. Recall
that the degree of a multivariate polynomial over F2 = GF(2) is the length of (the
number of variables in) its longest monomial.

LEMMA 11.5. Let n/2 ≤ k ≤ n. Every polynomial p(x) of degree at most 2k− n− 1
differs from the k-threshold function on at least

�n
k

�
inputs:

#{x | p(x) 6= Thn
k
(x)} ≥
�

n

k

�
.
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PROOF. Let g be a polynomial of degree d ≤ 2k − n− 1 over F2 and let U denote
the set of all vectors where it differs from Thn

k
. Let A denote the set of all 0-1 vectors

of length n containing exactly k 1’s.
Consider the 0-1 matrix M = (ma,u) whose rows are indexed by the members of A,

columns are indexed by the members of U , and ma,u = 1 if and only if a ≥ u. For two
vectors a and b we denote by a∧ b the coordinate-wise And of these vectors. Our goal
is to prove that the columns of M span the whole linear space; since the dimension of
this space is |A| =

�n
k

�
, this will mean that we must have |U | ≥

�n
k

�
columns.

The fact that the columns of M span the whole linear space follows directly from
the following claim saying that every unit vector lies in the span:

CLAIM 11.6. If a ∈ A and Ua = {u ∈ U | ma,u = 1}, then

∑

u∈Ua

mb,u =

¨
1 if b = a;

0 if b 6= a.

To prove the claim, observe that by the definition of Ua, we have (all sums are
over F2):
∑

u∈Ua

mb,u =
∑

u∈U

u≤a∧b

1=
∑

x≤a∧b

�
Thn

k
(x) + g(x)
�
=
∑

x≤a∧b

Thn
k
(x) +
∑

x≤a∧b

g(x).

The second term of this last expression is 0, since a ∧ b has at least d + 1 1’s. The first
term is also 0 except if a = b.

This completes the proof of the claim, and thus, the proof of the lemma. □

Our next goal (b) is to show that, if a boolean f function can be computed by a
small-depth circuit will a small number of AND, OR and Parity gates, then f can be
approximated well enough by a low degree polynomial. This is done in a bottom-up
manner. Input variables themselves are polynomials of degree 1, and need not be
approximated. Also, since the degree is not increased by computing the sum, parity
gates do not have to be approximated as well. Hence, it remains to show how to
approximate AND and OR gates. For this, the following simple fact will be useful.

PROPOSITION 11.7. Let y ∈ {0,1}m and let S ⊆ {1, . . . , m} be a random subset. If

y 6= 0 then

Pr[
∑

i∈S yi is even] =
1

2
.

PROOF. Say that a vector x is orthogonal to a vector y if their scalar product
〈x , y〉 =
∑

i x i yi mod 2 over GF(2) is equal to 0. By letting x to be the character-
istic vector of S, it is enough to show that every vector y 6= 0 is orthogonal to exactly
half of all vectors in {0,1}m.

To show this, take an i for which yi = 1 and split the m-cube {0,1}m into 2m−1

pairs x , x ′ that differ only in the ith coordinate. Since the vector y is orthogonal to
exactly one vector from each pair, it follws that y is orthogonal to exactly a half of all
vectors in {0,1}m. □

If p and q are polynomials representing two functions, then p · q is the polynomial
corresponding to their AND, and (p⊕1)(q⊕1)⊕1 is the polynomial corresponding to
their OR. But since we have unbounded degree gates, the degree of AND and OR gates
can greatly increase. We will therefore approximate these gates so that approximating
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polynomial will have fairly low degree. In this section, all polynomials are polynomials
over the field GF(2).

LEMMA 11.8 (Approximation Lemma). Let f be an OR of polynomials g1, . . . , gm of

degree ≤ h. Then, for every integer r ≥ 1, there exists a polynomial p of degree ≤ rh such

that

#{x | p(x) 6= f (x)} ≤ 2n−r .

By the duality, the same hold also for conjunctions (products) of polynomials.

PROOF. To construct the desired polynomial, approximating f = ∨m
i=1 gi , randomly

select r subsets S1, . . . ,Sr of {1, . . . , m}, where each i is included in S j with probability
1/2. Let

f j =
⊕

i∈S j

gi

and consider

f ′ =

r∨

j=1

f j =

r∨

j=1

⊕

i∈S j

gi .

We claim that the probability that f ′ satisfies the requirements of the lemma is non-
zero. Since f ′ is an OR of r polynomials of degree at most h, f ′ itself can be written as
a polynomial of degree at most rh using the rule f ∨ g = ( f ⊕ 1)∧ (g ⊕ 1)⊕ 1.

Hence, it remains to show that f ′ differs from f in at most 2n−r inputs. To show
this, take an arbitrary input a ∈ {0,1}n. We claim that the probability that f ′(a) 6= f (a)

is at most 2−r . To see this consider two cases.
If gi(a) = 0 for every i, then both f (a) = 0 and f ′(a) = 0. On the other hand, if

there exists an i for which gi(a) = 1, then f (a) = 1 and (by Proposition 11.7 applied
with yi := gi(a)) for each j, f j(a) = 0 independently with probability at most 1/2.
Therefore, f ′(a) = 0 with probability at most 2−r , and the expected number of inputs
on which f ′ 6= f is at most 2n−r . Hence for at least one particular choice of the sets S j,
the polynomial f ′ differs from f on at most 2n−r inputs. □

LEMMA 11.9. If a boolean function f in n variables can be computed by an unbounded

fanin circuit of depth d over the basis {∧,∨,⊕}, then for any integer r ≥ 1, there exists a

polynomial g of degree at most rd such that g differs from f on at most ` · 2n−r inputs.

PROOF. Apply Lemma 11.8 to approximate the OR and AND gates in the circuit.
The functions computed by the gates at the ith level will be approximated by polyno-
mials of degree at most r i . Since we have only d levels, the function f computed at
the top gate will be approximated by a polynomial f ′ of degree at most rd . Since, by
Lemma 11.8, at each of ` gates we have introduced at most 2n−r errors, f ′ can differ
from f on at most `2n−r inputs. □

THEOREM 11.10. Every unbounded fanin depth-d circuit over {∧,∨,⊕} computing

Majn requires 2Ω(n
1/2d ) gates.

PROOF. By the remark above, it is enough to prove such a lower bound for a depth-
d circuit computing a k-threshold function Thn

k
for some n/2 ≤ k ≤ n (to be specified

later). Take such a circuit of size ` computing Thn
k
. Lemmas 11.5 and 11.9 imply that

` ≥
�

n

k

�
2r−n .
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Taking r = bn1/(2d)c and k = d(n+ rd + 1)/2e = d(n+pn+ 1)/2e, the right hand side
turns to 2Ω(r), and we are done. □

11.4. An algebraic lower bound for parity

A modular function MODp is the boolean function which is 1 iff the number of 1’s
in the input vector is divisible by p. Hence, MOD2 is the parity function. We have seen
that MOD2 cannot be computed by a constant depth circuit with polynomial number
of NOT, AND and OR gates. But what if, besides NOT, AND and OR gates, we allow
some modular gates MODp with p ≥ 3 be used as gates—can then MOD2 be easier
computed?

It turns out that the use of gates MODp, where p ≥ 3 is a prime power, does not
help to compute the Parity MOD2 more efficiently.2 We will show this for the special
case p = 3.

Under a modular circuit we will understand an unbounded fanin circuit with AND,
OR, NOT and MOD3 gates. The general proof idea will be again the same: show
that functions, computable by small circuits with MOD3 gates, can be approximated
by low degree polynomials over GF(3), and prove that the parity function is hard to
approximate by such polynomials.

DEFINITION 11.11. A b-approximator is a polynomial on the input variables x1, . . . , xn

of degree at most b over GF(3), the three element field {−1,0,1}, where on inputs
from {0,1} it takes values from {0,1}.

The following lemma states that, if a boolean function can be computed by a
modular circuit of small depth using a small number of gates, then this function can
be approximated well enough by a small degree polynomial over GF(3).

LEMMA 11.12. If a boolean function f can be computed by a modular depth-d circuit

of size ` then, for every integer r ≥ 1, there is a (2r)d -approximator which differs from f

on at most ` · 2n−r inputs.

PROOF. Take such a circuit C computing f . We inductively assign to each gate
of the circuit a particular approximator working up from inputs to the output. Each
assignment introduces some error which is the number of output deviations between
it and the result of applying the true operator at that gate to the approximators of the
gates feeding into it, looking only at inputs drown from {0,1}n.

Approximators of input variables are variables themselves. If the gate g is a NOT
gate and the unique gate feeding into it has b-approximator f , then we assign the b-
approximator 1− f to g. This approximator introduces no errors. If g is a MOD3 gate
and its inputs have b-approximators f1, . . . , fk then we assign the 2b-approximator3

(
∑k

i=1 fi)
2 to g. Since 02 = 0 and (−1)2 = 1 this introduces no new errors, as well.

It remains to consider the case when g is an OR gate (the case of an AND gate
is similar). So, let g(x) be the function computed at an OR gate whose inputs have
b-approximators f1, . . . , fm.

CLAIM 11.13. For every integer r ≥ 1, there exists a 2r b-approximator p of g such
that the number of inputs x ∈ {0,1}n on which p(x) differs from OR( f1, . . . , fm) does
not exceed 2n−r .

2For other values of p, the smallest being p = 6, no explicit boolean function requiring a super-
polynomial number of gates is known (Research Problem!).

3The only reason to take a square is to ensure that the resulting function takes boolean values 0 and 1.
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PROOF. For every integer r ≥ 1, we construct a 2r b-approximator for g(x) as
follows. Randomly select r subsets S1, . . . ,Sr of {1, . . . , m}, where each i is included in
S j with probability 1/2. Let

f ′
i
(x) :=
�∑

j∈Si

f j(x)
�2

and consider a random polynomial

p(x) := 1−
r∏

i=1

(1− f ′
i
(x)) .

The degree of p(x) is at most 2r b, as the degree of each f ′
i

is at most 2b. Moreover, if
OR( f1, . . . , fm) outputs 0, then p(x) = 0. So, take an input x on which OR( f1, . . . , fm)

outputs 1, that is fi(x) = 1 for at least one i. By Proposition 11.7, applied with
y1 := f1(x), . . . , ym := fm(x), we obtain that

Pr[ f ′
i
(x) = 0] ≤

1

2
for each i = 1, . . . , r. Hence,

Pr[p(x) = 0] = Pr[ f ′
i
(x) = 0 for all i = 1, . . . , r]≤ 2−r .

By an averaging argument there must be a collection of the sets Si so that the number
of input settings, on which the OR of f1(x), . . . , fm(x) is 1 and p(x) = 0, is at most
2n−r . □

Now we can finish the proof of Lemma 11.12 as follows. The inputs of our circuit
computing f are assigned the corresponding 1-approximators. By Claim 11.13, each
layer increases the degree of the approximators by a factor of at most 2r, and each
assignment of approximators contributes at most 2n−r error. Since we only have d

layers and only ` gates in total, the last gate will receive a (2r)d -approximator which
differs from f on at most ` · 2n−r input vectors. □

To apply Lemma 11.12 to the parity function, we have to show that parity(x)
cannot be approximated well enough by small degree polynomials over GF(3).

LEMMA 11.14. Any
p

n-approximator must differ from parity(x) on at least

0.15 · 2n input vectors.

PROOF. For this proof, we represent boolean values by 1 and −1 rather than 0 and
1. Namely, we replace each boolean variable x i by a new variable yi = 1−2x i . Hence,
yi = 1 if x i = 0, and yi = −1 if x i = 1. The parity function then turns to the product
of the yi:

n⊕

i=1

x i = 1 iff
n∏

i=1

yi =−1 .

Suppose that p(y) is a polynomial over GF(3) of degree at most
p

n. We need to show
that this polynomial differs from

∏n

i=1 yi on at least 0.15 fraction of the vectors in
{1,−1}n.

Let A = {y | p(y) =
∏n

i=1 yi}. We wish to show that A is small (has size at most
0.85 · 2n) and will do this by upper bounding the number |F | functions in the set F of
all functions f : A→ {−1,0,1}: since |F |= 3|A| we may bound the size of A by showing
that |F | is small.
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We claim that every function in F can be represented as a multilinear polynomial
over GF(3) of degree at most (n +

p
n)/2. Suppose f ∈ F , and M =

∏
i∈S yi is a

monomial in the representation of f . If |S|> (n+pn)/2, we replace the monomial by

M ′ =
∏

i 6∈S

yi · p(y) .

Since
∏

i 6∈S

yi ·
n∏

i=1

yi =
∏

i∈S

yi ·
∏

i 6∈S

y2
i
=
∏

i∈S

yi ,

we have that M ′(y) = M(y) for all y ∈ A, and

degree(M ′)≤
n−pn

2
+
p

n=
n+
p

n

2
.

Thus, every function in F can be represented as a multilinear polynomial over GF(3)
of degree at most (n+

p
n)/2.

The number of multilinear monomials of degree at most (n+
p

n)/2 is

N =

n+
p

n

2∑

i=0

�
n

i

�
≤ 0.85 · 2n

for large n. Since, |F | ≤ 3N , we conclude that

|A| = log3 |F | ≤ log3 N ≤ 0.85 · 2n . □

Combining the two lemmas above we obtain the following

THEOREM 11.15. Any modular depth-d circuit computing the parity function requires

2Ω(n
1/2d ) gates.

PROOF. Let ` be the minimum size of a modular depth-d circuit computing parity(x).
Taking r = n1/2d/2 in Lemma 11.12, we obtain that then there must exist a

p
n-

approximator p(x) such that

#{x | p(x) 6= parity(x)} ≤ ` · 2n−n1/2d /2 .

But Lemma 11.14 implies that

#{x | p(x) 6= parity(x)} ≥ 0.15 · 2n ,

and the desired lower bound on ` follows. □

11.5. Rigid matrices require large circuits

We now consider boolean circuits computing (0,1) matrices of some fixed in ad-
vance dimension. Inputs are rectangular matrices, that is, matrices of rank 1. Each of
these matrices can be described by a Cartesian product I × J corresponding to its all-1
submatrix. Boolean operation on matrices are computed component-wise. Thus, each
such circuit computes some matrix. As before, the depth of a circuit is the length of a
longest path from an input to an output gate. The size is the number of gates.

Let Cd(M) denote the smallest size of an unbounded fanin circuit of depth d over
the basis {&,∨,¬,⊕} computing the matrix M .

What matrices require large constant-depth circuits? We will show that such are
matrices of high “rigidity”.
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The rigidity RM (r) of a (0,1) matrix M over GF(2) is the smallest number of
entries of A that must be changed in order to reduce its rank over GF(2) until r. That
is,

RM (r) =min{|B| : rk(M ⊕ B)≤ r} ,
where |B| is the total number of 1s in B.

THEOREM 11.16. Let M be an n× n (0,1) matrix, and d ≥ 2 an integer. If

RM (r)≥
n2

exp((ln r)1/d)
(11.3)

then

Cd−1(M)≥ 2Ω((ln r)1/d ) . (11.4)

PROOF. We will again use the approximation method. This time we will approx-
imate matrices, computed at intermediate gates of the circuit, by matrices of small
rank. Set

` := b2(ln r)1/dc .
Note that for r = O(1) the theorem is obvious, so we assume that r and ` are large
enough.

Suppose we have an unbounded fanin circuit over {&,∨,¬,⊕} of depth at most d

and size s computing the matrix M . We have to show that (11.3) implies

s ≥ 2Ω((ln r)1/d ) . (11.5)

At each gate v of the circuit some (0,1) matrix A is computed. We inductively assign
to each gate on the ith layer an approximator, which is a (0,1) matrix eA of rank

rk(eA)≤ (s+ 1)O(`
i) . (11.6)

As before, the assignments are done inductively, first to the inputs, then working up
to the output. Each assignment introduces some errors which are the positions the ap-
proximator eA differs from the matrix obtained by applying the true operator at that gate
to the approximators of the gates feeding into it. Our goal is to assign approximators
in such a way that:

At each gate at most n2/2` errors are introduced. (11.7)

We first show that (11.6) and (11.7) already imply the theorem. To see this, let eM be
the approximator of the matrix computed at the last gate.

If rk( eM)≥ r then (11.6) implies that r ≤ (s+1)O(`
d−1), and since `d−1 = Ω((ln r)1−1/d))

(by the choice of `), the desired lower bound (11.5) on the size s follows.
If rk( eM)≤ r then our assumption (11.3) implies that

|M − eM | ≥ RM (r)≥
n2

exp((ln r)1/d)
.

On the other hand, (11.7) implies that

|M − eM | ≤ s · n2/2` = s ·
n2

exp(2(ln r)1/d)
.

Comparing these two estimates, we again obtain the desired lower bound (11.5) on
the size s. It remains, therefore, to show how to assign approximators satisfying (11.6)
and (11.7).
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Approximators of input matrices are matrices themselves. Recall that these matri-
ces have rank ≤ 1.

If the gate v is a NOT gate and the unique gate feeding into it has an approximator
eA, then we assign the approximator ¬eA to v. Since rk(¬eA) ≤ rk(eA) + 1, the rank
condition (11.6) is fulfilled.

If the gate v is a parity gate, then let the approximator of v be just the sum modulo
2 of the approximators of all its m ≤ s inputs gates. The rank condition (11.6) is
fulfilled by the subadditivity of rank:

rk(eA)≤ m · (s+ 1)O(`
i−1) ≤ (s+ 1)O(`

i) .

So far we have introduced no errors at all. The source of errors are, however, AND and
OR gates. For these gates we use the following lemma whose proof is similar to that of
the Approximation Lemma for multivariate polynomials (Lemma 11.8).

LEMMA 11.17 (Approximation Lemma for Matrices). Let ` ≥ 1 be an integer. If

A=
∨h

i=1 Ai is an OR of n×n (0,1) matrices, each of rank at most r, then there is a (0,1)
matrix C such that

rk(C) ≤ 1+ (1+ hr)` and |A⊕ C | ≤ n2/2` .

PROOF. Let L be the linear space of (0,1) matrices over GF(2) generated by
A1, . . . ,Ah. Then rk(B)≤ hr for every B ∈ L . Take a matrix B = (bi j) in L at random.

That is, B =
⊕h

i=1λiAi , where Pr[λi = 0] = Pr[λi = 1] = 1/2 for all coefficients λi

uniformly and independently. Let A = (ai j). Each time when ai j = 1, the (i, j)-th en-
try of at least one of the matrices A1, . . . ,Am is 1, and the corresponding scalar product
bi j =
⊕h

i=1 λi ·Ai[i, j] equals 0 with probability 1/2. That is, Pr[bi j = 0|ai j = 1] = 1/2.
Hence, if we let C = (ci j) to be an OR of ` independent copies of B, then Pr[ci j =

0] = 1 if ai j = 0, and Pr[ci j = 0] ≤ 2−` if ai j = 1. That is, the expected number of
positions, where C deviates from A, does not exceed n2 · 2−`.

It therefore exists a matrix C of the form C =
∨`

k=1 Bk such that |A⊕ C | ≤ n2/2`

and rk(Bi)≤ hr for each i. Using the rule x ∨ y = (x ⊕1)∧ (y ⊕1)⊕1, this OR can be
written as an all-1 matrix plus an AND of ` matrices, each of which has rank at most
1+ hr. Since the AND of matrices is a component-wise product of their entries, and
component-wise product is bilinear in the space of rows of matrices, this implies that
rk(A∧ B) ≤ rk(A) · rk(B). Since we have an AND of ` matrices each of rank at most
1+ hr, this give the desired upper bound rk(C)≤ 1+ (1+ hr)` on the rank of C . □

Now, if v is an OR gate at the ith layer of our circuit, and if it has h inputs then
Lemma 11.17, applied with r = (s + 1)O(`

i−1), yields the desired approximator for v

satisfying (11.6). The case of an AND gate reduces to that of OR gates by DeMorgan
rules. □

Theorem 11.16 has several interesting consequence. Let us mention two of them.
1. Babai, Frankl and Simon (1986) introduced the communication complexity

analogon PH cc of the complexity class PH, and proved that PH cc coincides with the
class of n× n (0,1) matrices M whose constant depth circuit complexity over the basis
{&,∨} does not exceed ≤ exp

�
(ln ln n)O(1)
�
. Theorem 11.16 immediately implies that,

if

RM (r)≥
n2

exp(ln r)o(1)
for r ≥ exp((ln ln n)ω(1)) ,
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then M 6∈ PH cc . That is, the class PH cc does not contain highly rigid matrices.
2. Razborov (1988) used probabilistic arguments to show that unbounded fanin

circuits over {&,⊕, 1} of small depth can efficiently compute some combinatorially
“complicated” matrices, sharing many extremal properties of random matrices. To-
gether with Theorem 11.16 this implies that also matrices of low rigidity may share
many properties of random matrices.

Exercises

EX. 11.1. Let X = {x1, . . . , xn} be a set of boolean variables. Consider the following
random restriction % : X → {0,1,∗}: for each i = 1, . . . , n set %(x i) = ∗with probability
p = 1/

p
n, and set x i to 0 or 1 with equal probability (1− p)/2. Assume that n is large

enough.

a. Let F be an OR of literals, and c > 0 a constant. Show that F ↾% will depend on
more than c variables with probability at most n−c/3.
Hint: Consider two cases depending on whether: (i) the clause is “large”, that is, contains more than

m := c log2 n literals, or (ii) is “small”, that is, contains at most m literals. Show that in the first case F↾%

will be non-constant with probability at most ((1+ p)/2)m , whereas in the second case F↾% will contain

at least c variables with probability at most
�m

c

�
pc . Show that both these bounds are at most n−c/3 if n is

large enough.

b. Weaker version of the Switching Lemma. Prove that for every integer constants
c, k ≥ 1 there is a constant b = b(c, k) with the following property: If F is a c-CNF
on n variables, then

Pr[F↾% depends on ≥ b variables] ≤ n−k .

Hint: Argue by induction on k. Use the previous exercise for the base case b(1, k) = 3k. For the induction

step, take a maximal set of clauses in F whose sets of variables are pairwise disjoint, and let Y be the

union of these variable sets. Hence, each clause of F has at least one variable in Y . Consider two cases

depending on whether |Y | ≥ k2c log n or not. If |Y | ≥ k2c log n, then use the disjointness of clauses

determining Y to show that then F ↾% becomes constant with probability at least 1 − n−k . In the case

when |Y | ≤ k2c log n show that, for every i, the probability that more than i variables in Y will remain

unassigned is at most n−i/3 (cf. the previous exercise). Take i = 4k (why?), set these 4k free variables of

Y to constants in all possible ways to obtain a (c− 1)-CNF F ′, and apply induction hypothesis to F ′.

Bibliographic Notes

The version of the Switching Lemma (Lemma 11.1) is due to Hastad (1986, 1989).
Somewhat weaker versions of this lemma were earlier proved by Ajtai (1983), Furst,
Saxe, and Sipser (1984), and Yao (1985). All these proofs used probabilistic argu-
ments. The novel (non-probabilistic) proof given in Section 11.2 is due to Razborov
(1995). The results of Section 11.3 are also due to Razborov (1987), but in their
presentation we followed the exposition of Lovász, Shmoys and Tardos (1995). The-
orem 11.15 is a special case of a more general result proved by Smolensky (1997).
Theorem 11.16 is due to Razborov (1989b).



CHAPTER 12

Depth-2 Circuits With Arbitrary Gates

In this chapter we consider unbonded fanin circuits of depth 2. If we would only al-
low AND, OR and NOT gates, then each such circuit would be just a DNF or a CNF, and
large (exponential) lower bounds here are easy to show: already the Parity function
has then exponential complexity. But what if we allow arbitrary(!) boolean functions
be used as gates?

Of course, then every single boolean function f : {0,1}n→ {0,1} can be computed
by a circuit with just one gate—the function f itself. The problem, however, becomes
non-trivial if instead of one function, we want to simultaneously compute n boolean
functions f1, . . . , fn on the same set of n variables x1, . . . , xn, that is, to compute an
n-operator f : {0,1}n → {0,1}n. Note that in this case the phenomenon which causes
complexity of circuits is information transfer instead of information processing as in the
case of single functions.

As before, a circuit computing a given n-operator can be imagined as a directed
acyclic graph with n input nodes corresponding to the variables x1, . . . , xn, n output
nodes corresponding to the boolean functions f1, . . . , fn to be computed, and each non-
input node computing an arbitrary boolean function of its inputs. The size of the circuit
is then the total number of wires in it.

Note that also for operators we cannot expect larger than n2 lower bounds: every
operator can be computed using at most n2 wires, even in depth 1. In this chapter
we will concentrate on general circuits of depth 2—the first non-trivial case. Super-
linear lower bounds of the form Ω(n log n) for such circuits were proved using graph
theoretic arguments—so-called “superconcentrators”—and algebraic arguments—the
matrix rigidity. The advantage of these arguments is that they actually say more: they
give us a structural information about how the circuits for a given operator look like.
The disadvantage is purely numerical: these arguments cannot (provably!) lead to
larger than Ω(n log2 n) lower bounds on the number of wires.

Larger lower bounds Ω(n3/2) were recently proved using a much simper informa-
tion theoretic argument, and we present it below. The argument itself is reminiscent of
Nechiporuk’s argument for formulas: an operator requires many wires if the number
of its sub-operators is large.

12.1. Lower bounds for depth-2 circuits

Using counting arguments, it can be shown (Exercise 12.1) that most operators
f : {0,1}n → {0,1}n require about n2 wires in any circuit. But where are these “hard”
operators? The disadvantage of any counting or probabilistic argument is that it usu-
ally gives no hint on what the hard objects actually are. In particular, what is the
complexity of often used operators like cyclic convolution (corresponding to product
of polynomials) or matrix product? That is, what we need are lower bounds for explicit

operators.

170
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In this section we prove such lower bounds in the class of depth-2 circuits. We
will assume that there are no direct wires from input to output nodes: this can be
easily achieved by adding n new nodes of fanin 2 on the middle layer labeled by input
variables. The increase of the size by an additive factor of n will not hurt us, because
the bounds we are going to prove will be super-linear in n.

Let size2( f ) denote the smallest number of wires in a depth-2 circuit with arbitrary
gates computing the operator f . In this section we will first show that it is the entropy
of an operator f that forces large number of wires in depth-2 circuits. We will then
use this to show that the operator f corresponding to the product two n× n boolean
matrices over GF(2) has size2( f ) = Θ(n

3).

12.1.1. Entropy and the number of wires. An operator f : {0,1}n → {0,1}m
maps binary strings of length n to binary strings of length m. Each such operator can
be looked at as a sequence f = ( f1, . . . , fm) of m (not necessarily distinct) boolean
functions fi : {0,1}n → {0,1}, each on the same set of n variables. The range of f is
the set

Range( f ) = { f (a) | a ∈ {0,1}n} ⊆ {0,1}m
of distinct values taken by f . Define the entropy, E( f ), of an operator f as the
logarithms to the basis 2 of the number of distinct values taken by f . That is,E( f ) = log2 |Range( f )| .

REMARK 12.1. It is clear that, for any operator f = ( f1, . . . , fm) : {0,1}n→ {0,1}m,
we have that E( f ) ≤ min{n, m}, just because |Range( f )| ≤ min{2n, 2m}. For our pur-
poses, however, more important will be the following three properties of entropy:

a. E( f ) ≤ |{ f1, . . . , fm}|. That is, E( f ) cannot exceed the number of distinct

boolean functions in f . This holds because only different functions can pro-
duce different values.

b. E( f ) ≥ r if we have r distinct single variables among the functions f1, . . . , fm,
just because then f must take at least 2r distinct values.

c. E( f ) ≤ E(g) if every function fi of f can be computed as some boolean func-
tion applied to the functions of operator g. Indeed, in this case g(a) = g(b)

implies f (a) = f (b). Hence, f cannot take more distinct values than g.

The next important concept is that of a “suboperator”. Given a set I ⊆ [n] of
inputs and a set J ⊆ [m] of outputs, define the suboperator fI,J of f as an operator

fI,J = ( f
i
j
| i ∈ I , j ∈ J)

consisting of |I | · |J | (not necessarily distinct) boolean functions f i
j

with i ∈ I and

j ∈ J , where f i
j

is a subfunction of f j obtained by setting the ith variable to 1 and
all remaining variables in I to 0. Thus, fI,J maps binary strings of length n− |I | (|I |
variables are fixed) to binary strings of length |I | · |J | (so many functions f i

j
we have).

Take now an arbitrary depth-2 circuit computing a given operator f . Let I be a
subset of input nodes and J a subset of output nodes. Let also Wires(I , J) denote the
number of wires leaving I plus the number of wires entering J .

The following lemma is our main technical tool relating the number of wires to
the entropy of the computed operator.

LEMMA 12.2. For any subset I of inputs and any subset J of outputs, we have:

Wires(I , J)≥ E( fI,J ) .
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PROOF. Let V be the set of all nodes on the middle layer from which there is a wire
to a node in J . (Note that V only depends on the choice of J .) For v ∈ V , let gv be
a boolean function computed at this node, and let I(v) be the set of inputs i ∈ I from
which there is a wire to v. For i ∈ I , let g i

v
be the subfunction of gv obtained by setting

x i = 1 and x j = 0 for all j ∈ I − {i}. Let also g0
v

be obtained from gv by setting all

variables x i with i ∈ I to 0. Consider the operator h= (g i
v
| v ∈ V, i ∈ I). A simple (but

crucial) observation is:

If i 6∈ I(v), then the function gv cannot depend on the ith input variable x i

(since then we have no wire from x i to gv), implying that g i
v
= g0

v
.

Hence, for each node v ∈ V , the function gv constitutes at most 1 + |I(v)| distinct
functions to the operator h: the function g0

v
and at most |I(v)| distinct functions g i

v

with i ∈ I(v). Since we have only |V | possible functions gv , the total number of
distinct boolean functions in h and, by Remark 12.1(1), the entropy E(h) of h, cannot
not exceed |V |+

∑
v∈V |I(v)|.

On the other hand, we have that Wires(I , J)≥ |V |+
∑

v∈V |I(v)|. Indeed,
∑

v∈V |I(v)|
is the number of wires going from I to V and, since (by the definition of V ) from every
node in V there must be at least one wire to a node in J , |V | is at most the total number
of wires from V to J .

To finish the proof, observe that all output functions f j with j ∈ J must be com-
putable from the set of functions gv with v ∈ V : only these functions have an influence
(have a wire) to the outputs in J . Hence, the suboperator fI,J must be computable
from h, as well. Remark 12.1(3) implies thatE( fI,J )≤ E(h)≤ |V |+∑

v∈V

|I(v)| ,

as desired. □

REMARK 12.3. Note that our lower bound on the number of wires going from V

to J is very “pessimistic”: we lower bound this number just by the number |V | of the
starting nodes of these wires, as if these nodes had fanout 1. Here, apparently, is some
space for an improvement.

THEOREM 12.4. Let f be an operator. Then, for every partition I1, . . . , Ip of inputs,

and every partition J1, . . . , Jp of outputs, we have that

size2( f )≥ E( fI1,J1
) +E( fI2 ,J2

) + · · ·+E( fIp ,Jp
) .

PROOF. No wire can leave two input nodes, and no wire can enter two output
nodes. Hence, the result follows directly from Theorem 12.2. □

12.1.2. Application: Matrix product. Let n= m2. The operator f =multn(X , Y )

of matrix product takes two m-by-m matrices X and Y as inputs, and produces their
product Z = X · Y . Since Z is just a sequence of m2 scalar products in 2m variables
(row of X times a column of Y ), all these scalar products can be computed by depth-1
circuit using 2m ·m2 = 2n3/2 wires.

THEOREM 12.5. Any depth-2 circuit for multn(X , Y ) requires at least n3/2 wires.

PROOF. Observe that if we take I to be the ith row of X and J to be the ith row
of Z , then the suboperator fI,J contains all m2 = n single variables of Y among its
boolean functions. Indeed, if we set x i j = 1 and all other entries of X to 0, then the
product Ei j · Y of Y with the resulting (0,1) matrix Ei j is just the jth row of Y (see
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FIGURE 1. As j ranges from 1 to m, the values of Ei, j ·Y range through
all m single variables yi,1, . . . , yi,m of the ith row of Y .

Fig. 1). When doing this for j = 1, . . . , m, we obtain all m2 variables Y = {yi j} among
the functions in fI,J . By Remark 12.1(2), we then have that E( fI,J) ≥ n.

Since we have m = n1/2 rows, we have m sets I1, . . . , Im of inputs and m sets
J1, . . . , Jm of outputs. Since the Ii ’s as well as Ji ’s are disjoint, Theorem 12.4 implies
that every depth-2 circuit computing f (X , Y ) = X ·Y must have at least

∑m
i=1E( fIi ,Ji

) ≥
mn= n3/2 wires. □

REMARK 12.6. Note that the entropy of the matrix product operator f (X , Y ) = X ·Y
is large only for this special “row-wise” partition of inputs and outputs. In particular,E( fIi ,J j

)≤ |J j |= m=
p

n for i 6= j, because in this case the assignments of constants to
the ith row of X does not affect the results computed at the jth row of Z , which are m

scalar products of m columns of Y with the jth row of X .

There are, however, “more complicated” operators, whose entropy remains large
under any partitions of inputs and outputs. Such is, for example, the operator of
cyclic convolution f = convn(x , y). This operator takes vectors x = (x0, . . . , xn−1) and
y = (y0, . . . , yn−1) as inputs and outputs the vector z = (z0, . . . , zn−1), where

z j =
∑

k=i+ j (mod n)

x i yk (mod 2) .

This operator can also represented as a matrix-vector product. Namely, associate with
a vector of variables x = (x0, . . . , xn−1) the following n× n matrix of variables:

Circ(x) =




x0 xn−1 · · · x2 x1

x1 x0 · · · x3 x2
...

...
...

...
xn−2 xn−3 · · · x0 xn−1

xn−1 xn−2 · · · x1 x0




.

Then convn(x , y) = Circ(x ) · y over GF(2).

EXERCISE 12.7. Let n= k·l. Show that, if we partite input vector x into p = n/k = l

consecutive intervals I1, . . . , Ip of length n/p = k, then there exists a partition of the
output vector z into q = n/p = k disjoint sets J1, . . . , Jq such that E(convn(x , y)Ii ,J j

)≥ n

for any i and j. Hint: Consider residue classes modulo p.
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12.2. Depth-2 circuits for linear operators

Every m-by-n (0,1)-matrix A defines a linear transformation fA(x ) = Ax over
GF(2), where x ∈ GF(2)n is an input. If A is an n × n matrix, then we call fA a
linear n-operator. Each such operator is just a set of n linear forms over GF(2).

We are interested in computing such forms by general circuits using as few wires
as possible. We are particularly interested in circuits of depth 2, the first nontrivial
case. Recall that such a circuit is a directed acyclic graph of depth 2 with n input nodes
x1, . . . , xn, n output nodes y1, . . . , yn and every non-input node v assigned a gate gv

computing an arbitrary boolean function of its inputs; there is no bound on the fanin
or on the fanout of the nodes. A circuit is linear if all gates are linear functions over
GF(2), that is, parities or their negations.

PROPOSITION 12.8. Some linear n-operators require at least Ω(n2/ log n) wires in any

linear circuits, and any such operator can be computed by a linear depth-2 circuits using

O(n2/ log n) wires.

PROOF. Simple counting argument shows that at most (nL)O(L) different linear n-
operators can be computed by linear circuits with at most L wires. Since the total
number of such operators is 2n2

, the lower bound L = Ω(n2/ log n) follows.
For the proof of the upper bound, we use a well-known fact, due to Erdös, that, if

a graph G has n vertices and e edges, and k satisfies

n

�
e/n

k

�
≥ k ·
�

n

k

�
,

then G contains a complete k× k subgraph. By removing these subgraphs one-by-one,
we will decompose the graph into its edge-disjoint complete bipartite subgraphs so that
the sum of sizes (=number of vertices) of these subgraphs does not exceed O(n2/ ln n).
This decomposition then can be used to construct a linear depth-2 circuit for the matrix
A with the same number of wires: the set of input nodes and output nodes, incident to
fixed node on the middle layer, forms a bipartite graph. Since, due to the linearity, this
circuit must also compute the whole operator fA, we are done. □

Nothing similar, however, is known for general (non-linear) circuits computing
linear operators. Here even the case of depth-2 circuits remains unclear. The largest
lower bound for general depth-2 circuits computing a linear n-operator has the form
Ω(n log n). This bound was proved by Pudlák (1994) and is achieved by a triangular
matrix A.

To show the difference between linear and general circuits for linear operators, we
relax the problem and only require that a circuit correctly computes the operator on
the standard basis e1, . . . ,en, where e j = (0, . . . , 0, 1,0, . . . , 0) with precisely one 1 in
the jth position.

Namely, say that a circuit represents a boolean matrix A = (ai j) if it correctly
computes the linear operator Ax over GF(2) on all n unit vectors e1, . . . ,en; on other
input vectors x the circuit can output arbitrary values. Hence, if f = ( f1, . . . , fn) is
the operator computed by a circuit representing A, then the only requirement is that
fi(e j) = ai j must hold for all i and j.

It is clear that any circuit computing the whole operator fAx) = Ax must also rep-
resent the matrix. Moreover, in the class of linear circuits we also have an inverse: a
linear circuit represents a matrix A if and only if it computes the entire linear transfor-
mation Ax . This holds, because the behavior of a linear circuit on all 2n input vectors x
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is completely determined by its behavior on n unit vectors: just write each input vector
x = (x1, . . . , xn) as the sum x = x1e1 ⊕ · · · ⊕ xnen and use the linearity of gates.

We will now show that in the class of general circuits the situation is entirely
different. Recall that, by Proposition 12.8 and the remark in the previous paragraph,
in the class of linear circuits some matrices A require Ω(n2/ log n) wires to represent
them.

THEOREM 12.9. Every n× n (0,1) matrix A can be represented by a depth-2 circuit

with O(n log n) wires.

PROOF. We construct the desired depth-2 circuit representing A= (ai j) as follows.
Let m be the smallest even integer such that

� m
m/2

�
≥ n; hence m = O(ln n). Take m

middle nodes V = {v1, . . . , vm}. To each input variable x j assign its own subset S j ⊆ V

of |S j | = m/2 middle nodes; hence, S j1
⊆ S j2

iff j1 = j2. Join x j with all nodes in S j.
Finally, connect each v ∈ V with all output nodes. The total number of wires is then
n(m/2) + nm = O(n ln n).

Now we assign gates to the nodes. If v is a node on the middle layer connected to
inputs x j1

, . . . , x jk
, then assign to v the gate gv = x j1

⊕· · · ⊕ x jk
. To the ith output node

we assign the gate

φi = ai1h1 ⊕ ai2h2 ⊕ · · · ⊕ ainhn , where hk =
∏

v∈Sk

gv .

Then

hk(e j) = 1 iff gv(e j) = 1 for all v ∈ Sk

iff x j is connected to all nodes in Sk

iff Sk ⊆ S j

iff k = j.

Hence, h j(e j) = 1 and hk(e j) = 0 for all k 6= j. Thus, if fi(x) is the function computed
at the ith output gate then, for all j = 1, . . . , n, we have that

fi(e j) = φi(e j) = ai1 · 0⊕ · · · ⊕ ai j · 1⊕ · · · ⊕ ain · 0= ai j ,

as desired. □

We now show that the upper bound n log n in Theorem 12.9 is almost optimal. We
will use the following so-called “sunflower lemma” of Erdös and Rado (1960) which
has found many applications in circuit complexity. 1

A sunflower with k petals is a family S1, . . . ,Sk of k finite sets, each two of which
share precisely the same set of common elements, called the core of the sunflower (see
Fig. 2). That is, there is a set C (the core of the sunflower) such that

Si ∩ S j = C for all 1≤ i < j ≤ k.

In other words, each element belongs either to none, or to exactly one, to all of the Si .
In particular, all sets Si − C are mutually disjoint.

LEMMA 12.10 (Sunflower Lemma). Every family of more than s!(k − 1)s sets, each

of which has cardinality at most s, contains a sunflower with k petals.

1Interestingly, without knowing this lemma, Razborov in his seminal result on monotone circuits re-
discovered and essentially used this phenomenon—large structures have some regular patterns.
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C

FIGURE 2. A sunflower with 8 petals

PROOF. We proceed by induction on s. For s = 1, we have more than k− 1 points
(disjoint 1-element sets), so any k of them form a sunflower with k petals (and an
empty core). Now let s ≥ 2, and F be a family of |F | > s!(k − 1)s sets, each of
cardinality at most s. Take a maximal family A = {A1, . . . ,At} of pairwise disjoint
members of F .

If t ≥ k, these sets form a sunflower with t ≥ k petals (and empty core), and we
are done.

Assume that t ≤ k − 1, and let B = A1 ∪ · · · ∪ At . Then |B| ≤ s(k − 1). By the
maximality ofA , the set B intersects every member ofF . By the pigeonhole principle,
some point x ∈ B must be contained in at least

|F |
|B| >

s!(k− 1)s

s(k− 1)
= (s− 1)!(k− 1)s−1

members of F . Let us delete x from these sets and consider the family

Fx := {S −{x} | S ∈ F , x ∈ S} .

By the induction hypothesis, this family contains a sunflower with k petals. Adding x to
the members of this sunflower, we get the desired sunflower in the original family F .

□

For a matrix A, let dist(A) denote the smallest Hamming distance between the
columns of A.

THEOREM 12.11. Every depth-2 circuit representing an n by n (0,1)-matrix requires

at least

Ω
�

dist(A) ·
ln n

ln ln n

�

wires.

PROOF. Fix a minimal depth-2 circuit with arbitrary gates representing a given
matrix A. Without loss of generality, we may assume that there are no direct wires
from inputs to outputs: this can be easily achieved by adding at most n new wires. Let
x1, . . . , xn be its input nodes, and S1, . . . ,Sn be sets of their neighbors on the middle
layer. Let f1, . . . , fn be the functions computed at the output nodes. Since the circuit
represents A, we must have that fi(e j) = ai j for all 1≤ i, j ≤ n.

Let L1 be the number of wires leaving the input nodes, and L2 the number of wires
entering the output nodes. Hence, L1 =

∑n
i=1 |Si |, and L1 + L2 is the total number of

wires. Set

m := c ln n/ ln ln n (12.1)
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for a sufficiently small absolute constant c > 0. If we have L1 > mn wires leaving the
input nodes, then we are done. So, assume that L1 ≤ mn. Our goal is to show that
then we must have L2 ≥ m · dist(A) wires entering the output nodes.

Our assumption
∑n

i=1 |Si | ≤ mn implies that at least n/2 of the sets Si must be of
size at most s = 2m. Hence, if the constant c in (12.1) is small enough then, by Sun-
flower Lemma, these sets must contain a sunflower with k = 2m petals. Having such
a sunflower with a core C , we can pair its members arbitrarily (Sp1

,Sq1
), . . . , (Spm

,Sqm
);

hence, Spi
∩Sqi

= C for all i = 1, . . . , m. Important for us will only be that the symmetric
differences

Spi
⊕ Sqi

= (Spi
− Sqi

)∪ (Spi
− Sqi

) = (Spi
∪ Sqi

)− C

of these pairs of sets are mutually disjoint. Hence, we have m mutually disjoint subsets
Spi
⊕Sqi

of nodes on the middle layer, and we only have to show that each of these sets
has at least d = dist(A) outgoing wires: then L2 ≥ m · dist(A).

Fix one of the pairs (Sp,Sq). Since the circuit represents the matrix A, the value
f (e j) of the computed operator f = ( f1, . . . , fn) on the jth unit vector must be the jth
column of A. Since the Hamming distance between the pth and the qth columns of A

must be at least d, there must exist a set I of |I | ≥ dist(A) rows such that

fi(ep) 6= fi(eq) for all i ∈ I . (12.2)

CLAIM 12.12. Every output fi with i ∈ I must be adjacent to at least one node in
Sp ⊕ Sq.

PROOF. Let V be the set of all nodes on the middle layer. For a node v ∈ V , let
gv(x1, . . . , xn) be the boolean function computed at this node. Claim 12.12 is a direct
consequence of the following two observations about the behavior of the gates gv on
unit vectors. Let 0 denote the all-0 vector.

OBSERVATION 12.13. For every input node j ∈ {1, . . . , n}, we have that gv(e j) =

gv(0) iff the wire ( j, v) is not present.

PROOF. (⇐): If the wire ( j, v) is not present, then gv cannot depend on jth input
variable x j , and this is the only variable set to 1 by e j .
(⇒): Suppose that the wire ( j, v) is present. To show that then gv(e j) 6= gv(0),

assume that gv(e j) = gv(0). Then we can remove the wire ( j, v) and replace gv by a
new boolean function g ′

v
obtained from gv by fixing the jth variable x j of gv to 0. By

our assumption gv(e j) = gv(0), we have that g ′
v
(e j) = gv(0) = gv(e j), as e j has only

one 1 in position j and the jth variable x j is already set to 0 in g ′
v
. For the remaining

unit vectors ek with k 6= j, we also have that g ′
v
(ek) = gv(ek), just because the jth

position of ek is 0. Hence, we have removed one wire ( j, v), and the resulting circuit
still represents A. This contradicts the minimality of our original circuit. □

OBSERVATION 12.14. For all v 6∈ Sp ⊕ Sq, we have that gv(ep) = gv(eq).

PROOF. If v 6∈ Sp ∪ Sq, then neither the wire (p, v) nor the wire (q, v) is present.
Observation 12.13 implies that then gv(ep) = gv(0) = g(eq).

If v ∈ Sp∩Sq, then both wires (p, v) and (q, v) must be present. Observation 12.13
implies that then gv(ep) 6= gv(0) as well as gv(eq) 6= gv(0). Hence, in this case we also
have that gv(ep) = gv(eq), just because gv can take only two values. □

To finish the proof of Claim 12.12, take the boolean function fi computed at the
ith output gate with i ∈ I . The value of fi only depends on the values of gates gv
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computed at the nodes on the middle layer. Hence, if there would be no wire from a
node in Sp⊕Sq to the ith output fi , then Observation 12.14 would imply that all gates
on the middle layer, connected to fi , would output the same values on input vectors ep

and eq. But this would imply fi(ep) = fi(eq), a contradiction with (12.2).
This completes the proof of Claim 12.12. □

By Claim 12.12, for each of m pairs (Spi
,Sqi
) of subsets of nodes on the middle

layer, there must be at least |I | ≥ dist(A) wires going from the vertices in Spi
⊕ Sqi

to the output layer. Since the sets Spi
⊕ Sqi

, i = 1, . . . , m, are mutually disjoint, the
total number of wires going from the middle layer to the output layer must be at least
m · dist(A), as desired.

This completes the proof of Theorem 12.11. □

There are explicit n×n (0,1)matrices Hn (so-called Sylvester–Hadamard matrices)
such that dist(Hn) ≥ n/2 but, still, the entire linear transformation y = Hnx can be
computed by a linear depth-2 circuit with n log2 n wires (Exercise 12.3). Thus, the
lower bound in Theorem 12.11 is almost tight. But only “almost.”

RESEARCH PROBLEM 12.15. Can the factor 1/ ln ln n in Theorem 12.11 be removed?

12.3. Relation to circuits of logarithmic depth

A depth-2 circuit of width w has n boolean variables x1, . . . , xn as input nodes,
w arbitrary boolean functions h1, . . . ,hw as gates on the middle layer, and arbitrary
boolean functions g1, . . . , gn as gates on the output layer. Direct input-output wires,
connecting input variables with output gates, are now allowed! Such a circuit com-
putes an operator f = ( f1, . . . , fn) : GF(2)n→ GF(2)n if, for every i = 1, . . . , n,

fi(x) = gi(x ,h1(x ), . . . ,hw(x)).

The degree of such a circuit is the maximum, over all output gates gi , of the number of
wires going directly from input variables x1, . . . , xn to the gate gi . That is, we ignore
the wires incident with the gates on the middle layer. Let degw( f ) denote the smallest
degree of a depth-2 circuit of width w computing f .

It is clear that degn( f ) = 0: just put the functions f1, . . . , fn on the middle layer.
Hence, this parameter is only nontrivial for w < n. Especially interesting is the case
when w = O(n/ ln ln n):

LEMMA 12.16. If degw( f ) = nΩ(1) for w = O(n/ ln ln n), then f cannot be computed

by a circuit of depth O(ln n) using O(n) fanin-2 gates.

PROOF. Suppose that f = ( f1, . . . , fn) can be computed by a circuit Φ of depth
O(ln n) using O(n) fanin-2 gates. By Lemma 10.2, for an arbitrary small constant
ε > 0, any such circuit can be reduced to a circuit of depth at most ε log n by removing
at most w = O(n/ log log n) edges. Put on the middle layer all the w boolean functions
computed at these edges, and connect each middle node with all inputs as well as
with all outputs. Since a subcircuit of Φ computing each fi has depth at most ε log n,
each such subcircuit can depend on at most 2ε log n = nε input variables. Hence, the
obtained depth-2 circuit has degree at most nε . Since this holds for arbitrary small
constant ε > 0, we are done. □

The highest known lower bound for an explicit operator f , proved by Pudlák, Rödl
and Sgall (1997) has the form degw( f ) = Ω((n/w) ln(n/w)), and is too weak to have
a consequence for log-depth circuits.
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A natural question therefore was to improve the lower bound on the degree at
least for linear circuits, that is, for depth-2 circuits whose middle gates as well as
output gates are linear boolean functions over some field F. Such circuits compute
linear operators fA(x) = Ax for some matrix A over F. By Lemma 12.16, this would
give a super-linear lower bound for log-depth circuits over {⊕, 1}. (Even over this basis
no super-linear lower bound is known so far!)

This last question attracted attention of many researchers because of its relation
to a purely algebraic characteristic of the underlying matrix A—its rigidity. Recall that
the rigidity RA (r) of a matrix A is the smallest number of entries of A that must be
changed in order to reduce its rank over F until r. That is,

RA (r) =min{|B| : rk(A− B) ≤ r} .
It is not difficult to show that any linear depth-2 circuit Φ of width r computing Ax

must have degree at leastRA (r)/n: If we set all direct input-output wires to 0, then the
resulting degree-0 circuit will compute some linear transformation A′x . The operator
y = A′x takes 2rk(A′) different values. Hence, the operator H : GF(2)n → GF(2)r

computed by w boolean functions on the middle layer of Φ must take at least so many
different values, as well. This implies that the width r must be large enough to fulfill
2r ≥ 2rk(A′), from which rk(A′) ≤ r follows. On the other hand, A′ differs from A in at
most dn entries, where d is the degree of the original circuit Φ. Hence, RA (r) ≤ dn

from which d ≥RA (r)/n follows. Thus an explicit n× n (0,1) matrix A with

RA (r)≥ n1+ε for r = O(n/ ln ln m)

would give us a linear operator fA(x ) = Ax which cannot be computed by log-depth
circuit over {⊕, 1} using a linear number of parity gates. To prove such a lower bound
even over this basis remains an open problem!

Motivated by its connection to proving lower bounds for log-depth circuits, matrix
rigidity (over different fields) was considered by many authors.

It is clear that RA (r)≤ (n− r)2 for any n× n matrix A: just take an arbitrary r× r

submatrix A′ of A and set to 0 all entries outside A. Valiant (1977) has proved that
n×n matrices A with RA (r) = (n− r)2 exist if the underlying field is infinite. For finite
fields the lower bound is only slightly worse.

LEMMA 12.17. There exist n× n matrices A over GF(2) such that

RA (r)≥
(n− r)2− 2n− log2 n

log2(2n2)
for all r < n−

p
2n+ log2 n . (12.3)

PROOF. Direct counting. Recall that the rigidity RA (r) of A over GF(2) is the
smallest number |B| of nonzero entries in a (0,1) matrix B such that rk(A⊕B)≤ r. For
|B|= s there are at most

�n2

s

�
≤ n2s possibilities to chose s nonzero entries of B, and at

most
�n

r

�2 ≤ 22n possibilities to chose a nonsingular r× r minor of A⊕B. Assuming that
s is strictly smaller than the lower bound on RA (r), given in (12.3), it can be easily
verified that the number of possible matrices A is upper bounded by 2n2

/n, which is
smaller than the total number 2n2

of such matrices. □

The problem, however, is to exhibit an explicit matrix A of large rigidity. The
problem is particularly difficult if we require A be a (0,1) matrix or at least a matrix
with relatively few different entries.

Explicit n× n ±1 matrices A of rigidity RA (r) = Ω(n
2/r) over the reals is easy to

present.
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Let n = 2m. The n× n Sylvester ±1-matrix Sn = (si j) by labeling the rows and
columns by m-bit vectors x , y ∈ GF(2)m and letting si j = (−1)〈x ,y〉. Hence,

S2 =

�
+1 +1
+1 −1

�
, S4 =




+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1


 and S2n =

�
Sn Sn

Sn Sn

�
,

where Sn is the matrix obtained from Sn by flipping all +1’s to −1’s and all −1’s to
+1’s. The rigidity of these matrices over the reals is n2/4r.

THEOREM 12.18. If r ≤ n/2 is a power of 2 then RSn
(r)≥ n2/4r.

PROOF. Divide Sn uniformly into (n/2r)2 submatrices of size 2r × 2r. One can
easily verify that these submatrices each have full rank over the reals. So we need
to change at least r elements of each submatrix to reduce each of their ranks to r, a
necessary condition to reducing the rank of Sn to r. The total number of changes is
then at least r · (n/2r)2 = n2/4r. □

This proof works for any matrix whose submatrices have full rank. Consider the
n× n matrix B = (bi j) where bi j = 1 if i ≡ j mod 2r, and bi j = 0 otherwise. By the
same proof RB (r)≥ n2/4r even though the rank of B is only 2r.

The same argument also yields a lower bound n2/2r on the rigidity of the follow-
ing (0,1) matrix Dn over GF(2). The matrix Dn is defined for all n of the form n = 2m

by the following recursion:

D2 =

�
1 1
1 0

�
, D4 =




1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0


 and D2n =

�
Dn Dn

Dn 0

�
.

These bounds on rigidity are, however, still too weak to have consequences for log-
depth circuits over {⊕, 1}.

Exercises

EX. 12.1. Consider circuits of arbitrary depth with all boolean functions allowed as
gates. Prove that operators f : {0,1}n → {0,1}n requiring Ω(n2) gates in such circuits
exist.

Hint: Let µ(L) be the number of different n-operators f : {0, 1}n → {0, 1}n computable by boolean
circuits with at most L wires. Since we have 2n2n

different n-operators, each of which requires a different

circuit, it is enough to show that L must be large in order to fulfill the inequality µ(L) ≥ 2n2n
. Hence, what

we need is a good enough upper bound on µ(L) in terms of n and L.
The first instinct—just count, as Shannon did—will not work (directly). If the ith gate has di inputs,

then there is a huge number 22di of possibilities to assign a boolean function ϕi to this gate. If di is larger
than n+ log2 n, then the number of these possibilities alone exceeds the total number (22n

)n = 2n2n
of all

n-operators! Shannon hasn’t faced this situation, since di ≤ 2 in his model.
This unpleasant situation can, however, be avoided by an amazingly simple idea: just turn the power

of the circuit against itself in order to ensure that di ≤ n must hold in any optimal circuit.
Show that we can assume that we have m ≤ n2 gates, and that no gate in circuit has fanin larger than

n. Use this to show that, if d1, . . . , dm is a sequence of fanins of the gates in an optimal circuit with ≤ L

wires, then

log2 µ(L)≤
m∑

i=1

2di +O(n2 log n) .
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Show that at most n/2 gates can have fanin di larger than 2L/n, and use this to give an estimate
m∑

i=1

2di ≤ O(n24L/n) + 2n−1 .

EX. 12.2. Recall that the rank rk(A) of an n× n matrix A over some field is the
smallest number r such that A can be written as a product A= B · C of an n× r matrix
B and an r × n matrix C . We now introduce a “weighted” version of rank and show
that it coincides with the number of wires in linear depth-2 circuits computing Ax . For
a (0,1) matrix A, let |A| be the number of 1’s in A. Define

Rk(A) =min{|B|+ |C | : A= B · C} .
That is, now we are interested not in the dimension of the matrices B and C but rather
in the total number of 1’s in them.
Prove that Rk(A) is precisely the smallest number of wires in a linear depth-2 circuit
computing fA(x) = Ax .

Hint: Take as B and C the adjacency matrices of the bipartite graphs formed by the first and the second

level of wires.

EX. 12.3. Let n = 2r and consider a bipartite n× n (0,1) matrix Hn whose rows
and columns are indexed by vectors in GF(2)r , and Hn[x , y] = 1 iff 〈x , y〉 = 1, where
〈x , y〉 is the scalar product over GF(2). Such matrices are known as (0,1)-Sylvester

matrices.

a. Show that Hn can be defined inductively by

H2 =

�
0 0
0 1

�
, H4 =




0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0


 and H2n =

�
Hn Hn

Hn Hn

�
,

where Hn is the matrix obtained from Hn by flipping all its entries.
b. Show that y = Hnx can be computed by a linear depth-2 circuit using O(n log n)

wires. Hint: Exercise 12.2.

c. Show that dist(Hn) ≥ n/2.

EX. 12.4. Research problem. For an n × n (0,1) matrix A, let size2(A) denote
the minimum number of wires in a depth-2 circuit with arbitrary boolean functions as
gates computing the linear transformation y = Ax for all vectors x ∈ GF(2)n.

Does matrices A with size2(A) = Ω(n
2/ log n) exist?

EX. 12.5. Let A be an n× n (0,1) matrix, and α = α(n) ≥ 2. Prove that then

size2(Ax )≥
1

α

r
n · RA

�
n

α

�
−

n3

α
,

where RA (r) =min
�
|B| : rk(A⊕ B)≤ r

	
is the rigidity of A over GF(2).

Hint: Take a depth-2 circuit computing Ax and let L be the number of wires in it. Say that a node v is

large if d(v) > αL/n, and small otherwise. Show that the total number of large nodes in the circuit must be

smaller than n/α. Set all large outputs yi to constant 0, and remove all wires incident to such inputs. The

resulting circuit computes a linear operator A′x for an n′× n submatrix A′ ≤ A of A obtained by setting to 0’s

all its entries in the rows corresponding to large outputs yi of the original circuit. What is |A−A′|? Remove

now all small nodes on the middle layer. The resulting circuit still computes some linear operator Bx . How

is B obtained from A′? How large is |A′ − B|? In a resulting circuit for Bx , every path from an input node

to an output node must go through some large node on the middle layer. But there are at most n/α such
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nodes. Show that therefore, rk(B) ≤ n/α. Now use the definition of rigidity to give the desired lower bound

on the number L of wires in the original circuit for Ax .

EX. 12.6. Use Lemma 12.17 and the previous exercise to show that some boolean
n× n matrices A require

size2(Ax ) = Ω

��
n

log n

�3/2�
.

EX. 12.7. Research Problem. Prove or disprove: If a linear operator fA(x) = Ax

can be computed by a depth-2 circuit of degree d and width w, then fA can also be
computed by a linear depth-2 circuit of degree O(d) and width O(w).

Comment: Some partial results towards the positive answer are given in [87].

EX. 12.8. Show that the only “sorrow” with the previous problem is the possible
non-linearity of the gates on the last (output) layer: If a depth-2 circuit Φ computes
a linear operator fA(x ) = Ax and has linear gates on the output layer, then Φ can be
transformed into an equivalent linear circuit of the same size and width.
Hint: Replace the operator h : {0, 1}n → {0, 1}w , computed at the middle layer, by a linear operator H′(x ) :=∑n

i=1 xi H(e i) mod 2.

EX. 12.9. A boolean function f if symmetric if there is a set L of natural numbers
(called the type of f ) such that f accepts a binary vector x iff the number of 1’s in x

belongs to L. A symmetric depth-2 circuit is a depth-2 circuit with parity gates on the
middle layer, and symmetric boolean functions of the same type on the output layer.
Let symL(A) denote the smallest number of nodes on the middle layer of a symmetric
depth-2 circuit of type L representing a (0,1) matrix A= (ai j). Let also sym(A) be the
minimum of symL(A) over all types L ⊆ {0,1, . . .}.
(a) Show that symL(A) = smallest number r for which it is possible to assign each

row/column i a subset Si ⊆ {1, . . . , r} such that ai j = 1 if and only if |Si ∩ S j | ∈ L.
(b) Show that sym(A) = Ω(n) for almost all n× n matrices A.

EX. 12.10. Let n = 2m, and consider an n × n Sylvester matrix Hn. Its rows
and columns are labeled by vectors in GF(2)m, and the entries of Hn are the scalar
products of these vectors over GF(2). A type L ⊆ {0,1, . . .} is a threshold-k type if
L = {k, k+ 1, . . .}. Prove that

symL(Hn) = Ω(
p

n) for any threshold type L .

Hint: Let r = symL(Hn), and consider an assignment i 7→ Si of subsets S ⊆ {1, . . . , r} to rows/columns

of Hn = (hi j ) such that hi j = 1 iff |Si ∩ S j | ≥ k. Take E = {(i, j) | hi j = 1} and consider the family

F = {F1, . . . , Fr} with Fk = {(i, j) | k ∈ Si ∩ S j}. Show that r ≥ thrF (E), where thrF (E) is the threshold

cover number of E dealt with in the Discriminator Lemma (Lemma 10.24). Then use Lindsey’s Lemma

(Lemma 10.25) to show that DiscF (E) = O(n−1/2).

EX. 12.11. Research Problem. Exhibit an explicit n× n (0,1) matrix A such that
sym(A)≥ 2(log log n)α for some α(n)→∞.

Comment: By results of Yao (1990) and Beigel and Tarui (1994) (combined with the Mag-
nification Lemma for graphs), this would yield a super-polynomial lower bound for ACC circuits,
and thus, resolve an old problem in circuit complexity. Actually, as shown by Green et al. (1995),
it would be enough to prove such a lower bound on symL for a special kind of types L consisting
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of all natural numbers whose binary representations have bit 1 in the middle. Such types (called
also middle-bit types) consist of disjoint intervals of consecutive numbers.

EX. 12.12. Research Problem. Say that L ⊆ {0,1, . . .} is an interval type if
L = {a, a + 1, . . . , b} for some nonnegative integers a ≤ b. Let symint(A) denote the
minimum of symL(A) over all interval types L.
Exhibit an explicit n× n (0,1) matrix A such that symint(A) is larger than 2(log log n)c for
any constant c.

Comment: This would be a major step towards resolving the previous problem.

EX. 12.13. Let F be a depth-2 circuit computing a linear operator fA(x) = Ax

where A is an n × n (0,1) matrix. Assume that all output gates are linear boolean
functions; the gates on the middle layer may be arbitrary boolean functions. Assume
also that there are no direct wires from inputs to outputs.
Show that F can be transformed into a linear depth-2 circuit with the same number of
wires computing fA.
Hint: Let h be the operator computed by the gates on the middle layer. Write each vector x = (x1 , . . . , xn)

as the linear combination x =
∑n

i=1 xie i of unit vectors e1, . . . , en, and replace the operator h by a linear

operator h′(x ) :=
∑n

i=1 xih(e i)mod 2. Show that the obtained linear circuit computes fA and that the

number of wires has not increased.
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CHAPTER 13

Decision Trees

A decision tree is an algorithm for computing a function of an unknown input.
Each vertex of the tree is labeled by a variable and the branches from that node are
labeled by the possible values of the variable. The leaves are labeled by the output of
the function. The process starts at the root, knowing nothing, works down the tree,
choosing to learn the values of some of the variables based on those already known
and eventually reaches a decision. The decision tree complexity of a function is the
minimum depth of a decision tree that computes that function.

To be a bit more precise, let f : {0,1}n → {0,1} be a boolean function. A de-
terministic decision tree for f is a binary tree whose internal nodes have labels from
x1, . . . , xn and whose leaves have labels from {0,1}. If a node has label x i then the test
performed at that node is to examine the ith bit of the input. If the result is 0, one
descends into the left subtree, whereas if the result is 1, one descends into the right
subtree. The label of the leaf so reached is the value of the function (on that particular
input).

13.1. P = NP∩ co-NP for the tree depth

The depth of a decision tree is the number of edges in a longest path from the root
to a leaf, or equivalently, the maximum number of bits tested on such a path.

Let Depth( f ) denote the minimum depth of a decision tree computing f .
Given an input a = (a1, . . . , an) from {0,1}n, we would like to know whether

f (a) = 1 or f (a) = 0. How many bits of a must we see in order to answer this
question? It is clear that seeing Depth( f ) bits is always enough: just look at those bits
of a which are tested along the (unique!) path from the root to a leaf.

In a deterministic decision tree all the tests are made in a prescribed order inde-
pendent of individual inputs. Can we do better if we relax this and allow for each input
a to choose its own smallest set of bits to be tested? This question leads to a notion of
“nondeterministic” decision tree.

A nondeterministic decision tree for a boolean function f (x1, . . . , xn) is a (not nec-
essarily binary) tree each whose edge is labeled by a literal (a variable or a negated
variable). One literal can label several edges leaving one and the same node. Such
a tree T computes f in a nondeterministic manner: T (a) = 1 iff there exists a path
from a root to a leaf such that all literals along this path are consistent with the input
a, that is, are evaluated to 1 by this input. Let D1( f ) denote the smallest depth of a
nondeterministic tree computing f , and define the dual measure by D0( f ) = D1(¬ f ).
It is not difficult to verify that

D1( f ) =min{k | f can be written as a k-DNF}
and

D0( f ) =min{k | f can be written as a k-CNF} .
186



13.1. P = NP∩ co-NP FOR THE TREE DEPTH 187

0 1
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3x
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1x
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FIGURE 1. A decision tree of depth 3; on input (0,1,0) it outputs 1.

It is clear that max{D0( f ), D1( f )} ≤ Depth( f ), that is, for every input a, seeing its
Depth( f ) bits is enough to determine the value f (a), be it 0 or 1. Is this upper bound
optimal? The following example shows that this may be not the case: there are boolean
functions f for which

max{D0( f ), D1( f )} ≤
p

Depth( f ) .

Such is, for example, the monotone boolean function f (X ) on n = m2 boolean vari-
ables defined by:

f =

m∧

i=1

m∨

j=1

x i j .

For this function we have D0( f ) = D1( f ) = m but Depth( f ) = m2 (see Exercise 13.1),
implying that Depth( f ) = D0( f ) · D1( f ).

It turns out that the example given above is, in fact, the worst case: if a boolean
function f can be written as an s-CNF as well as a t-DNF then Depth( f )≤ s · t.

THEOREM 13.1. For every boolean function f ,

Depth( f ) ≤ D0( f ) · D1( f ) .

PROOF. Induction on the number of variables n. If n = 1 then the inequality is
trivial.

Let (say) f (0, . . . , 0) = 0; then some set Y of k ≤ D0( f ) variables can be cho-
sen such that by fixing their value to 0, the function is 0 independently of the other
variables. We can assume w.l.o.g. that the set

Y = {x1, . . . , xk}
of the first k variables has this property.

Take a complete deterministic decision tree T0 of depth k on these k variables.
Each of its leaves corresponds to a unique input a = (a1, . . . , ak) ∈ {0,1}k reaching
this leaf. Replace such a leaf by a minimal depth deterministic decision tree Ta for the
sub-function

fa := f (a1, . . . , ak, xk+1, . . . , xn) .

Obviously, D0( fa)≤ D0( f ) and D1( fa)≤ D1( f ). We claim that the latter inequality can
be strengthened:

D1( fa)≤ D1( f )− 1 (13.1)

To prove this, take an arbitrary input (ak+1, . . . , an) of fa which is accepted by fa.
Together with the bits (a1, . . . , ak), this gives an input of the whole function f with
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f (a1, . . . , an) = 1. According to the definition of the quantity D1( f ), there must be a set
Z = {x i1

, . . . , x im
} of m ≤ D1( f ) variables such that fixing them to the corresponding

values x i1
= ai1

, . . . , x im
= aim

, the value of f becomes 1 independently of the other
variables. A simple (but crucial) observation is that

Y ∩ Z 6= ;. (13.2)

Indeed, if Y ∩ Z = ; then the value of f (0, . . . , 0, ak+1, . . . , an) should be 0 because
fixing the variables in Y to 0 forces f to be 0, but should be 1, because fixing the
variables in Z to the corresponding values of ai forces f to be 1, a contradiction.

By (13.2), only |Z − Y | ≤ m− 1 of the bits of (ak+1, . . . , an) must be fixed to force
the sub-function fa to obtain the constant function 1. This completes the proof of
(13.1).

Applying the induction hypothesis to each of the sub-functions fa with a ∈ {0,1}k,
we obtain

Depth( fa) ≤ D0( fa) · D1( fa) ≤ D0( f )(D1( f )− 1) .

Altogether,

Depth( f ) ≤ k+max
a

Depth( fa)≤ D0( f ) + D0( f )(D1( f )− 1) = D0( f )D1( f ) . □

13.1.1. Block sensitivity. Let f : {0,1}n → {0,1} be a boolean function, and
a ∈ {0,1}n. A certificate of a is a subset S ⊆ {1, . . . , n} such that f (b) = f (a) for
all vectors b ∈ {0,1}n such that bi = ai for all i ∈ S. That is, the value f (a) can be
determined by looking at only bits of a in the set S. By C( f , a) we denote the minimum
size of a certificate for a. The certificate complexity of f is C( f ) =maxa C( f , a).

It is not difficult to see that C( f ) = max{D1( f ), D0( f )}. Theorem 13.1 gives the
following relation between the decision tree depth of boolean functions and their cer-
tificate complexity:

C( f )≤ Depth( f )≤ C( f )2 .

A similar relation also exists between certificate complexity and another important
measure of boolean functions – their “block sensitivity.”

For a vector a ∈ {0,1}n and a subset of indices S ⊆ {1, . . . , n}, let a[S] denote the
vector a, with all bits in S flipped. That is, a[S] differs from a exactly on the bits in
S. For example, if a = (0,1,1,0,1) and S = {1,3,4}, then a[S] = (1,1,0,1,1). We say
that f is sensitive to S on a if

f (a[S]) 6= f (a) .

The block sensitivity of f on a, denoted B( f , a), is the largest number t for which there
exist t disjoint sets S1, . . . ,St such that f is sensitive on a to each of these sets, i.e.,
f (a[Si]) 6= f (a) for all i = 1, . . . , t. The block sensitivity of a boolean function f is
B( f ) =maxa B( f , a).

THEOREM 13.2. For every boolean function f ,

B( f )≤ C( f )≤ B( f )2 .

PROOF. The upper bound B( f ) ≤ C( f ) follows from the fact that for any input a,
any certificate of a must include at least one variable from each set which f is sensitive
to on this input a.

The lower bound: B( f ) ≥
p

C( f ). Take an input a ∈ {0,1}n achieving certificate
complexity, i.e., every certificate for a has size at least C( f ). Let S1 be a minimal set
of indices for which f (a[S1]) 6= f (a), let S2 be another minimal set disjoint from S1,
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and such that f (a[S2]) 6= f (a), etc. Continue until no such set exists. We have, say, t

disjoint sets S1, . . . ,St to each of which the function f is sensitive on a.
The union I = S1∪ · · · ∪St must be a certificate of a since otherwise we could pick

yet another set St+1 for which f (a[St+1]) 6= f (a). Thus

t∑

i=1

|Si |= |I | ≥ C( f ) .

If t ≥
p

C( f ) then we are done since B( f )≥ t. If not, then,

|S| ≥ |I |/t ≥ C( f )/t ≥
p

C( f )

for at least one set S ∈ {S1, . . . ,St}. Since S is a minimal set for which f (a[S]) 6= f (a),
this means that f (a[S − {i}]) = f (a) for every i ∈ S. Thus, on the vector b := a[S],
the function f is sensitive to each single coordinate i ∈ S; hence

B( f )≥ B( f , b) ≥ |S| ≥
p

C( f ) . □

13.2. Depth lower bounds

To prove that some boolean function f requires decision trees of large depth, it is
useful to imagine the situation as a game between Alice and Bob. This time, however,
the players are not cooperative: Alice acts as an “adversary.” Bob knows the function
f : {0,1}n → {0,1} but does not know the actual input vector x ∈ {0,1}n. He can ask
Alice what the ith bit of x is. Then what the jth bit is, and so on. He stops when he
definitely knows the answer “ f (x) = 0” or “ f (x) = 1.” Alice’s goal is to inductively
construct (depending on what bits Bob has already asked about) an input x on which
Bob is forced to make many queries. That is, Alice tries to construct an “evasive” path
forcing Bob to make his tree deep.

We demonstrate this on symmetric functions. Recall that a boolean function is
symmetric if every permutation of its variables leaves its value unchanged. That is, a
boolean function is symmetric if and only if its value depends only on how many of its
variables (not on which of them) are 0 or 1.

A boolean function f in n variables is called evasive if it has maximal possible
depth, that is, if Depth( f ) = n.

LEMMA 13.3. Every non-constant symmetric boolean function is evasive.

PROOF. Let f : {0,1}n→ {0,1} be a symmetric boolean function in question. Since
f is not constant, there is a k with 1 ≤ k ≤ n such that if k− 1 variables have value 1
then the function has value 0 but if k variables are 1 then the function’s value is 1 (or
the other way round).

Using this, we can propose the following strategy for Alice. She thinks of a 0-1
sequence of length n and Bob can ask the values of each bit. Alice answers 1 on the
first k − 1 questions and 0 on every following question. Thus, after n− 1 questions,
Bob cannot know whether the number of 1’s is k− 1 or k, that is, he cannot know the
value of the function. □

Every boolean function f in n variables splits the n-cube {0,1}n into two disjoint
blocks f −1(0) and f −1(1). Since the number 2n of vectors in the n-cube is even, the
sizes of these blocks must be both even or both must be odd. It turns out that all
boolean function with odd block size are evasive.
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LEMMA 13.4. If | f −1(0)| is odd then f is evasive.

PROOF. Consider an arbitrary deterministic decision tree that computes the func-
tion f . Let v be an arbitrary node in this tree. If the depth of v is d, then exactly 2n−d

of the possible inputs lead to v. In particular, any node whose depth is at most n− 1 is
reached by an even number of possible inputs. On the other hand, each input reaches
exactly one leaf. Thus, if | f −1(0)| is odd, there must be a leaf that is reached by a
single input x with f (x) = 0; this leaf has depth n. □

Symmetric functions are very special; the following class is significantly more gen-
eral. Call a boolean function in n variables weakly symmetric if for all pairs x i , x j of
variables, there is a permutation of the variables that takes x i into x j but does not
change the value of the function. For example, the function

(x1 ∧ x2)∨ (x2 ∧ x3)∨ · · · ∨ (xn−1 ∧ xn)∨ (xn ∧ x1)

is weakly symmetric but not symmetric (check this!).

THEOREM 13.5. Let n be a prime power. If f : {0,1}n → {0,1} is weakly symmetric,

and f (0) 6= f (1), then f is evasive.

PROOF. Every permutation π : [n]→ [n] on input coordinates induces a permuta-
tion bπ : {0,1}n→ {0,1}n on the set of possible input vectors:

bπ(x1, . . . , xn) = (xπ(1), . . . , xπ(n)) .

Let Γ be the set of all permutation π that leave the value of the function unchanged,
that is,

Γ = {π | f (bπ(x)) = f (x)} .
It can be easily verified that Γ forms a group. Moreover, since the function f is weakly
symmetric, this group is transitive, that is, for any pair of ground elements i and j,
there is a permutation π ∈ Γ such that π(i) = j.

We define the orbit of a vector x ∈ {0,1}n to be the set of images of x under
permutations in Γ:

orbit(x) = {bπ(x) | π ∈ Γ} .
CLAIM 13.6. For any vector x except 0 or 1, the size |orbit(x)| is divisible by n.

PROOF. Since x 6= 0 and x 6= 1, the orbit of x has more than one element. Let |x |
denote the number of 1’s in x . Then

∑

y∈orbit(x)

|y |=
∑

y∈orbit(x)

n∑

i=1

yi =

n∑

i=1

∑

y∈orbit(x)

yi .

Since Γ is transitive, for every i, there must be a permutation π ∈ Γ such that π(i) = 1.
Thus the last summand does not actually depend on i, implying that∑

y∈orbit(x)

|y |= n ·
∑

y∈orbit(x)

y1 .

Since all vectors in the orbit have the same number of 1s, we have∑

y∈orbit(x)

|y |= |orbit(x)| · |x | .

Thus, |orbit(x)| · |x | is divisible by n. On the other hand, 0 < |x | < n implies that |x |
is not divisible by n. Since n is prime power, Euclid’s theorem implies that |orbit(x)|
must be divisible by n. □
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By Lemma 13.4, the function f is evasive if

S :=
∑

x∈ f −1(0)

(−1)|x | 6= 0 .

If f (x) = 0, then the orbit of x contributes
∑

y∈orbit(x)

(−1)|y | = |orbit(x)| · (−1)|x |

to this sum, since all vectors in orbit(x) have the same number of 1s. By Claim 13.6,
this is a multiple of n, except for the cases x = 0 and x = 1. Since exactly one of the
vectors 0 and 1 is in f −1(0), the sum S is either one more or one less than a multiple
of n. In either case, S 6= 0, so f must be evasive. □

13.3. Decision trees for graph properties

We will now consider decision problems for graphs, like “is a given graph con-
nected?” or “does a given graph has a Hamiltonian cycle?” We will only consider
properties of graphs that are “label independent:”

(∗) If a graph has this property then every graph isomorphic to it has that property.

In order to represent such a property as a boolean function, we have first fix a labeling
of vertices, say, 1,2, . . . , v. Then we introduce a boolean variable x i j for each pair i 6= j

of vertices with value 1 if i and j are adjacent and 0 if they are not. Thus, each vector
x ∈ {0,1}n with n =

�v
2

�
gives us a (labeled) graph on v vertices. In particular, the

connectivity property for graphs corresponds then to a boolean function f such that
f (x) = 1 iff the graph encoded by x is connected.

Due to (∗), the boolean function f corresponding to a graph property is weakly
symmetric: for every two pairs of vertices, say, {i, j} and {k, l}, there is a permutation
of the vertices taking i into k and j into l. This permutation also induces a permutation
on the set of point pairs that takes the first pair into the second one and does not change
the value of f . In other words, a graph property f must be invariant under relabelings
of the vertices, or equivalently, under any permutation of the edges that is induced by
a permutation of the vertices.

A graph property is monotone if either (1) every subgraph of a graph with the
property also has the property, or (2) no subgraph of a graph without the property
has the property. For example, both properties “to have a k-clique” and “to be discon-
nected” are monotone: the first is preserved by adding edges, the second is preserved
by removing edges. A graph property is trivial if either every graph has it or no one
has it.

It turns out that every monotone non-trivial property of graphs on v vertices re-
quires decision trees of depth Ω(v2). This is almost maximal since depth

�v
2

�
is always

enough: just take a complete tree whose paths correspond to all 2(
v

2) possible graphs.
Theorem 13.5 is not immediately useful for graph properties, since the number

n =
�v

2

�
of possible edges is only a power of a prime when v = 2 or v = 3. Still, when

properly applied, the theorem works at least in the case when the number of vertices
v is a power of two. For this we will make use of the following simple principle, which
we already used several times without explicitly mentioning it:

The Little Birdie Principle:
Extra information cannot increase the complexity of the problem.
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Thus, in order to prove that it is hard to compute a function f on all inputs, it is enough
to show that it is hard to compute f on some subset of inputs.

THEOREM 13.7. Let v = 2m, and let f be a nontrivial monotone graph property of

v-vertex graphs. Then Depth( f )≥ v2/4.

PROOF. Let n =
�v

2

�
and let f : {0,1}n → {0,1} be a nontrivial monotone graph

property. Let Gk be the graph consisting of v/2k disjoint copies of the clique K2k on 2k

vertices. In particular, G0 is the empty graph on v vertices (no edges at all), and Gm is
the complete graph Kv on v vertices. Since the property is non-trivial, we can assume
w.l.o.g. that f (G0) = 1 and f (Gm) = 0. By monotonicity, there is a unique index k

such that f (Gk) = 1 but f (Gk+1) = 0.
Split the vertices into two equal sized parts, and suppose a little bird tells us that

the induced subgraph on each of the two parts consists of v/2k+1 disjoint copies of K2k .
Now only v2/4 of the

�v
2

�
bits actually matter, namely pairs i, j with i and j from dif-

ferent parts of the bipartition. Let f ′ : {0,1}v2/4→ {0,1} denote the induced (bipartite
graph) property on these bits; the remaining variables of f are fixed according to the
little bird’s information.

Since v is a power of two, v2/4 is a power of a prime. Moreover, f ′(0) 6= f ′(1),
since f ′(0) = f (Gk) = 1 and f ′(1) = f (Gk+1+ some edges) = 0. Finally, f ′ is invariant
under a transitive automorphism group induced by the vertex permutations that leave
the little birdie information fixed, that is, permute the vertices with the two parts of
the bipartition. This implies that f ′ is weakly symmetric, and Theorem 13.5 yields
Depth( f )≥ Depth( f ′) = v2/4, as desired. □

13.4. P 6= NP∩ co-NP for the tree size

The size of a decision tree is the number of all its leaves. Let Size( f ) denote the
minimum size of a deterministic decision tree computing f . The minimum size of a
nondeterministic decision tree for f is denoted by dnf( f ). Note that dnf( f ) is just the
minimal number of monomials in a DNF of f . That is, dnf( f ) is the minimal number t

such that f can be written as an Or of t monomials.
We already know that P = NP∩ co-NP for decision trees if we consider their depth

as complexity measure. In this section we will show that the situation changes drasti-
cally if we consider their size instead of the depth: in this case we have P 6= NP∩ co-NP.
Namely, there are explicit boolean functions f such that both f and its negation ¬ f

have nondeterministic decision trees of small size, whereas the size of any determinis-
tic decision tree for f is super-polynomial.

Let f be a boolean function, and suppose we know that dnf( f ) is small. Is then
the decision tree also small? The following examples show that it may be not the case:

f =

m∨

i=1

m∧

j=1

x i j .

It can be shown that Size( f ) ≥ 2dnf( f ) (Exercise 13.4). Well, this function has very
small DNF (of size m) but the DNF of its negation

¬ f =

m∧

i=1

m∨

j=1

¬x i j
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is huge—it has mm monomials. It is therefore natural to ask what happens if both the
function f and its negation ¬ f have small DNFs? Put otherwise, does P= NP∩ co-NP

for decision trees if we consider the size as their complexity measure? Below we answer
this question negatively.

The sum N( f ) := dnf( f ) + dnf(¬ f ) will be called the weight of f . It is clear that
N( f ) ≤ Size( f ) (just because every decision tree represents both the function and its
negation). It was long unknown if Size( f ) is polynomial in N( f ), i.e. if Size( f ) ≤
N( f )c for some absolute constant c.

It was however known that the decision tree size of any boolean function is quasi-

polynomial in its weight. In the next section we will show that this upper bound is
almost optimal: there are explicit functions f for which Size( f ) = 2Ω(log2 N ). Here and
throughout, log x stands for log2 x .

We have seen (Theorem 13.1) that, if a boolean function f as well as its negation
¬ f can be written as a DNF, all whose monomial have length at most m, then f has
a deterministic decision tree of depth at most m2. For the size of trees we have the
following analogon:

THEOREM 13.8 (Upper bound). Let f be a boolean function in n variables and N =

dnf( f ) + dnf(¬ f ) be its weight. Then

Size( f )≤
�

n

log2 N

�O(log2 N )

≤ nO(log2 N ).

PROOF. The idea is to apply the following simple “greedy” strategy: given DNFs for
f and ¬ f , let the decision tree always test the “most popular” literal first.

Assume, we have DNFs for both f and ¬ f , and let N be the total number of
monomials in these two DNFs. Since the disjunction of these two DNFs is a tautology
(i.e., outputs 1 on all inputs), there must exist a monomial of length at most log2 N ,
just because monomial of length k accepts only 2n−k of the inputs.

Select one of such monomials and denote its length by k. The selected monomial
belongs to one of the two DNFs. By the cross-intersection property of monomials (see
Exercise 13.3), every monomial in the other DNF contains at least one literal which
is contradictory to at least one literal in the selected monomial. Hence, there is a
literal in the selected monomial, which is contradictory to at least a 1/k-portion of
the monomials in the other DNF. Thus, if we evaluate this literal to 1, then all these
monomials will get the value 0 and so will disappear from the DNF.

Test this variable first and apply this strategy recursively to both restrictions which
arise. By the observation we just made, for each node v, at least one of its two succes-
sors is such that at least one of the two DNFs in it decreases by a factor of 1− 1/k. Let
us call the corresponding outgoing edge(s) decreasing. Now, if v is a node (not a leaf)
such that the path from the source to v contains s decreasing edges, at least one of the
two initial DNFs was decreased at least s/2 times, and each time it was decreased by
a factor of 1− 1/k ≥ 1− 1/ log2 N . If s would be at least 2 log2 N then at least one of
the DNFs at v would have only

N
�

1−
1

log2 N

�s/2
< N · e−s/(2 log2 N ) ≤ N · e− log2 N = N1−log2 e < 1

monomials, which is impossible (because v is not a leaf). Thus, every path to a leaf
has at most n edges, and among them at most s := 2 log2 N can be decreasing. Recall
that for every node at least one of the out-going edges was decreasing. Assume w.l.o.g.
that every node has exactly one decreasing edge (if there were two, we simply ignore
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one of them). Mark decreasing edges by 1 and the remaining edges by 0. Then every
leaf corresponds to a 0-1 string of length at most n with at most s ones. The number of
such strings (and hence, the total number of leaves) does not exceed L(n, s/2), where
L(n, t) denotes the maximal possible number of leaves in a decision tree of depth n

such that every path from the root to a leaf has at most t 1-edges.
It remains to estimate L(n, t) for t = s/2. Clearly, we have the following recur-

rence:

L(n, t)≤ L(n− 1, t) + L(n− 1, t − 1) with L(0, t) = L(n, 0) = 1. (13.3)

By induction on n and t, it can be shown that

L(n, t)≤
t∑

i=0

�
n

i

�
≤
�

ne

t

�t
.

Indeed, using the identity
�n−1

k

�
+
�n−1

k−1

�
=
�n

k

�
, the induction hypothesis together with

the recurrence (13.3) yields:

L(n, t)≤ L(n− 1, t) + L(n− 1, t − 1) ≤
t∑

i=0

�
n− 1

i

�
+

t−1∑

i=0

�
n− 1

i

�

= 1+
t∑

i=1

�
n− 1

i

�
+

t−1∑

i=1

�
n− 1

i − 1

�
= 1+

t∑

i=1

�
n

i

�
=

t∑

i=0

�
n

i

�
.

Thus,

Size( f )≤ L(n, s/2) = L(n, log2 N)≤
�

n

log2 N

�O(log2 N )

. □

RESEARCH PROBLEM 13.9. Is it possible to improve the upper bound Size( f )≤ nO(log2 N )

in Theorem 13.8 to Size( f ) ≤ 2O(log2 N )?

In the next section we will exhibit explicit boolean functions f requiring deter-

ministic decision trees of size NΩ(
p

log N ) (iterated majority function) and even NΩ(log N )

(iterated NAND function), where N = dnf( f ) + dnf(¬ f ) its the weight of f .

THEOREM 13.10. There are explicit boolean functions f such that both f and ¬ f

have DNFs of size N, but any deterministic decision tree for f has size NΩ(log N ).

That is, for the size of decision trees we have that P 6= NP∩ co-NP. The rest of
this section is devoted to the proof of this theorem. For this purpose we will use an
argument which has many applications in engineering. The argument is based on
harmonic analysis of boolean functions, and is known as the “spectral argument.”

13.4.1. Spectral lower bound for decision tree size. Roughly speaking, the
main idea of what is known as “spectral argument” is to estimate how far is a given
boolean function apart from the parity function. For this it will be convenient to switch
to (−1,+1)-notation, i.e., to consider boolean functions as mappings from {−1,+1}n
to {−1,+1}, where the correspondence 1 → −1 and 0 → +1 is assumed. Explicitly,
this correspondence is given by the transformation x ′ = 1− 2x which transforms the
value x ∈ {0,1} into the value x ′ ∈ {+1,−1}; hence, x ′ = (−1)x . For a boolean
function f : {0,1}n→ {0,1}, its transformed ±1 version f ′ is then

f ′(x1, . . . , xn) = 1− 2 · f
�1− x1

2
,
1− x2

2
, . . . ,

1− xn

2

�
.
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Indeed, if the value of the ith variable x i in f ′ is +1, then the value of the ith variable
of f is (1− 1)/2= 0, and if x i has value −1 in f ′ then it has value (1+ 1)/2= 1 in f .

Given a function f : {−1,1}n → {−1,1}, we can interpret the domain {−1,1}n as
2n points lying in Rn, and think of f as giving a ±1 labeling to each of these points.
There is a familiar method for interpolating such data points with a polynomial.

EXAMPLE 13.11. Suppose n= 3 and f is the Majority function Maj3. So, in the ±1
notation we have that Maj3(1,1,1) = 1, Maj3(1,1,−1) = 1, . . . , Maj3(−1,−1,−1) =
−1. Denoting x = (x1, x2, x3), we can write

Maj3(x) =
�1+ x1

2

��1+ x2

2

��1+ x3

2

�
· (+1)

+
�1+ x1

2

��1+ x2

2

��1− x3

2

�
· (+1)

+ · · ·

+
�1− x1

2

��1− x2

2

��1− x3

2

�
· (−1) .

If we actually expand out all of the products, tremendous cancellation occurs and we
get

Maj3(x) =
1

2
x1 +

1

2
x2 +

1

2
x3 −

1

2
x1 x2 x3 . (13.4)

We could do a similar interpolate-expand-simplify procedure even for a function
f : {0,1}n → R, just by multiplying each x-interpolator by the desired value f (x).
Note that after expanding and simplifying, the resulting polynomial will always be
multilinear, that is, have no variables squared, cubed, etc. In general, a multilinear
polynomial over variables x1, . . . , xn has 2n terms, one for each monomial

χS :=
∏

i∈S

x i ,

where S ⊆ [n] := {1, . . . , n}; for S = ; this monomial is constant 1. Hence, every
function f : {−1,+1}n→ R can be expressed (in fact, even uniquely) as a multilinear
polynomial

f (x) =
∑

S⊆[n]
cS

∏

i∈S

x i =
∑

S⊆[n]
cS ·χS(x) , (13.5)

where each cS is a real number. This expression is of f as a linear combination of the
monomials χS is also known as Fourier transform or Fourier expansion of f .

We can also treat the functions f : {−1,+1}n → R as elements of 2n-dimensional
vector space with an inner product defined by

〈 f , g〉 := 2−n
∑

x∈{−1,+1}n
f (x)g(x) .

A convenient way to look at this inner product as a mean value. Let x = (x1, . . . , xn)

be a random vector uniformly distributed in {−1,1}n. We can think of generating
such an x by choosing each bit x i independently and uniformly from {−1,1}. Hence,
Ex

�
f (x)
�
= 2−n
∑

x f (x), and

〈 f , g〉 = Ex

�
f (x) · g(x)
�

.
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Important observation is that the set of all monomials χS forms an orthonormal basis
for the space of functions f : {−1,+1}n→ R. That is,

〈χS ,χT 〉 =
¨

1 if S = T ,

0 if S 6= T .

Indeed,

〈χS ,χT 〉= Ex

h∏

i∈S

x i ·
∏

j∈T

x j

i
= Ex

h ∏

i∈S⊕T

x i

i
,

because x2
i
= 1; here S⊕T = (S−T )∪(T−S) is the symmetric difference of sets S and

T . Thus, if S and T are identical, then 〈χS ,χT 〉 = 1. If, however, S 6= T then S⊕ T 6= ;,
and we obtain:

〈χS ,χT 〉 = Ex

h ∏

i∈S⊕T

x i

i
=
∏

i∈S⊕T

E
�

x i

�
=
∏

i∈S⊕T

h1
2
· (+1) +

1

2
· (−1)
i
= 0 .

Since the χS form an orthonormal basis, the Sth Fourier coefficient cS of f in the
expression (13.5)—which is usually denoted by bf (S)—is found via (cf. Exercise 13.6):

bf (S) := 〈 f ,χS〉

= 2−n
∑

x

f (x)χS(x)

= Ex

�
f (x) · χS(x)
�

.

In particular, each coefficient bf (S) lies in the interval [−1,1]. If f : {0,1}n→ {0,1} is
a boolean function, then bf (S) is defined to be the Sth Fourier coefficient bf ′(S) of its
±1 version f ′. Hence, for a boolean function f , bf (;) is equal to the probability that
the function takes value 1, and for S 6= ;, the coefficients

bf (S) = Pr
x
[ f (x) =⊕i∈S x i]− Pr

x
[ f (x) 6= ⊕i∈S x i]

measure the correlation between the function and the parities of subsets of its argu-
ments.

OBSERVATION 13.12. If the value of f does not depend on the ith variable, that is,

f (x1, . . . , x i−1,+1, x i+1, . . . , xn) = f (x1, . . . , x i−1,−1, x i+1, . . . , xn) ,

then bf (S) = 0 for every S with i ∈ S.

PROOF. For a vector x ∈ {−1,1}n and a coordinate i ∈ [n], let x (i) denote the
vector x with its ith coordinate x i replaced by−x i . If i ∈ S, then we have that f (x (i)) =

f (x) but χS(x
(i)) =−χS(x), implying that

∑
x f (x)χS(x) = 0. □

This observation allows to compute Fourier coefficients of arithmetic combination
of some functions with disjoint sets of variables.

PROPOSITION 13.13. Let S = S1 ∪ S2 be a partition of S into two disjoint nonempty

blocks. Let g,h : {−1,1}S → {−1,1} be functions such that g only depends on variables

x i with i ∈ S1, and h only depends on variables x i with i ∈ S2. Then

bf (S) =
¨

0 if f = g + h;

bg(S1) ·bh(S2) if f = g · h.
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We leave the proof of this as an exercise.
Fourier coefficient can be used to prove lower bounds on the circuit complexity of

boolean functions. So, for example, Linial, Mansour and Nisan (1989) have proved
the following lower bound for unbounded fanin DeMorgan {∧,∨,¬}-circuits.

THEOREM 13.14. Let f be a boolean function in n variables computable by a DeMor-

gan circuit of depth d and size M, and t be any integer. Then

∑

|S|>t

bf (S)2 ≤ M · 2−t1/d/20 .

In the case of decision trees we have the following lower bound.

LEMMA 13.15 (Spectral Lower Bound). For every boolean function f in n variables

and every subset of indices S ⊆ {1, . . . , n} we have the bound

Size( f )≥ 2|S| ·
∑

T⊇S

|bf (T )| . (13.6)

PROOF. Take a decision tree for f of size Size( f ). For a leaf `, let val(`) ∈ {−1,+1}
be its label (recall that we are in ±1-notation), and let I` be the set of indices of those
variables, which are tested on the path to `. Let B` ⊆ {−1,+1}n be the set of all the
inputs that reach leaf `; hence, |B`|= 2n−|I` |.

Since each input reaches a unique leaf, the sets B` are mutually disjoint. Hence,
for every T ⊆ [n],

bf (T ) = 2−n
∑

x

f (x) ·χT (x) = 2−n
∑

`

∑

x∈B`

f (x) ·χT (x) =
∑

`

val(`) ·∆(T,`) ,

where

∆(T,`) := 2−n
∑

x∈B`

χT (x) .

Now, if T 6⊆ I`, that is, if some variable x i with i ∈ T is not tested along the path from
the root to the leaf `, then χT (x) = +1 for exactly half of the inputs x ∈ B`, and hence,
∆(T,`) = 0. If T ⊆ I` then the value of χT is fixed on B` to either +1 or −1, and so,

|∆(T,`)|= 2−n · |B`|= 2−|I` | .

Thus, in both cases, |∆(T,`)| ≤ 2−|I` |. Since for any S ⊆ [n] there are only 2|I` |−|S| sets
T satisfying S ⊆ T ⊆ I`, we conclude that

∑

T :T⊇S

|bf (T )| ≤
∑

T :T⊇S

∑

`

|∆(T,`)|=
∑

`

∑

T :T⊇S

|∆(T,`)|

≤
∑

`

2−|S| = 2−|S| · Size( f ),

and the desired bound (13.6) follows. □

We are going to apply Lemma 13.15 for S = [n] to the Iterated Majority function
and for S = ; to the Iterated NAND function.
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13.4.2. Iterated Majority. Recall that our goal is to exhibit a boolean function
f which requires decision tree of size super-polynomial in its weight N = dnf( f ) +
dnf(¬ f ). For this purpose we take the Iterated Majority function which is defined as
follows.

The majority of three boolean variables is given by

Maj3(x1, x2, x3) = x1 x2 ∨ x1 x3 ∨ x2 x3 .

In Example 13.11 we have shown that in the (−1,+1)-representation (i.e., when
the correspondence 1→−1 and 0→+1 is assumed) we have that

Maj3(x1, x2, x3) =
1

2
x1 +

1

2
x2 +

1

2
x3 −

1

2
x1 x2 x3 .

Consider now the monotone function Fh in n = 3h variables which is defined by the
balanced read-once formula of height h in which every gate is Maj3, the majority of 3
variables. That is, F0 = x , F1 =Maj3(x1, x2, x3) and for h≥ 2,

Fh =Maj3(F
(1)
h−1, F

(2)
h−1, F

(3)
h−1) (13.7)

where F
(ν)

h−1 are three copies of Fh−1 with disjoint(!) sets of variables.

THEOREM 13.16. Let Fh be the iterated majority function and N = dnf( f )+dnf(¬ f )

be its weight. Then

Size(Fh)≥ NΩ(
p

log2 N ) .

PROOF. It can be shown (Exercise 13.10) that the function Fh(x1, x2, . . . , xn) has

n= 3h = 2c·h

variables, where c = log2 3> 3/2, and has weight

N = 2 · 32h−1 = 2Θ(2
h) = 2Θ(n

2/3) .

Since 2Ω(n) ≥ 2Ω(log3/2 N ) = NΩ(
p

log2 N ), it is enough to prove the lower bound

Size(Fh)≥ 2Ω(n).

To prove this, we will apply Lemma 13.15 with S = [n] = {1, . . . , n}. Letting

ah :=
��bFh([n])
��

to denote the absolute value of the leading Fourier coefficient of Fh, this lemma yields

Size(Fh)≥ ah · 2n .

It remains therefore to prove an appropriate lower bound on ah. We proceed by induc-
tion on h.

Clearly, a0 = 1, since F0 is a variable (cf. Exercise 13.7), and a1 = 1/2 by the
above representation of Maj3.

For the inductive step recall that in the (−1,+1)-representation,

Maj3(x1, x2, x3) =
1

2

� 3∑

i=1

x i −
3∏

i=1

x i

�
.

Thus,

Fh =
1

2

3∑

ν=1

F
(ν)

h−1−
1

2

3∏

ν=1

F
(ν)

h−1 .
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FIGURE 2. Iterated NAND functions G1, G2 and G3.

By Proposition 13.13, the first summand does not contribute to bFh([n]) and we obtain
that

ah =
1

2
a3

h−1 .

Together with the condition a0 = 1, this recursion resolves to

ah = 2−30 · a3
h−1 = 2−30−31 · a3

h−2 = 2−30−31−32 · a3
h−3 = . . . = 2−∆ ,

where

∆= 30 + 31 + 32 + · · ·+ 3h−1 =
3h− 1

3− 1
= (3h− 1)/2= (n− 1)/2 .

Thus
Size(Fh)≥ ah · 2n ≥ 2−(n−1)/2 · 2n = 2(n+1)/2 ,

as desired. □

13.4.3. Iterated NAND. Consider the function in n = 2h variables which is com-
puted by the balanced read-once formula of height h in which every gate is NAND, the
negated AND operation NAN D(x , y) = ¬(x∧ y) = ¬x∨¬y . Up to complementation of
the inputs this is equivalent to a monotone read-once formula with alternating levels
of AND and OR gates (see Fig. 2). Let us denote this function by Gh.

THEOREM 13.17. Size(Gh)≥ exp
�
Ω(log2 Nh)
�

, where Nh := N(Gh).

PROOF. dnf(G0) = dnf(¬G0) = 1 (since G0 is a single variable), and it is easy to see
that for every h≥ 1 we have dnf(Gh) ≤ 2 · dnf(¬Gh−1) and dnf(¬Gh)≤ dnf(Gh−1)

2. By
induction on h one obtains dnf(Gh) ≤ 22(h+1)/2−1 and dnf(¬Gh) ≤ 22(h/2)+1−2. Hence, we
have Nh ≤ 22(h/2)+1

. Since n= 2h, our statement boils down to showing

Size(Gh)≥ 2Ω(n) .

Let us say that a Fourier coefficient bGh(S) is dense if for every subtree of height
2, S contains the index of at least one of the four variables in that subtree. We are
going to calculate exactly the sum of absolute values of dense coefficients. Denote
this sum by ch. Note that in the (−1,+1)-representation, we have NAN D(x , y) =

(x y − x − y − 1)/2. Hence,

Gh =
1

2

�
G
(1)
h−1 · G

(2)
h−1− G

(1)
h−1− G

(2)
h−1− 1
�

, (13.8)

where G
(1)
h−1, G

(2)
h−1 are two copies of Gh−1 with disjoint sets of variables.
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In order to compute c2, we use the following transformation. Let f1 = G
(1)
1 + 1/2

and f2 = G
(2)
1 + 1/2. Then it follows from (13.8) that

G2 =
1

2
f1 f2 −

3

4
f1 −

3

4
f2 +

1

8
.

Since each monomial in f1 and f2 contains at least one variable and the sets of variables
of f1 and f2 are disjoint, there are no common monomials in the four terms in the above
expression of G2. Hence, it is easy to calculate the sum of the absolute values of the
coefficients in the non-constant monomials, which is c2 = 1/2 · r1 · r2+3/4 · (r1+ r2) =

27/8= 3.375, where r1 = r2 = 3/2 is the sum of the absolute values of the coefficients
in f1 and f2.

In order to compute ch for h > 2, we use (13.8) directly. Only the first term
G
(1)
h−1 · G

(2)
h−1 in this equation can contribute to dense coefficients, and its individual

contributions do not cancel each other. Hence, we have the recursion

ch =
1

2
c2
h−1 .

This resolves to ch = 2(c2/2)
2h−2

which is 2Ω(n) since c2 > 2. The proof is now completed
by applying Lemma 13.15 (this time with S = ;). □

13.5. Decision trees for search problems

So far we considered decision trees solving decision problems. That is, for each
input the decision tree must give an answer “yes” (1) or “no” (0). For example, if
n =
�v

2

�
then each input x ∈ {0,1}n can be interpreted as a graph G on v vertices,

where xe = 1 means that the edge e is present in G, and xe = 0 means that the edge
e is not present in G. There are a lot of decision problem for graphs. Is the graph
connected? Has the graph a clique of size k? Is the graph colorable by k colors?

But decision alone is often not that what we actually need. Knowing the answer
“the graph has a triangle”, we would like to find any of these triangles. Given an
unsatisfiable CNF and an assignment to its variables, we would like to find a clause
which is not satisfied.

In general, a search problem is specified by n boolean variables and a collection
W of “witnesses.” In addition, this collection must have the property that every assign-
ment to the n variables is associated with at least one witness.

That is, a search problem is specified by a relation F ⊆ {0,1}n ×W such that, for
every x ∈ {0,1}n the exists at least one w ∈W such that (x , w) ∈ F . The problem itself
is:

Given an input string x ∈ {0,1}n, find a witness w ∈W such that (x , w) ∈ F .

With every boolean function f : {0,1}n → {0,1} we can associate the relation F ⊆
{0,1}n ×W , where W = {0,1} and (x , w) ∈ F iff f (x) = w. Hence, decision problems
(=boolean functions) are special case of search problems.

EXAMPLE 13.18. Consider the graphs Gx on v vertices, encoded by binary strings
x ∈ {0,1}n of length n =

�v
2

�
, one bit for each potential edge. As a set W of witnesses

we can take some special element λ and the set of all triangles. Define the relation F

by: (x , w) ∈ F if w = λ and graph Gx is triangle-free, or w 6= λ and w is a triangle
in Gx . Then the search problem is, given an input x ∈ {0,1}n, either to answer “no
triangle” if Gx is triangle-free, or to find a triangle in Gx .
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Given a bipartite graph G = (U ∪ V, E), define the search problem Degree(G) in
the following way. We have |E| variables xe, one for each edge e ∈ E. Each assignment
x ∈ {0,1}E to these variables is interpreted as a subgraph Gx of G, defined by those
edges e for which xe = 1, that is, Gx = {e ∈ E | xe = 1}. The search problem Degree(G)
is:

Given an input vector x , find a vertex whose degree in Gx is not one.

It is clear that such a vertex always exist, as long as the sides of the graph are not
equal. Thus, as long as |U | 6= |V |, Degree(G) is a valid search problem. Note also that
Degree(G) can be solved by a nondeterministic decision tree of depth at most d, where
d is the maximum degree of G. For this it is enough to guess a vertex of degree 6= 1
and check the incident edges of this vertex.

We will now show that deterministic decision trees must have much larger depth.
For this we take a bipartite (2n) × n graph G = (U ∪ V, E) of maximum degree d.
Suppose that G has the following expansion property: every subset S ⊆ U of |S| ≤ n/4
vertices has at least 2|S| neighbors in V . Such graphs exist for d = O(1) and infinitely
many n’s, and can be efficiently constructed using known expander graphs.

THEOREM 13.19. If G has an expansion property then every deterministic decision

tree for Degree(G) requires depth Ω(n).

PROOF. At each step, Bob (a deterministic decision tree) queries some edge e ∈ E.
Based on what edges Bob has queried so far, Alice (the adversary) answers either
“xe = 1” (the edge e is present) or “xe = 0” (the edge e is not present) in the subgraph.
We will show that Alice can cause Bob to probe Ω(n) edges of G. The adversary will be
limited to produce, in each step, a subgraph in which all vertices in U have degree at
most 1 and all vertices in V have degree exactly 1. Hence, the answer in a vertex in U .

To describe the adversary strategy we need some definitions. For step i (after i

edges were already probed), let Gi be the subgraph of G obtained by removing all
edges e ∈ E such that:

- xe = 0, that is, the edge e was already probed and was not included in the
subgraph;

- xe 6= ∗ (edge e was not probed yet) but e ∩ e′ 6= ; for some e′ with xe′ = 1.

That is, Gi contains all the edges that are still possible for the adversary to use in her
final subgraph without violating the above limitations.

A set S ⊆ U cannot be matched to V in Gi if it has fewer than |S| neighbors in V ,
that is, if |Ni(S)| < |S| where Ni(S) = {v ∈ V | (u, v) ∈ Gi for some u ∈ S}. Let S(Gi)

denote a minimum cardinality unmatchable set in Gi .
By the above limitation on the adversary, at step i the subgraph Gi is a (partial)

matching from U to V . Bob cannot know the answer as long as there is no isolated
vertex in Gi . Such a vertex itself is a minimum unmatchable set of size 1.

Initially, since the graph G has an expansion property, we have that |S(G)| > n/4.
Thus, Alice’s strategy is to make sure that the minimum unmatchable set size does not
decrease too fast.

To describe her strategy, suppose that an edge e ∈ E is probed in step i (after i

edges were already probed). In order to give an answer “xe = 1” or “xe = 0” Alice first
constructs two sets of vertices:

- S0(e) := S(Gi − e), that is, the minimum unmatchable set that would occur if
Alice would answer “xe = 0”.
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- S1(e) := S(Gi−{e′ | e′ 6= e, xe′ = ∗, v ∈ e′}), that is, the minimum unmatchable
set that would occur if Alice would answer “xe = 1”.

Alice than chooses the answer on e so as to make S(Gi+1) the larger of S0(e) and S1(e).
The heart of the argument is the following claim

CLAIM 13.20. |S(Gi+1)| ≥ 1
2
|S(Gi)|.

PROOF. Assume e is asked in step i + 1. By the above strategy,

|S(Gi+1)|=max{|S0(e)|, |S1(e)|} .
Consider the set S = S0(e) ∪ S1(e). This set cannot be matched into V in Gi , for
otherwise either S0(e) or S1(e) would be matchable after the decision about e is made.
Thus, S contains an unmatchable set for step i of cardinality no more than

|S0(e)∪ S1(e)| ≤ 2 ·max{|S0(e)|, |S1(e)|}= 2 · |S(Gi+1)|. □

We can now complete the proof of the theorem by the following argument. During
the game between Alice and Bob, a sequence S0,S1, . . . ,St of minimum unmatchable
sets Si = S(Gi) of vertices in U is constructed. At the beginning |S0| > n/4, and
|St | = 1 at the end. Moreover, by Claim 13.20, we have that the cardinality of the Si

does not decrease by more than a factor of 2. It must therefore be a step i at which
n/16≤ |Si | ≤ n/8 and |Ni(Si)|< |Si |. That is, Si has fewer than |Si | neighbors in the ith
subgraph Gi of G. However, by the expansion property of G, the set Si has had at least
2|Si | neighbors in the original graph G. Since at each step and for any set, the number
of its neighbors can drop down by at most a factor of 1/d, at least |Si |/d = Ω(n) edges
were probed up to step i. □

Exercises

EX. 13.1. Consider the following function f (X ) on n= m2 boolean variables:

f =

m∧

i=1

m∨

j=1

x i j . (13.9)

Show that for this function f we have that D0( f ) = D1( f ) = m but Depth( f ) = m2.
Hint: Take an arbitrary deterministic decision tree for f and construct a path from the root by the following

“adversary” rule. Suppose we have reached a node v labeled by xi j . Then follow the outgoing edge marked

by 1 if and only if all the variables xil with l 6= j were already tested before we reached the node v.

EX. 13.2. Let f : {0,1}n → {0,1} be a boolean function, and let k = k( f ) be the
largest natural number such that | f −1(0)| is divisible by 2k. Show that Depth( f ) ≥
n− k( f ). Hint: The number of inputs x ∈ f −1(0) leading to a given leaf of depth d is either 0 or 2n−d .

EX. 13.3. Let D1 be a DNF of a boolean function f , and D2 be a DNF of its negation
¬ f . Show the following cross-intersection property: if K is a monomial in D1 then every
monomial in D2 contains at least one literal which is contradictory to at least one literal
in K .

EX. 13.4. Show that, for the boolean function f defined by (13.9), we have that

Size( f ) ≥ 2dnf( f ).
Hint: Observe that all the minterms and maxterms of f have length m. Show that every such function

requires a decision tree of size at least 2m.
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EX. 13.5. Show that in (−1,+1) notation the AND(x , y) turns to the function
AND(x , y) = (x + y − x · y + 1)/2. What about OR(x , y)? What about the parity
function x ⊕ y?

EX. 13.6. Show that the Sth Fourier coefficient bf (S) a function f : {−1,+1}n →
{−1,+1} is found via:

bf (S) := 〈 f ,χS〉 = 2−n
∑

x

f (x)χS(x) .

Hint: Suppose that f =
∑

S
bf (S) ·χS . To find bf (T), take the scalar product of f with χT .

EX. 13.7. Let f = x i be a single variable. Show that then bf ({i}) = 1.

EX. 13.8. What is the leading Fourier coefficient bf ([n]) of the parity function
f = x1 ⊕ x2 ⊕ · · · ⊕ xn?

EX. 13.9. The most basic result in Fourier analysis is the following fact, known as
Perseval’s Theorem. Let x = (x1, . . . , xn) be a random vector uniformly distributed in
{−1,1}n. We can think of generating such an x by choosing each bit x i independently
and uniformly from {−1,1}. Hence, Ex

�
f (x)
�
= 2−n
∑

x f (x).
Prove that, for every f : {−1,1}n→ R,

∑

S⊆[n]

bf (S)2 = Ex

�
f (x)2
�

.

In particular, for f : {−1,1}n→ {−1,1}, we have that
∑

S⊆[n]

bf (S)2 = 1 .

Hint: Just compute Ex

�
f (x)2
�

using: (1) linearity of expectation, (2) the fact that E [X · Y ] = E [X ] ·E [Y ],
if random variables X and Y are independent, (3) χS(x) · χT (x) = χS⊕T (x), where S ⊕ T is the symmetric

difference of sets S and T , (4) Ex

�
χS(x)
�
= 0, unless S = ;, in which case its is 1.

EX. 13.10. Show that the iterated majority function Fh, defined by (13.7), has
n= 3h variables and its weight is 2 · 32h−1.
Hint: Observe that: (1) dnf(F0) = 1 and dnf(Fh) = 3 · dnf(Fh−1)

2, and (2) the minimal DNF of the negation

¬Fh coincides with the DNF of Fh with all the variables negated.

EX. 13.11. A ∨-decision tree is a generalization of a deterministic decision tree,
where at each node an OR g(x) =

∨
i∈S x i of some subset of variables can be tested.

Hence, decision trees correspond to the case when |S| = 1. Consider the threshold-k
function Thn

k
(x1, . . . , xn) = 1 iff x1 + · · ·+ xn ≥ k.

Show that any ∨-decision tree for Thn
k

requires at least
� n

k−1

�
leaves.

Hint: Look at Thn
k

as accepting/rejecting subsets of [n]. Suppose that some two different (k − 1)-

element subsets A, B ⊆ [n] reach the same leaf. Show that then also the set C = A ∪ B will reach that

leaf.
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CHAPTER 14

General Branching Programs

A branching program is a generalization of a decision tree, where instead of a
tree, the underlying graph can be an arbitrary directed acyclic graph. The model of
branching programs is one of the most fundamental sequential (in contrast to parallel,
like circuits or formulas) model of computations. This model captures in a natural way
the deterministic space whereas nondeterministic branching programs do the same for
the nondeterministic mode of computation.

14.1. Nechiporuk’s bounds for branching programs

The best we can do so far for unrestricted programs is a quadratic lower bound
Ω(n2/ log2 n) for deterministic programs, and Ω(n3/2/ log n) for nondeterministic pro-
grams. These bounds can be shown by counting arguments due to Nechiporuk (1966):
just compare the number of subfunctions with the number of distinct subprograms.

Recall that a deterministic branching program is a directed acyclic graph with one
source node and two sinks, i.e., nodes of out-degree 0. The sinks are labeled by 1
(accept) and by 0 (reject). Each non-sink node has out-degree 2, and the two outgoing
edges are labeled by the tests x i = 0 and x i = 1 for some i ∈ {1, . . . , n}. Such a
program computes a boolean function f : {0,1}n → {0,1} in a natural way: given an
input vector a ∈ {0,1}n, we start in the source node and follow the unique path whose
tests are consistent with the corresponding bits of a; this path is the computation on a.
This way we reach a sink, and the input a is accepted iff this is the 1-sink.

A nondeterministic branching program (or a switching-and-rectifier network) is a
directed acyclic graph G = (V, E) with two specified vertices s, t ∈ V , some of whose
edges are labeled by variables x i or their negations x i . The size of G is defined as the
number of labeled edges (not vertices!).

Each input a = (a1, . . . , an) ∈ {0,1}n defines a subgraph G(a) of G obtained by
deleting all edges whose labels are evaluated by a to 0, and removing the labels from
the remaining edges. Let |G(a)| denote the number of s-t paths in G(a). A network
G computes a boolean function in a natural way: it accepts the input a if and only if
|G(a)|> 0. This is a nondeterministic mode of computation: we accept the input if and
only if the labels of at least one s-t path in G are consistent with it.

A parity branching program is a network with a counting mode of computation: we
accept the input a if and only if the number of s-t paths consistent with a is odd, i.e.,
iff |G(a)|= 1 mod 2.

Let BP( f ), NBP( f ) and ⊕BP( f ) denote, respectively, the minimal size of determin-
istic, nondeterministic and parity branching program computing f .

Let f (X ) be a boolean function. Fix a partition of the variable set X into m disjoint
subsets Y1, . . . , Ym. For every i ∈ [m], let ci( f ) be the number of distinct subfunctions
of f on the variables Yi obtained by fixing the remaining variables to constants in all
possible ways.

205
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THEOREM 14.1. There exist a constant ε > 0 such that for every boolean function f

and for every partition of its variables into m≥ 1 sets,

BP( f )≥
ε

log2 n

m∑

i=1

log ci( f ) (14.1)

and

min{NBP( f ),⊕BP( f )} ≥ ε
m∑

i=1

p
log2 ci( f ) . (14.2)

PROOF. Take a partition Y1, . . . , Ym of variables of f . For each i ∈ [m], each setting
of constants to variables outside Yi yields an induced branching program on the nodes
labeled by variables from Yi plus an accept and a reject node. Say there are hi such
nodes. The number of deterministic branching programs on hi nodes is at most nhi h

2hi

i
:

there are at most nhi ways to assign n variables to hi nodes, and at most h
2hi

i
ways to

chose the two successors for each of hi nodes. Thus nhi h
2hi

i
≥ ci( f ). Since BP( f ) ≥∑m

i=1 hi , the desired lower bound (14.1) on BP( f ) follows.
To prove the lower bounds on NBP( f ) and ⊕BP( f ), let G(V, E) be the given pro-

gram, using nondeterministic or parity accepting mode, to compute f . Any fixing of
the variables outside Yi to constants results in a reduced branching program for the
resulting subfunction. Let Ei be the edges of E whose labels are literals of variables
from Yi , and let Vi be the set of vertices touched by these edges. Then without loss
of generality the reduced program uses only the vertices Vi , on which we have the
edges Ei and perhaps some extra edges labeled 1 that resulted from fixing values. But
there are at most 2|Vi |2 different possible programs, and as |Vi | ≤ 2|Ei | and the size
of our program is

∑k
i=1 |Ei |, the desired lower bounds (14.2) on NBP( f ) and ⊕BP( f )

follow. □

The element distinctness function takes a string s1, . . . , sm of m elements of the set
[m2] = {1, . . . , m2} and outputs 1 iff all the si are distinct. If we encode the elements
of [m2] by binary strings of length 2 log m, then we obtain a boolean version of this
function in n= 2m log m variables. Consider the input vector in {0,1}n to represent m

strings s1, . . . , sm each of length 2 log m where n = 2m log m. Define the function EDn

so that it is 1 iff all the si are distinct.

THEOREM 14.2 (Nechiporuk 1966). The element distinctness function EDn requires

deterministic branching programs of size Ω(n2/ log2 n), and nondeterministic as well as

parity branching programs of size Ω(n3/2/ log n).

PROOF. Take a partition Y1, . . . , Ym of variables according to the blocks s1, . . . , sm.
We already know (see the proof of Theorem 2.11) that for each of these m blocks

si there are
� m2

m−1

�
ways of setting the remaining s j ’s distinctly and each way gives a

different subfunction. Hence,

ci(EDn)≥
�

m2

m− 1

�
≥
�

m2

m− 1

�m−1

= 2Θ(m log m) .

Since m = Ω(n/ log n), Theorem 14.1 yields the desired lower bounds on the size of
branching program size of EDn. □
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14.2. Nondeterministic versus counting programs

Our goal is to show that, at the cost of a slight increase of size, every (nonde-
terministic) network can be simulated by a parity network. That is, in the model of
switching networks nondeterminism is not much more powerful than counting. But
perhaps more interesting, than the result itself, is its proof: it uses in a non-trivial
manner an interesting fact that random weighting of elements will almost surely iso-
late exactly one member of a family.

14.2.1. The isolation lemma. Let X be some set of n points, and F be a family
of subsets of X . Let us assign a weight w(x) to each point x ∈ X and let us define the
weight of a set E to be w(E) =

∑
x∈E w(x). It may happen that several sets of F will

have the minimal weight. If this is not the case, i.e., if minE∈F w(E) is achieved by a
unique E ∈ F , then we say that w is isolating for F .

LEMMA 14.3. Let F be a family of subsets of an n-element set X . Let w : X →
{1, . . . , N} be a random function, each w (x) independently and uniformly chosen over

the range. Then

Pr[w is isolating for F ]≥ 1−
n

N
.

PROOF. For a point x ∈ X , set

α(x) = min
E∈F ; x 6∈E

w (E)− min
E∈F ; x∈E

w (E− {x}).

A crucial observation is that evaluation of α(x) does not require knowledge of w (x).
As w (x) is selected uniformly from {1, . . . , N},

Pr[w (x) = α(x)] ≤ 1/N ,

so that
Pr[w (x) = α(x) for some x ∈ X ]≤ n/N .

But if w had two sets A, B ∈ F of minimal weight w (A) = w (B) and x ∈ A− B, then

min
E∈F ;x 6∈E

w (E) = w (B),

min
E∈F ;x∈E

w (E− {x}) = w (A)− w (x),

so w (x) = α(x). Thus, if w is not isolating for F then w (x) = α(x) for some x ∈ X ,
and we have already established that the last event can happen with probability at
most n/N . □

14.2.2. Counting is powerful. Using the isolation lemma we can now show that
every (nondeterministic) network may be simulated by a parity network.

THEOREM 14.4. There is a constant c such that for every boolean function f in n

variables,

⊕BP( f )≤ cn ·NBP( f )5 .

PROOF. Let G = (V, E) be a directed graph and w : E → {1, . . . , 2 · |E|} a weight
function on its edges. The weight of an s-t path is the sum of weights of its edges; a
path is lightest if its weight is minimal. Let dw(G) denote the weight of the shortest s-t
path in G; hence,

dw(G)≤ M := 2|V | · |E| .
Having a weight function w and an integer l, define the (unweighted, layered) version
G l

w
= (V ′, E′) of G as follows. Replace every vertex u ∈ V by l + 1 new vertices
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e e21

FIGURE 1. l = 4, w(e1) = 2 and w(e2) = 1

u0,u1, . . . ,ul in V ′ (i.e., V ′ consists of l + 1 copies of V , arranged in layers). For every
edge e = (u, v) in E and every 0 ≤ i ≤ l − w(e) we put an edge

�
ui , vi+w(e)

�
in E′ (see

Fig. 1); hence, |V ′| ≤ (1+ l)|V | and |E′| ≤ (l + 1)|E|.

CLAIM 14.5. The graphs G l
w

have the following properties:

(i) if G has no s-t path, then for every w and l, G l
w

has no s0-t l path;
(ii) if G has an s-t path and l = dw(G), then G l

w
has an s0-t l path. Moreover, the

later path is unique if the lightest s-t path in G is unique.

PROOF. Let P = (e1, e2, . . . , ek) be an s-t path in G. The first node of this path is s.
In the new graph G l

w
the first node is s0 and, following the path P in this new graph, at

the ith edge ei we move by w(ei) vertices down (in the next, (i+ 1)th layer of nodes).
Hence, P can produce an s0-t l path in G l

w
iff
∑k

i=1 w(ei) ≤ l. That is, a graph G l
w

has

an s0-t l iff G has an s-t path and
∑k

i=1 w(ei)≤ l. For l = dw(G), only lightest paths can
fulfill this last condition. □

Now let G = (V, E) be a network computing a given boolean function f (x1, . . . , xn).
Say that a weight function w is good for an input a ∈ {0,1}n if either G(a) has no s-t
paths or the lightest s-t path in G(a) is unique.

For each input a ∈ {0,1}n, taking the family Fa to be all s-t paths in the graph
G(a), the isolation lemma (Lemma 14.3) implies that at least one-half of all weight
functions w are good for a. By a standard counting argument, there exists a set W of
|W | ≤ 1+ log2(2

n) = n+ 1 weight functions such that at least one w ∈W is good for
every input a. If w is good for a, then the graph G l

w
(a) with l = dw (G(a)) has the

properties (i) and (ii). For different inputs a, the corresponding values of l may be
different, but they all lie in the interval 1, . . . , M . Thus, there exist m ≤ (n+ 1) · M
networks H1, . . . , Hm (with each H j = G l

w
for some w ∈ W and 1 ≤ l ≤ M) such that,

for every input a ∈ {0,1}n, the following holds:

(iii) if |G(a)|= 0, then |H j(a)|= 0 for all j;
(iv) if |G(a)|> 0, then |H j(a)|= 1 for at least one j.

Let s j , t j be the specified vertices in H j, j = 1, . . . , m. We construct the desired
parity network H as follows: to each H j add the unlabeled edge (s j , t j), identify t j and
s j+1 for every j < m, and add the unlabeled edge (s1, tm) (see Fig. 2).

It is easy to see that, for every input a ∈ {0,1}n, |H(a)| = 1 mod 2 if and only if
|G(a)| > 0. Indeed, if |G(a)| = 0, then by (iii), H(a) has precisely two s1-tm paths
(formed by added unlabeled edges). On the other hand, if |G(a)| > 0, then by (iv),
at least one H j(a) has precisely one s j -t j path, implying that the total number of s1-tm

paths in H(a) is odd. Thus, H is a parity network computing the same boolean function
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H H H
s t1

1

...
m

m
2

FIGURE 2. Construction of the parity network H

f . Since l ≤ M and m ≤ nM with M = 2|V | · |E| ≤ 2|E|2, the size of (the number of
edges in) H is at most m(l + 1)|E|= O(n|E|5). □
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CHAPTER 15

Bounded Width

To define the width of a branching program, divide the nodes of the underlying
graph into levels such that all edges out of nodes in the ith level go to nodes in the
(i+ 1)th level. We can make a graph leveled by adding more nodes, possibly squaring
the size but keeping the length (that is, the number of edges in a longest path) the
same. The width is then the number of nodes of the largest level in an optimal division
into levels. A leveled program is oblivious if in each level all its nodes are labeled by
the same variable. It is not difficult to see that every leveled branching program of
length ` and width w can be transformed into an oblivious program of length w` and
width w.

15.1. Width versus length

Every boolean function in n variables can be computed by a trivial branching pro-
gram of length ` = n and width w = 2n: just take a decision tree. But what if we
restrict the width w—how long then the program must be? To answer this question
we use communication complexity arguments.

An s-mixed protocol for a boolean function f : {0,1}n→ {0,1} is a communication
protocol between two players, Alice and Bob, whose access to input variables fulfills
the following conditions:

a. Alice cannot see at least s variables seen by Bob, and
b. Bob cannot see at least s variables seen by Alice.

The remaining n− 2s variables are seen by both players!
Let Ds( f ) denote the minimum number of bits communicated by a best determin-

istic s-mixed protocol for f . The larger the number n− 2s of common variables is, the
easier is the game. Hence, s ≤ t implies that Ds( f )≤ Dt( f ).

THEOREM 15.1. If a boolean function f : {0,1}n → {0,1} can be computed by an

oblivious branching program of width w and length ` ≤ 0.1n log n, then

Ds( f ) = O

�
` log w

n

�
for s ≥ n0.6/4 .

PROOF. Because the branching program is oblivious, we can think of its labels as
forming a string z of length ` over the alphabet [n]. To obtain a communication
protocol from the program, we need the following combinatorial result.

Let z be a string over an alphabet X = {x1, . . . , xn}. Given two sets S, T ⊆ X

of letters, say that a string z has an (r,S,R)-partition if z can be partitioned into r

substrings z = z1z2 · · · zr such that none of the substrings zi contains letters from both
sets S and T .

CLAIM 15.2. Let A, B ⊆ X be two disjoint sets of size |A| = |B|= m. Let z be a string
over X such that each a ∈ A appears in z at most kA times and each b ∈ B appears in

210
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z at most kB times. Then there are A′ ⊆ A and B′ ⊆ B of size at least m/2k such that z

has a (k,A′, B′)-partition, where k = kA+ kB.

PROOF. Induction on k. If k = 1, then either kA of kB is 0, and we can take A′ = A

and B′ = B. For the induction step, assume w.l.o.g. that each letter appears in z at
least once (otherwise, extend z with the missing letters in an arbitrary way). Examine
the letters of z one by one until we reach a location where we already have seen m/2
letters of one of A and B but less than m/2 of the other; such a location must exist
since A∩B = ;. Denote the prefix by z′ and the rest of z by z′′. Let it was A whose m/2
letters appear in z′ (the case when it is B is dual). Let A∗ = {a ∈ A | a ∈ z′} be those
letters of A that appear in z′, and B∗ = {b ∈ B | b 6∈ z′} be those letters of B that do not

appear in z′. It follows that |A∗|, |B∗| ≥ m/2.
Consider now the suffix z′′. Each letter of A∗ appears in z′′ at most kA− 1 times,

since each of them already appeared in z′ at least once. Hence, we can apply the
induction hypothesis to the string z′′ for sets A∗ and B∗, and obtain subsets A′ ⊆ A∗ and
B′ ⊆ B∗ such that z′′ has a (k − 1,A′, B′)-partition with |A′| ≥ |A∗|/2k−1 ≥ m/2k and
|B′| ≥ |B∗|/2k−1 ≥ m/2k . Since the prefix z′ can only contain letters of A′ but none of
B′, the entire string z = z′z′′ also has a (k− 1,A′, B′)-partition. □

Let now z be the string over X = {x1, . . . , xn} of length ` corresponding to the la-
bels of our branching program. Observe that at least n/2 variables must appear at most
2`/n times, for otherwise the length of the string would be larger than (n/2)(2`/n) =
`. Partition these variables into two sets A and B each of size n/4 in an arbitrary way.
By Claim 15.2 with m = n/4, kA = kB = 2`/n and k = 4`/n, there are disjoint sets
of variables A′ and B′ such that |A′|, |B′| ≥ n/(4 · 2k) and z is a (k,A′, B′)-partition.
Moreover, since ` ≤ 0.1n log n, we have that

k =
4`

n
≤

0.4n log n

n
= 0.4 log n .

Hence,

|A′|, |B′| ≥ n/(4 · 2k)≥ n0.6/4 .

Since the sequence z of variables, tested along the ` levels of the program, has a
(k,A′, B′)-partition, its is possible to split z into k substrings z = z1z2 · · · zk such that
no substring zi contains variables from both subsets A′ and B′. Hence, if we give all
variables in A′ to Alice, all variables in B′ to Bob and the rest to both players, the
players can determine the value of our function by communicating according to the
underlying branching program. To carry out the simulation, the players need to tell
each other, at the end of each of k blocks, the name of the node in the next level
from which the simulation should proceed; for this log w bits are sufficient. Hence,
the obtained protocol communicates O(k · log w) = O((` log w)/n) bits in total. The
protocol is s-mixed for s ≥min{|A′|, |B′|} ≥ n0.6/4. □

Thus, to obtain a large tradeoff between the width and the length of oblivious
branching programs, we need boolean functions of large mixed communication com-
plexity. We will now show that such are characteristic functions of good codes.

A linear (n, m, d)-code is a linear subspace C ⊆ GF(2)n of dimension n−m such
that the Hamming distance between any two vectors in C is at least 2d+1. An (n, m, d)-
code function is the characteristic function fC of a linear (n, m, d)-code C , that is,
fC(x) = 1 iff x ∈ C .
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LEMMA 15.3. For every (n, m, d)-code function f , we have that

Ds( fC) ≥ 2d log2

�
s

d

�
−m .

PROOF. Take an arbitrary s-mixed protocol for f (X ). Let A⊆ X be the set of vari-
ables seen only by Alice, and B ⊆ X be the set of variables seen only by Bob. Hence,
|A|, |B| ≥ s, and at most r = n− 2s variables are seen by both players. We can assume
w.l.o.g. that |A| = |B| = s. Since there are only 2r possible settings α of constants to
these (common) variables, at least one of these settings gives us a subfunction fα of f

in 2s variables which is the characteristic function of some linear (n−r, m−r, d)-code C .
After this setting, our protocol turns to a usual communication protocol for the

truth matrix M = { fα(x , y)} of fα. From Section 7.1.3 we know that this last proto-
col must communicate at least log2 Cov(M) bits, where Cov(M) is the smallest num-
ber of (not necessarily disjoint) all-1 submatrices of M covering all its 1s. (In fact,
log2 Cov(M) is a lower bound even for nondeterministic communication complexity of
M , but we will not need this now.) Since the matrix has |M | = 2n−m−r = 22s−m ones,
the desired lower bound on log2 Cov(M), and hence, on Ds( fC ) follows from:

CLAIM 15.4. Every all-1 submatrix of M has at most 22s
� s

d

�−2 ones.

To show this, look at one row x ∈ {0,1}s of M . Since the Hamming distance
between any two vectors in C is at least 2d + 1, we have that any two columns y 6=
y ′ ∈ {0,1}s of M such that M[x , y] = M[x , y ′] = 1 must also be at Hamming distance
at least 2d+1. Hence, no Hamming ball of radius d over a column y with M[x , y] = 1
can contain another column y ′ with M[x , y ′] = 1. Since each such ball has

∑d
i=0

�s
i

�
>

� s
d

�
vectors, this implies that each row and each column of M can have at most 2s

� s
d

�−1

ones.
This completes the proof of the claim, and thus, of Lemma 15.3. □

Since the parity-check matrix of any linear (n, m, d)-code C has m rows, the char-
acteristic function fC of C is just an AND of m negations of parity functions. This AND
can be computed by an oblivious branching program of width w = m = O(d log n) and
length ` = mn= O(dn log n).

If, however, we would require the length be smaller than n log n, then some linear
codes would require exponential width. To see this, consider Bose-Chaudhury codes
(BCH-codes). These are linear (n, m, d)-codes C with m ≤ d log2(n+ 1). Such codes
can be constructed for any n such that n+ 1 is a power of 2, and for every d < n/2.

COROLLARY 15.5. Let C be a BCH-code of minimal distance 2d+1 where d = bn0.01c.
Then any oblivious branching program for fC must either have width exponential in n0.01

or have length `= Ω(n log n).

PROOF. Since m ≤ d log2(n+ 1), Lemma 15.3 implies that, for s = Ω(n3/5),

Ds( fC )≥ 2d log2(s/d)−m≥ 0.59 · 2d log2 n− d log2(n+ 1)−O(1) = Ω(d log n) .

Hence, Theorem 15.1 implies that ` log w = Ω(dn log n) = Ω(n1.01 log n). □

Recall that the Majority function Maj is defined by:

Maj(x1, . . . , xn) = 1 iff x1 + · · ·+ xn ≥ n/2 .

EXERCISE 15.6. Show that any constant-width branching program for Maj must
have length ` = Ω(n log n). Hint: Show that Ds(Maj) = Ω(log s) and use Theorem 15.1.
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3

x x x3 1 2
1

2

FIGURE 1. A width-3 permuting branching program on three vari-
ables. On input vector x = (0,1,1) this program outputs the permu-

tation P(x) =

�
1 2 3
3 1 2

�
. Bold arrows correspond to tests x i = 1,

the remaining ones to tests x i = 0.

15.2. Width-5 programs and formulas

We now consider branching programs of constant(!) width. At first glance, it
seems that such a drastical width restriction might be very crucial: if the width is
bounded by some constant then, when going from one level to the next, we can keep
only a constant amount of information about what we have done before. It was there-
fore conjectured by many researchers that, due to this “information bottleneck,” even
such function as the Majority function Maj(x1, . . . , xn) should require very long branch-
ing programs, if their width is constant. Trivial constant-width branching program
would try to remember the number of 1’s among the bits, which were already read;
but this would require non-constant width of about log2 n.

With a surprisingly simple construction, Barrington (1986) disproved this conjec-
ture. He showed that constant-width branching programs are unexpectedly powerful:
every function with a polynomial size DeMorgan formula, including the Majority func-
tion, can be computed by a width-5 branching program of polynomial length.

The intuition behind his construction is an observation that, when working on a
given input vector a ∈ {0,1}n, a branching program collects the information about
a not necessarily gradually: if a passed a test x i = 1 it knows the ith bit of a. But
this is also the way in which information is collected by decision trees, a very special
kind of branching programs! Most important aspect of general branching programs is
the possibility to re-test the bits. If a passed also the second test at some node v, the
information “ai = 1” is at this point useless. But in this case the additional information
about a is encoded in the underlying graph of the program, namely, by the fact that
a reached this particular node v, and not the other one. That is, a way in which a
program collects an information about an input is not gradual but rather global. It is
encoded by the structure of the underlying graph.

15.2.1. Permutation branching programs. An arbitrary graph of width w and
length l can be converted into a w× l array of nodes by adding dummy nodes, possibly
multiplying the size by w. So, we may assume that our programs have this form. That
is, the program has l levels. All levels have w nodes and all nodes at a given level
are labeled by the same variable. Moreover, at leach level the 0-edges and the 1-edges
going to the next level form two mappings from [w] = {1, . . . , w} to [w] (see Fig. 1).
Additionally, we will require these mappings be permutations, that is, are bijective
mappings. Then any input vector yields a permutation which is the composition of the
selected permutations at each level.

Call such a branching program P a permuting branching program, and let P(x)

be the resulting permutation on input x ∈ {0,1}n. For a boolean function f and a
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permutation σ, say that branching program P σ-computes f if for every input x ,

P(x) =

¨
σ if f (x) = 1,

e if f (x) = 0,

where e is the identity permutation. A permutation is cyclic if it is composed of a single
cycle on all its elements. For example,

σ =

�
1 2 3 4 5
3 1 5 2 4

�
=

�
1 3 5 4 2
3 5 4 2 1

�

is a cyclic permutation, which we will denote as

1→ 3→ 5→ 4→ 2→ 1 or shortly as σ = (13542) .

15.2.2. Barrington’s theorem. The following simple properties of permuting branch-
ing programs give a key for the whole Barrington’s argument. Let σ and τ be cyclic

permutations, f and g boolean functions, P and Q permuting branching programs.

LEMMA 15.7 (Changing output). If P σ-computes f then there is a permuting branch-

ing program of the same size τ-computing f .

PROOF. Since σ and τ are both cyclic permutations, we may write τ = θσθ−1 for
some permutation θ . Then simply reorder the left and right nodes of P according to θ
to obtain the τ-computing branching program P ′:

if P(x) = σ1σ2 · · ·σt = σ then P ′(x) = θσ1σ2 · · ·σtθ
−1 = θσθ−1 = τ.

That is, we replace the permutation σ1 computed at the first layer by the permutation
θσ1, and the permutation σt computed at the last layer by the permutation σtθ

−1. □

LEMMA 15.8 (Negation). If P σ-computes f then there is a permuting branching

program of the same size σ-computing ¬ f .

PROOF. Use the previous lemma to obtain a branching program P ′ σ−1-computing
f . Hence, P ′(x) = σ−1 if f (x) = 1, and P ′(x) = e if f (x) = 0. Then reorder the final
level by σ so that the resulting program P ′′ σ-computes ¬ f :

if P ′(x) = σ1σ2 · · ·σt then P ′′(x) = σ1σ2 · · ·σtσ.

This way, P ′′(x) outputs e if P ′(x) = σ−1, and hence, if f (x) = 1; otherwise, P ′′(x)
outputs σ. □

LEMMA 15.9 (Computing AND). If P σ-computes f and Q τ-computes g, then there

is a permuting branching program στσ−1τ−1-computing f ∧ g of size

2(size(P) + size(Q)) .

PROOF. Use Lemma 15.7 to get a program σ−1-computing f and τ−1-computing
g. Then compose these four programs in the order σ,τ,σ−1,τ−1. This has the desired
effect because replacing either σ or τ by e in στσ−1τ−1 yields e. □

The next lemma is the only place where the value w = 5 is important; neither
w = 3 nor w = 4 suites for this purpose.

LEMMA 15.10. There are cyclic permutations σ and τ of {1,2,3,4,5} such that their

commutator % = στσ−1τ−1 is cyclic.

PROOF. See Fig. 2. □
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1

2

3

4

5
−1

=

σ τ σ τ−1 −1 ρ = στσ−1τ

FIGURE 2. Cyclic permutations σ = (12345), τ = (13542) of
{1,2,3,4,5} and their commutator % = στσ−1τ−1 = (13254).

THEOREM 15.11. Suppose that a boolean function f be computed by a DeMorgan

circuit of depth d. Then f is also computable by a width-5 branching program of length

at most 4d .

In particular, if a boolean function f can be computed by a DeMorgan formula
of polynomial leafsize, then f can be computed by a width-5 branching program of
polynomial size. That is, width-5 branching programs are not weaker than DeMorgan
formulas!

PROOF. We will prove a somewhat stronger claim: If f can be computed by a
DeMorgan circuit of depth d, then there exists a cyclic permutation σ of {1,2,3,4,5}
and a permutation branching program P of width 5 such that P σ-computes f and has
size at most 4d . We prove this claim by the induction on the depth d.

If d = 0, the whole circuit for f is either a variable x i or its negation ¬x i , and f

can be easily computed by one-instruction program.
Suppose now that d ≥ 1. By Lemma 15.8, we can assume that f = g ∧ h, where

g and h have formulas of depth d − 1, and thus (by induction hypothesis) width-5
permuting branching programs G and H of length at most 4d−1.

Let σ and τ be the permutations from Lemma 15.10. By Lemma 15.7, we may
assume that G σ-computes g and H τ-computes h. By Lemma 15.9, there is a permut-
ing program of size at most 2(size(G) + size(H)) ≤ 4d which στσ−1τ−1-computes f .
Since, by Lemma 15.10, the permutation στσ−1τ−1 is cyclic, we are done. □
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CHAPTER 16

Bounded Replication

We have already seen that restricting the width of a branching program to a con-
stant does not reduce their power too much: the resulting model is at least as powerful
as boolean formulas. But what if we restrict the length of a program—can we then
show that some explicit boolean functions require exponential width?

Restricting the length means restricting the number of repeated tests along a com-
putation. In this chapter we consider branching programs in which we restrict the
number of variables that are allowed to be tested more than once.

Namely, define the replication number of a program as the minimal number R such
that along every computation path, at most R variables are tested more than once.
The sets of variables re-tested along different computations may be different! Also,
the (up to R) re-tested variables may be re-tested an arbitrary number of times! Thus,
restricted replication does not mean restricted length of computations—they may be
arbitrarily long. Branching programs with replication number R are also called in the
literature branching (1,+R)-programs, meaning that we have a read-one branching
program with up to R exceptions along each computation.

Note that for every branching program in n variables we have 0≤ R ≤ n. Moreover,
every boolean function f in n variables can be computed by a branching program with
R = 0: just take a decision tree. However, the size S of such (trivial) branching pro-
grams is then exponential for most functions. It is therefore interesting to understand
whether S can be substantially reduced by allowing larger values of R.

The goal is to prove exponential lower bounds on the size of branching programs
of as large replication number R as possible. An ultimate goal would be to do this for
R = n: then we would have an exponential lower bound for unrestricted branching
programs.

In this chapter we will come quite “close” to this goal by exhibiting boolean func-
tions f (based on expander graphs) with the following property: there is an absolute
constant ε > 0 such that every branching program computing f must either have repli-
cation number R> εn or must have exponential size.

16.1. Read-once programs: R= 0

To “warm up”, we start with read-once branching programs (1-b.p.), that is, pro-
grams along each path of which no variable can be tested more than once.

It is not difficult to see that read-once programs are just a small generalization of
decision trees. The only difference is that now we count not the total number of nodes
(=total number of subtrees) but only the total number of non-isomorphic subtrees: if
we glue up isomorphic subtrees of a decision tree, then what we obtain is a read-once
program. Similarly, if we envelope a read-once program to a tree, then what we obtain
is a decision tree.

216
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Since subtrees correspond to subfunctions, the number of non-isomorphic subtrees
in T (and hence, the size of P) must be large, if f has many different subfunctions.
This motivates the following definition.

Let f (X ) be a boolean function in variables X = {x1, . . . , xn}, and let Y ⊆ X . An
assignment to Y is a mapping a : Y → {0,1}, and its length is the size |Y | of its domain.
The subfunction of f , induced by such an assignment, is a boolean function fa(X − Y )

obtained from f by setting the variables x i ∈ Y to constants a(x i) ∈ {0,1}. Hence, fa

is a boolean function fa : {0,1}n−|Y |→ {0,1}.
DEFINITION 16.1. A boolean function f (X ) is m-mixed if for every Y ⊆ X of size

|Y |= m and any two different assignments a, b : Y → {0,1}, the obtained subfunctions
fa and fb are different, that is, take different values on at least one input vector.

LEMMA 16.2. If f is an m-mixed boolean function, then every deterministic read-once

branching program computing f must have at least 2m − 1 nodes.

PROOF. Let P be a deterministic read-once branching program computing f . Our
goal is to show that the initial part of P must be a complete binary tree of depth m−1.
For this, it is enough to show that no two initial paths (starting in the source node)
of length m− 1 can meet in a node. For the sake of contradiction, assume that some
two paths p1 and p2 of length m − 1 meet in some node v, and let fv be a boolean
function computed by a subprogram Pv of P with the source node v. Let Yi be the set
of variables tested along the path pi , and ai : Yi → {0,1} be the assignment consistent
with this path.

CLAIM 16.3. Y1 = Y2.

PROOF. Suppose there is a variable x i ∈ Y2 such that x i 6∈ Y1. Then we can extend
the assignment a1 to two assignments a′1, a′′1 : Y ∪ {x i} → {0,1} by setting a′1(x i) = 0
and a′′1 (x i) = 1. Since the variable x i belongs to Y2, it was tested along the path
p2. Since our program is read-once, this means that x i cannot be re-tested in the
subprogram Pv . Hence, fa′1

= fa′′1
. But the assignments a′1 and a′′1 are different and

both have length |Y1|+ 1= m, a contradiction with the m-mixness of f . □

By Claim 16.3, both assignments a1 and a2 have the same domain Y = Y1 = Y2.
Moreover, these assignments are different since the computations on them split before
they meet. Since, due to the read-once constrain, none of the variables in Y can be
tested after the node v, we have that fa1

= fa2
, a contradiction with the m-mixness

of f . □

16.1.1. P 6= NP∩ co-NP for read-once programs. We now consider nondetermin-

istic branching programs. Call such a program read-once (or a 1-n.b.p. ) if along any
path from the source node to the target node every variable appears at most once. Note
that this is a “syntactic” restriction: such a program cannot contain any inconsistent
paths, that is, paths along which a variable x i and its negation ¬x i is tested.

Just like we have done for the size of decision trees, we can ask the P versus
NP∩ co-NP question for their (slight) generalization—read-once programs. We will
show that here P 6= NP∩ co-NP.

Namely, we will exhibit a boolean function f in n variables (a “pointer function”)
such that both f and ¬ f have nondeterministic read-once branching programs of poly-
nomial size but any deterministic read-once program for f must have exponential size.
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FIGURE 1. The pointer function.

The pointer function fn(x1, . . . , xn) is defined as follows. Let s and k be such that
ks2 = n and k ≥ log n. Arrange the n indices 1, . . . , n of the variables into a k × s2

matrix, split the i-th row (1≤ i ≤ k) into s blocks Bi1, Bi2, . . . , Bis of size s each, and let
yi be the OR of ANDs of variables in these blocks:

yi =

s∨

j=1

� ∧

x∈Bi j

x

�
i = 1, . . . , k, (16.1)

Then define the function by

fn(x1, . . . , xn) = xbin(y) ,

where bin(y) =
∑k

i=1 yi2
i−1 is the number whose binary code is y = (y1, . . . , yk).

THEOREM 16.4. Both fn and ¬ fn have 1-n.b.p. of size O(n) whereas any 1-b.p. com-

puting fn must have size at least 2s−1 = exp
�
Ω(n/ log n)1/2
�

.

PROOF. Upper bound. On input vector x = (x1, . . . , xn) in {0,1}n, the desired 1-
n.b.p. first guesses a binary string a = (a1, . . . , ak) ∈ {0,1}k, after which it remains
to test if the values y1 = a1, . . . , yk = ak satisfy the equalities (16.1) and if the cor-
responding (to the string a) variable xν = xbin(a) has the value 1 (or 0 in the case of
¬ fn). It is clear that the resulting program is read-once, except that the variable xν
could be tested two times: once – in the program Pi making that of the tests (16.1) for
which ν ∈ Bi1∪ . . .∪ Bis, and then once more at the end of a computation. Simple (but
crucial) observation is that we can safely replace the variable xν in that program Pi by
the constant 1 (or by 0, in the case of ¬ fn), so that the whole program is read-once.

Lower bound. By Lemma 16.2 it is enough to show that the function fn is m-mixed
for m = s− 1. To show this take any two different assignments a and b of constants to
a set of m variables in X . Since m is strictly less than s, we have that: (i) every block Bi j

has at least one unspecified variable, and (ii) in every row, at least one block consists
entirely of unspecified variables. This means that (independent of actual values of a

and b) we can arrange the rest so that the resulting string (y1, . . . , yk) points to a bit
xν where the assignments a and b differ. □

Theorem 16.4 shows that 1-n.b.p. may be exponentially more powerful than their
deterministic counterparts, 1-b.p. Thus, it is harder to prove good lower bounds for
1-n.b.p. Still, also here we have a general lower bounds criterion.

For a set of inputs A⊆ {0,1}n and an integer 0 ≤ k ≤ n, we define the k-th degree

dk(A) as the maximum number of inputs in A, all of which have 1’s on some fixed set
of k coordinates. That is,

dk(A) =max
|I|=k

#{a ∈ A | ai = 1 for all i ∈ I} .



16.1. READ-ONCE PROGRAMS: R= 0 219

An input a is a lower one of a boolean function f if f (a) = 1 and f (b) = 0 for all inputs
b 6= a such that b ≤ a. Lowest ones are lower ones with the smallest number of 1’s.

THEOREM 16.5. Let f be a boolean function, A⊆ f −1(1) be the set of its lowest ones

and ` be the number of 1’s in them. Then, for every 0 ≤ s ≤ `, every 1-n.b.p. computing

f has size at least
|A|

ds(A) · d`−s(A)
.

PROOF. Let P be a 1-n.b.p. computing f . For each input a ∈ A, fix an accepting
path pa consistent with a. Since a has ` 1-bits, and no vector with a smaller number
of 1-bits can be accepted (a is a lowest one), all the ` 1-bits of a must be tested along
pa. Split this path into two segments pa = (p

′
a
p′′

a
), where p′

a
is an initial segment of pa

along which exactly s 1-bits of a are tested. We denote the corresponding set of bits
by Ia, and let Ja denote the set of remaining `− s 1-bits of a. For a node v of P, let Av

denote the set of all inputs a ∈ A such that v is the terminal node of p′
a
. We are going

to finish the proof by showing that |Av | ≤ ds(A)d`−s(A) for every node v.
Fix some node v of P, and let I = {Ia : a ∈ Av}, J = {Jb : b ∈ Av}. Since our

program is read-once, we have that I ∩ J = ; for all I ∈ I and J ∈ J . Take now an
arbitrary pair I ∈ I , J ∈ J , and denote by cI,J the input defined by cI,J (i) = 1 iff
i ∈ I ∪ J .

CLAIM 16.6. For every I ∈ I and J ∈ J , the combined input cI,J belongs to A.

PROOF. Choose some a, b ∈ Av such that I = Ia, J = Jb. Since I and J are disjoint,
the path p = (p′

a
p′′

b
) is consistent with the input cI,J . Hence, this input is accepted

because p leads to an accepting sink. But since |I | + |J | = ` and ` is the smallest
number of 1’s in an accepted input, this is possible only when this combined input cI,J

belongs to A. □

With this claim in mind, we fix an arbitrary J ∈ J and notice that {cI,J | I ∈ I } is a
set of different inputs from A, all of which have 1’s on J . Hence, |I | ≤ d|J |(A) ≤ d`−s(A)

(provided J 6= ;). Similarly, |J | ≤ ds(A) which implies

|I | · |J | ≤ ds(A)d`−s(A) .

Finally, every a ∈ Av is uniquely determined by the pair (Ia, Ja), therefore |Av | ≤ |I | ·
|J |. This completes the proof of the desired inequality |Av | ≤ ds(A)d`−s(A), and thus,
the proof of the theorem. □

The exact perfect matching function is a boolean function EPMn in n2 variables,
encoding the edges of a bipartite graph with parts of size n; the function computes 1
iff the input graph is a perfect matching. That is, EPMn takes an n× n (0,1) matrix as
an input, and outputs 1 iff each row and each column has exactly one 1.

COROLLARY 16.7. Every 1-n.b.p. computing EPMn must have size 2Ω(n).

PROOF. Lowest ones for EPMn are perfect matchings. Hence, we have n! lowest
ones. Since, for every 1 ≤ s ≤ n, only (n− s)! perfect matchings can share s edges in
common, we have that dn/2(A) ≤ (n/2)!. By Theorem 16.5, any 1-n.b.p. computing
EPMn must have size at least

n!

(n/2)! · (n/2)! =
�

n

n/2

�
= 2Ω(n) . □
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What makes the analysis of branching programs difficult is the fact, that they can
contain a lot of “redundant” paths, that is, paths containing a contact x i as well as
¬x i , for some i. These paths (called also “null-chains”) are consistent with no input
vector, but it is known that there presence can exponentially reduce the total size of a
program: these paths enable one to merge non-isomorphic subprograms.

Say that a nondeterministic branching program is weakly read-once if along any
consistent s-t path no variable is tested more than once. That is, we now put no
restrictions on inconsistent paths.

The following problem is one of the “easiest” questions about branching programs,
but it still remains open!

RESEARCH PROBLEM 16.8. Prove an exponential lower bound for nondeterministic

weakly read-once branching program.

That such programs may be much more powerful than 1-n.b.p.’s shows the follow-
ing

PROPOSITION 16.9. The function EPMn can be computed by a nondeterministic weakly

read-once branching program of size O(n3).

PROOF. To test that a given square (0,1) matrix is a permutation matrix, it is
enough to test whether:

a. every row has at least one 1, and
b. every column has at least n− 1 0’s.

These two tests can be made by two nondeterministic branching programs P1 and P2

designed using the formulas

P1(X ) =

n∧

i=1

n∨

j=1

x i, j and P2(X ) =

n∧

j=1

n∨

k=1

n∧

i=1
i 6=k

¬x i, j .

Let P = P1 ∧ P2 be the AND of these two programs, that is, the sink-node of P1 is the
source-node of P2. The entire program has size O(n3). It remains to verify that P

is read-once. But this is obvious because all the contacts in P1 are positive whereas
all contacts in P2 are negative; so every s-t path in the whole program P is either
inconsistent or is read-once. □

16.1.2. Parity branching programs. The highest lower bound for parity branch-
ing programs remains the Nechiporuk’s bound of Ω(n3/2/ log) shown in Section 14.1
(see Theorem 14.2). Curiously enough, no such lower bound is known even for read-

once parity branching programs, where along any s-t path (be it consistent or not)
every variable appears at most once! This is quite different from deterministic and
nondeterministic read-once branching programs were exponential lower bounds are
known (we have shown this in previous sections).

RESEARCH PROBLEM 16.10. Prove an exponential lower bound for read-once parity

branching programs.

So far, exponential lower bounds for such programs are only known under the
additional restriction that the program is oblivious. The nodes are partitioned into at
most n levels so that edges go only from one level to the next, all the edges of one level
are labeled by contacts of one and the same variable, and different levels have different
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variables. Let us refer to read-once parity branching programs with this restriction as
1-p.b.p.

To prove exponential lower bounds for 1-p.b.p.’s, we will employ one specific prop-
erty of linear codes – their “universality”.

Recall that a linear code is just a set of vectors C ⊆ {0,1}n which forms a linear
subspace of GF(2)n. The minimal distance of a code C is a minimal Hamming distance
between any pair of distinct vectors in C . It is well known (and easy to show) that
minimal distance of C coincides with the minimum weight of (i.e. the number of 1’s
in) a non-zero vector form C . The dual of C is the set C⊥ of all those vectors x ∈ {0,1}n,
which are orthogonal to all the vectors from C , i.e.,

∑n
i=1 x i yi = 0 mod 2 for all y ∈ C .

A set of vectors C ⊆ {0,1}n is k-universal if for any subset of k coordinates I ⊆
{1, . . . , n} the projection of vectors from C onto this set I gives the whole cube {0,1}I .
A nice property of linear codes is that their duals are universal.

PROPOSITION 16.11. If C is a linear code of minimal distance k+ 1 then its dual C⊥

is k-universal.

PROOF. Take a set I ⊆ {1, . . . , n} with |I | ≤ k. The set of all projections of strings
in C onto I is a linear subspace in {0,1}I , and this subspace is proper if and only if
all strings a ∈ C satisfy a non-trivial linear relation

∑
i ξiai = 0 mod 2 whose support

{i : ξi = 1} is contained in I . But, by definition, C⊥ consists exactly of all relations ξ
satisfied by C , and its minimal distance is exactly the minimal possible cardinality of a
set I for which the projection of C onto {0,1}I is proper. □

A characteristic function of a set C ⊆ {0,1}n is a boolean function fC such that
fC(x) = 1 iff x ∈ C .

THEOREM 16.12. Let C ⊆ {0,1}n be a linear code with minimal distance d1, and

let d2 be the minimal distance of the dual code C⊥. Then every 1-p.b.p. computing the

characteristic function fC of C has size at least 2min{d1 ,d2}−1.

PROOF. Let P be a 1-p.b.p. computing f , k =min{d1, d2}−1 and let I ⊆ {1, . . . , n}
be the set of bits tested on the first k = |I | levels of P. Every assignment a : I →
{0,1} (treated for this purpose as a restriction) defines a subfunction fa of f in n− |I |
variables which is obtained from f by setting x i to a(i) for all i ∈ I . Let F be the
subspace of the 2n−k-dimensional space of all boolean functions on n − k variables,
generated by the subfunctions fa of f with a : I → {0,1}. It is not difficult to see
that size(P) ≥ dim (F ). Indeed, if v1, . . . , vr are the nodes at the k-th level of P, then
for every assignment a : I → {0,1}, the subfunction fa is a linear combination of
the functions computed by a 1-p.b.p.’s with source-nodes v1, . . . , vr : fa(b) = 1 iff the
number of accepting paths in P(a, b) is odd. Hence, we need at least r ≥ dim (F ) such
functions to get all the subfunctions in F .

Now we can finish the proof as follows. Since the dual of C has distance d2 ≥ k+1,
we have by Proposition 16.11, that the code C itself is k-universal. This, in particular,
means that for every assignment a : I → {0,1} there is an assignment xa : I → {0,1}
such that (a, xa) ∈ C . Moreover, since C has distance d1 > k = |I |, we have that
(b, xa) 6∈ C for every other assignment b : I → {0,1}, b 6= a. Thus, if we describe the
subfunctions fa , a : I → {0,1}, as rows of a 2k×2n−k matrix, then this matrix contains a
diagonal 2k×2k submatrix with entries f (a, x) such that f (a, x) = 1 iff x = xa. So, the
matrix has full row-rank equal 2k, which means that the subfunctions inF are linearly
independent (over any field, including GF(2)). Thus, size(P) ≥ dim (F ) = |F | ≥ 2k,
as desired. □
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To give an explicit lower bound, recall that the r-th order binary Reed–Muller code
R(r, t) of length n = 2t is the set of graphs of all polynomials in t variables over F2 of
degree at most r. This code is linear and has minimal distance 2t−r .

COROLLARY 16.13. Let n = 2t and r = bt/2c. Then every 1-p.b.p. computing the

characteristic function of the Reed-Muller code R(r, t) has size at least 2Ω(
p

n).

PROOF. It is known (see, e.g., [107, p. 374]) that the dual of R(r, t) is R(t−r−1, t).
Hence, in the notation of Theorem 16.12 we have that d1 = 2t−r ≥ Ω(pn) and d2 =

2r+1 ≥ Ω(pn). The desired bound follows. □

16.2. Linear codes require large replication

Recall that the replication number of a program is the minimal number R such
that along every computation path, at most R variables are tested more than once.
The sets of variables re-tested along different computations may be different. We will
now prove an exponential lower bound for deterministic branching programs with
replication number R about n/ log n and even about εn for a constant ε > 0. Recall that
R= n is the maximal possible value corresponding to unrestricted branching programs.

But before we start, let us first show that testing just one bit twice can help much.
For this, let us again consider the pointer function fn, introduced in Section 16.1.1.
We already know (see Theorem 16.4) that any deterministic branching program of
replication number R= 0 (read-once program) for this function must have exponential
size. We now show that allowing to re-test just one bit along each path reduces the
size drastically.

PROPOSITION 16.14. The pointer function fn can be computed by a deterministic

branching program of size O(n2/ log n) and replication number R= 1.

PROOF. For each i = 1, . . . , s, let Pi be an obvious 1-b.p. of size s2 = n/k ≤ n/ log n

computing the function yi =
∨s

j=1

�∧
x∈Bi j

x
�
. Arrange these programs into a bi-

nary tree of height k. This way we obtain a read-once program of size O(2kn/k) =

O(n2/ log n). This program has 2k = n leaves, each labeled by the corresponding string
a = (a1, . . . , ak), and hence, by the corresponding index ν = bin(a). Replace each such
leaf by a size-1 branching program testing the corresponding variable xν . The resulting
program has replication number R= 1, computes fn and has the desired size. □

Thus, even when going from programs with R = 0 to programs with R = 1, the
size may decrease drastically (from exponential to quadratic size).

We are now going to show that some explicit boolean functions require large repli-
cations number R, growing with the number n of variables. We will present two entirely
different lower bounds arguments for (1,+R)-branching programs. The first one, pre-
sented in this section, is numerically weaker—works only for R = o(n/ log n)—but is
(apparently) more instructive. Moreover, it works for important objects—characteristic
functions of linear codes. A different argument, presented in the next section, gives
exponential lower bounds for programs of almost maximal replication R = Ω(n), but
the functions for which it works are no more as “simple”—they are quadratic functions
of good expander graphs.

A partial input is a mapping a : [n]→ {0,1,∗} where [n] = {1, . . . , n}. If a(i) = ∗
we say that the ith bit in a is unspecified (or undefined). The support S(a) of a is the set
of all specified bits, that is, bits i for which a(i) 6= ∗. A composition b = a1a2 · · · as of
(partial) inputs a1, a2, . . . , as, whose supports are pairwise disjoint, is a (partial) input
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FIGURE 2. Forgetting pairs a1 and b1, a1 b2 and a1 b2, a1a2a3 and a1a2 b3.

defined by b(i) = a j(i) for i ∈ S(a j). The length |a| of a is the number of bits in S(a).
For two partial inputs a and b, let D(a, b) be the set of all bits where they both are
defined and have different values.

Given a boolean function f (x1, . . . , xn), every partial input a (treated for this pur-
pose as a restriction) defines the subfunction f ↾a of f in n− |a| variables in a usual
manner. A partial input a is a 0-term of f if f ↾a≡ 0, and 1-term if f ↾a≡ 1. We say that:

◦ f is d-rare if |D(a, b)| ≥ d for every two different totally defined inputs a, b

such that f (a) = f (b) = 1;
◦ f is m-dense if |a| ≥ m for every 0-term a of f .

That is, f is d-rare if the Hamming distance between any two vectors in f −1(1) is at
least d, and is m-dense, if it is not possible to make the function be constant 0 by fixing
fever that m variables.

THEOREM 16.15. Let 0 ≤ d, m,R ≤ n be arbitrary integers. Every (1,+R)-branching

program computing a d-rare and m-dense function must have size at least

2(min{d, m/(R+1)}−1)/2 .

The idea behind the proof of this fact is the following. If all computations are long
(of length at least m) and the program is not too large, a lot of computation paths must
split and join again. At that node were they join again, some information about the
inputs leading to this node is lost. If too much information is lost and not too many (at
most R) variables may be re-tested once again, it is not possible to compute the correct
value of the function.

The intuition about the “loss of information” is captured by the following notion
of “forgetting pairs” of inputs.

DEFINITION 16.16. Let a, b be (partial) inputs with S(a) = S(b). Given a branching
program P, the pair a, b is called a forgetting pair (for P) if there exists a node w such
that w belongs to both comp(a) and comp(b), and both computations read all the
variables with indices in D(a, b) at least once before reaching w.

LEMMA 16.17. Let P be a branching program in which every computation reads at

least m different variables. Let s be a natural number in the interval

1≤ s ≤
m

2 log2 |P|+ 1
.

Then there exist pairwise disjoint subsets I1, . . . , Is of [n] and partial inputs a j 6= b j with

S(a j) = S(b j) = I j such that for all j = 1,2, . . . , s we have:

(i) |I j | ≤ 2 log2 |P|+ 1,

(ii) the inputs a1 · · · a j−1a j and a1 · · · a j−1 b j form a forgetting pair.

PROOF. Given a b.p. P, one can get a forgetting pair by following all the com-
putations until r := blog2 |P|c+ 1 different bits are tested along each of them. Since
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|P| < 2r , at least two of these paths must first split and then stick in some node. Take
the corresponding partial inputs a′1 and b′1 and extend them to a1 and b1 such that
S(a1) = S(b1) = S(a′1) ∪ S(b′1) and D(a1, b1) ⊆ S(a′1) ∩ S(b′1). This way we get a for-
getting pair of inputs a1 6= b1 both of which are defined on the same set of at most
|S(a′1)∪S(b′1)| ≤ 2r−1 bits. We can now repeat the argument for P↾a1

and obtain next
forgetting pair of inputs a1a2 and a1 b2, etc. We can continue this procedure for s steps
until s(2r − 1)≤ s(2 log2 |P|+ 1) does not exceed the minimum number m of different
variables tested on a computation of P. □

PROOF OF THEOREM 16.15. Suppose the contrary, that some (1,+R)-b.p. P com-
putes a d-rare and m-dense function and has size less than 2(min{d, m/(R+1)}−1)/2. We
can assume w.l.o.g. that d ≥ 2 (otherwise the bound becomes trivial), and this implies
that every 1-term of f has size n ≥ m. Hence, in order to force f to either 0 or 1 we
must specify at least m positions, therefore every computation of P must read at least
m different variables. Since

|P| ≤ 2(m/(R+1)−1)/2 ,

we can apply Lemma 16.17 (with s := R+ 1) and find R+ 1 sets Ii and partial inputs
ai , bi : [n] → {0,1,∗} with properties (i) and (ii). From (i) and the bound on |P|
we have |I j | < min{d, m/(R + 1)}, and this implies that the partial input a1 · · · aR+1

specifies strictly less than m variables. Since f is m-dense, a1 · · · aR+1 can be extended
to a totally defined input a such that f (a) = 1.

As the sets I1, . . . , IR+1 are pairwise disjoint and at most R variables can be re-tested
along any computation, there must exist j such that all variables with indices from I j

are tested at most once along comp(a). Now, let w be the node that corresponds to the
forgetting pair

a1 · · · a j−1a j and a1 · · · a j−1 b j ;

w is on comp(a). All variables with indices from D(a j , b j)⊆ I j are already tested along
comp(a) before w, hence no such variable is tested after w, and the computation on
the input c obtained from a by replacing a j with b j can not diverge from comp(a) after
the node w. Therefore, f (c) = f (a) = 1. But this, along with |I j | < d, contradicts the
d-rareness of f , and the proof of Theorem 16.15 is completed. □

This theorem is especially useful for (characteristic functions of) linear codes, that
is, for linear subspaces of GF(2)n.

OBSERVATION 16.18. The characteristic function of a linear code C is d-rare if and
only if the minimal distance of C is at least d, and is m-dense if and only if the minimal
distance of its dual C⊥ is at least m.

PROOF. The first claim is obvious, the second follows from Proposition 16.11. □

Hence, Theorem 16.15 implies:

THEOREM 16.19. Let C be a linear code with minimal distance d1, and let d2 be the

minimal distance of the dual code C⊥. Then every (1,+R)-branching program computing

the characteristic function of C has size exponential in min{d1, d2/R}.

This theorem yields exponential lower bounds on the size of (1,+R)-branching
programs computing characteristic functions of many linear codes. The largest allowed
replication number R = O(n/ log n) is achieved by Bose–Chaudhury-Hocquenghem
codes, known as BCH-codes.
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Let n= 2`−1, and let C ⊆ {0,1}n be a BCH-code with designed distance δ = 2t+1,
where t ≤ pn/4, and let fC be its characteristic function. Let d2 be the minimal
distance of its dual C⊥. The Carliz–Uchiyama bound (see, e.g., [107, p. 280]) says
that d2 ≥ 2`−1 − (t − 1)2`/2 which is Ω(n) due to our assumption on t. Since the
minimal distance d1 of a BCH-code is always at least its designed distance δ, we get
from Theorem 16.19

COROLLARY 16.20. Every (1,+R)-branching program computing fC has size exponen-

tial in min{t, n/R}.

In particular, if t =ω(log n) then every such program must have super-polynomial
size as long as R = o(n/ log n).

16.3. Replication of rectangle-free functions

We are now going to prove exponential lower bound on the size of branching
programs with almost maximal replication number R = Ω(n). The functions for which
we prove such a bound will have the form

fn(x1 . . . , xn) = (x1 ⊕ · · · ⊕ xn ⊕ 1)∧
� ∨

{i, j}∈E

x i ∧ x j

�
,

where E is the set of edges of a specially chosen graph G = ([n], E), so called, Ra-
manujan graph. That is, given an input vector a ∈ {0,1}n, we remove all vertices i

with ai = 0, and let fn(a) = 1 iff the number of 1’s in a is even and the number of
survived edges is odd.

It is clear that fn can be computed by an unrestricted (R = n) branching program
of size O(n2). We will show that good expanding properties of the graph G imply that
every branching program computing fn with replication number R = o(n)must already
have exponential size.

But first we will prove a general theorem telling us what properties boolean func-
tion force the replication number of their branching programs be large.

A boolean function r(x1, . . . , xn) is a rectangular function if there is a balanced
partition of its variables into two parts such that r can be written as an AND of two
boolean functions, each depending on variables in only one part of the partition. A set
R ⊆ {0,1}n of vectors is a combinatorial rectangle (or just a rectangle) if R = r−1(1) for
some rectangular function r. So, each combinatorial rectangle has a form R= R0 × R1

where R0 ⊆ {0,1}I0 and R1 ⊆ {0,1}I1 for some partition [n] = I0∪ I1 of [n] = {1, . . . , n}
into two disjoint parts I0 and I1 whose sizes differ by at most 1.

The rectangle number, %( f ), of a boolean function f is the maximum size |R| of a
rectangle R such that f (a) = 1 for all a ∈ R. Finally, we say that a boolean function f

in n variables is:

a. sensitive if any two accepted vectors differ in at least two bits;
b. dense if | f −1(1)| ≥ 2n−o(n), and
c. rectangle-free if %( f )≤ 2n−Ω(n).

THEOREM 16.21. There is a constant ε > 0 with the following property: If f is a

sensitive, dense and rectangle-free boolean function in n variables, than any deterministic

branching program computing f with the replication number R ≤ εn must have size S =

2Ω(n).
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PROOF. Let f be a sensitive and dense boolean function in n variables. Suppose
also that the function f is rectangle-free, that is, f −1(1) does not contain a rectangle
of size larger than 2n−δn, for some constant δ > 0. Take an arbitrary deterministic
branching program computing f with replication number R ≤ εn, where ε > 0 is a
sufficiently small constant to be specified later; this constant will only depend on the
constant δ. Our goal is to prove that then the program must have at least 2Ω(n) nodes.

For an input a ∈ {0,1}n accepted by f , let comp(a) denote the (accepting) com-
putation path on a. Since the function f is sensitive, all n bits are tested at least once
along each of these paths. Split each of the paths comp(a) into two parts comp(a) =

(pa,qa), where pa is an initial segment of comp(a) along which n/2 different bits are
tested. Hence, the remaining part qa can test at most n/2+R different bits.1 Looking at
segments pa and qa as monomials (ANDs of literals), we obtain that f can be written
as an OR of ANDs P ∧Q of two DNFs satisfying the following three conditions:

(i) All monomials have length at least n/2 and at most n/2+R. This holds by the
choice of segments pa and qa.

(ii) Any two monomials in each DNF are inconsistent, that is, one contains a vari-
able and the other contains its negation. This holds because the program is
deterministic: the paths must split before they meet.

(iii) For all monomials p ∈ P and q ∈ Q, either pq = 0 (the monomials are incon-
sistent) or |X (p) ∩ X (q)| ≤ R and |X (p) ∪ X (q)| = n, where X (p) is the set of
variables in a monomial p. This holds because the program has replication
number R and the function f is sensitive.

Fix now one AND P ∧Q for which the set B of accepted vectors is the largest one;
hence, the program must have at least | f −1(1)|/|B| ≥ 2n−o(n)/|B| nodes, and it remains
to show that the set B cannot be too large, namely, that

|B| ≤ 2n−Ω(n) .

We do this by showing that otherwise the set B, and hence, also the set f −1(1), would
contain a large rectangle in contradiction with the rectangle-freeness of f . When doing
this we only use the fact that all vectors of B must be accepted by an AND of DNFs
satisfying the properties (i)-(iii) above.

By (iii) we know that every vector a ∈ B must be accepted by some pair of mono-
mials p ∈ P and q ∈ Q such that |X (p) ∩ X (q)| ≤ R. A (potential) problem, however,
is that for different vectors a the corresponding monomials p and q may share differ-

ent variables in common. This may prohibit their combination into a rectangle (see
Remark 16.23 below). To get rid of this problem, we just fix a set Y of |Y | ≤ R vari-
ables for which the set A ⊆ B of all vectors in B accepted by pairs of monomials with
X (p)∩ X (q) = Y is the largest one. Hence,

|A| ≥ |B|
. R∑

i=0

�
n

i

�
≥ |B| · 2−n·H(ε) ,

where H(x) = −x log2 x − (1− x) log2(1− x) is the binary entropy function.

CLAIM 16.22. The set A contains a rectangle C of size

|C | ≥
|A|2

9 · 2n+R
.

1Note that we only count the number of tests of different bits—the total length of (the number of tests
along) comp(a) may be much larger than n+ R.
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C

FIGURE 3. C = C1 × {y}× C2 forms a rectangle.

Assuming the claim, we can finish the proof of the theorem as follows. By the
rectangle-freeness of f , we know that |C | ≤ 2n−δn for a constant δ > 0. By Claim 16.22,
we know that

|A| ≤ 3 · 2(n+R)/2|C | ≤ 3 · 2(1+ε)n/2+(1−δ)n .

Hence, if R ≤ εn for a constant ε > 0 satisfying ε+ 2H(ε)< 2δ, then

|B| ≤ |A| · 2H(ε)n ≤ 3 · 2n−(2δ−ε−2H(ε))n/2 ≤ 2n−Ω(n) .

It remains therefore to prove Claim 16.22.
Each monomial of length at most k accepts at least a 2−k fraction of all vectors

from {0,1}n. Hence, there can be at most 2k mutually inconsistent monomials of
length at most k. By (i) and (ii), this implies that

|P| ≤ 2n/2 and |Q| ≤ 2n/2+R . (16.2)

For each monomial p ∈ P ∪Q, let Ap = {a ∈ A | p(a) = 1} be the set of all vectors in A

accepted by p; we call these vectors extensions of p. Note that, by the definition of the
set A, a ∈ Ap iff pq(a) = 1 for some monomial q ∈Q such that X (p)∩ X (q) = Y .

Since, by (ii), the monomials in P are mutually inconsistent, no two of them can
have a common extension. Since every vector from A is an extension of at least one
monomial p ∈ P, the sets Ap with p ∈ P form a partition of A into |P| disjoint blocks.
The average size of a block in this partition is |A|/|P|. Say that a monomial p ∈ P

is rich if the corresponding block Ap contains |Ap| ≥ 1
3
|A|/|P| vectors. Similarly for

monomials in Q. By averaging, at least two-thirds of vectors in A must be extensions of
rich monomials in P. Since the same holds also for monomials in Q, at least one vector
x ∈ A must be an extension of some rich monomial p ∈ P and, at the same time, of
some rich monomial q ∈Q.

Let y be the projection of x onto Y = X (p) ∩ X (q). Since all variables in Y are
tested in both monomials p and q, all the vectors in Ap and in Aq coincide with y on Y .
Consider the set of vectors C = C1 × {y} × C2, where C1 is the set of projections of
vectors in Aq onto the set of variables X − X (q), and C2 is the set of projections of Ap

onto the set of variables X − X (p) (see Fig. 3). Since both monomials p and q have at
least n/2 variables, the set C is a rectangle of size

|C | = |C1| · |C2|= |Ap| · |Aq| ≥
|A|

3|P| ·
|A|

3|Q| ≥
1

9

|A|
2n/2
·
|A|

2n/2+R
=

1

9

|A|2

2n+R
.

Hence, it remains to verify that C ⊆ A, i. e., that all vectors c ∈ C are accepted by P∧Q.
The vector x belongs to C and has the form x = (x1, y, x2) with x i ∈ Ci . Take now

an arbitrary vector c = (c1, y, c2) in C . The vector (x1, y, c2) belongs to Ap. Hence,
there must be a monomial q′ ∈ Q such that X (p) ∩ X (q′) = Y and pq′ accepts this
vector. Since all bits of x1 are tested in p and none of them belongs to Y , none of these
bits is tested in q′. Hence, q′ must accept also the vector c = (c1, y, c2). Similarly, using
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the fact that (c1, y, x2) belongs to Aq, we can conclude that the vector c = (c1, y, c2) is
accepted by some monomial p′ ∈ P. Thus, the vector c is accepted by the monomial
p′q′, and hence, by P ∧Q.

This completes the proof of the proof of Claim 16.22, and thus, the proof of Theo-
rem 16.28. □

REMARK 16.23. Note that in the last step of the proof it was important that every
vector from A is accepted by a pair of monomials sharing the same set of variables Y .
Would A not have this property, then the rectangle C would not necessarily lie within
the set A. Take for example P = {x1,¬x1} and Q = {x2, x1¬x2} with p = x1 and
q = x2. The AND P ∧Q accepts the set of vectors A = {11,01,10}. The projection of
Aq = {11,01} onto X − X (q) = {x1} is C1 = {0,1}, and the projection of Ap = {11,10}
onto X − X (p) = {x2} is also C2 = {0,1}. But C = C1 × C2 6⊆ A, because 00 does not
belong to A.

Important in our proof was also that the branching program is deterministic: this
resulted in the property (ii) in the proof of Theorem 16.21, and hence, into upper
bounds (16.2) on the number of monomials. In the case of nondeterministic branching
programs we do not necessarily have this property, and in this case no exponential
lower bounds are known even for R= 1 (cf. Problem 16.8).

16.3.1. Graph expansion implies rectangle-freeness. To apply Theorem 16.21
we need an explicit boolean function that is sensitive, dense and rectangle-free. Note
that the first two conditions—being sensitive and dense—are easy to ensure. A difficult
thing is to ensure rectangle-freeness. The problem here is that f must be rectangle-free
under any balanced partition of its variables. We define such functions using graphs.

Let G = (V, E) be an undirected graph on V = {1, . . . , n}. The quadratic function
of G over GF(2) is a boolean function

fG(x1, . . . , xn) =
∑

{i, j}∈E

x i x j mod 2 .

That is, given an input vector a ∈ {0,1}n, we remove all vertices i with ai = 0, and
count the number of the surviving edges modulo 2.

16.3.1.1. Density. That quadratic functions fG accept many vectors follows from
the a more general fact about polynomials.

LEMMA 16.24. Every nonzero polynomial of degree k in n variables over GF(2) has

at least 2n−k nonzero points.

PROOF. In each such polynomial f (x1, . . . , xn)we can find a monomial X I =
∏

i∈I x i

with |I | = k which is maximal in a sense that no monomial X I ′ with I ′ ⊃ I is present
in f . Hence, after each of 2n−k assignments a of constants to variables x j with j 6∈ I ,
we obtain a polynomial fa in k variables {x i | i ∈ I} whose all monomials, other than
X I , have degree strictly less than k. Our goal is to show that then fa(b) = 1 for at least
one b ∈ {0,1}I . The function fa has a form fa = X I ⊕ g, where g is a polynomial of
degree d < k in k variables.

If g has no monomials at all, i.e., is a constant polynomial g ≡ c for c ∈ {0,1},
then fa(b) = 1 for b = (c⊕ 1, . . . , c⊕ 1).

If g is a non-constant polynomial, then take one its monomial XJ which is minimal

in a sense that no monomial XJ ′ with J ′ ⊂ J is present in g. Let c ∈ {0,1} be the free
coefficient of g. If c = 1, then fa(0, . . . , 0) = c = 1, and we are done. Otherwise (if
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xm y

FIGURE 4. After the setting to 0 all variables outside the induced
matching, the function fG =

⊕
{i, j}∈E x i y j turns to the inner product

function I P2m = x1 y1 ⊕ · · · ⊕ xm ym.

c = 0) take the vector b ∈ {0,1}I with bi = 1 for all i ∈ J , and bi = 0 for all i ∈ I − J .
Then g(b) = XJ (b) = 1 due to the minimality of J , and X I (b) = 0 since I − J 6= ;.
Hence, we again have that fa(b) = 1. □

16.3.1.2. Matching number. The next question is: What properties of a graph G

do ensure that its quadratic function fG is rectangle-free? We will now show that such
is the matching number m(G) of the underlying graph. The measure m(G) is defined as
the largest number m such that, for every balanced partition of vertices of G, at least
m crossing edges form an induced2 matching; and edge is crossing if it joins a vertex
in one part of the partition with a vertex in the other part.

The fact that such a matching must be induced matching means that the endpoints
of any two of its edges are not adjacent in G. This last property is important: if M =

{x1 y1, . . . , xm ym} is an induced matching of G, then we can set to 0 all variables of fG

outside M , and what we obtain is the inner product function x1 y1⊕ x2 y2⊕· · ·⊕ xm ym.
Then we can use the fact that the rectangle number of the inner product function is
small.

LEMMA 16.25. For every graph G on n vertices, we have

%( fG)≤ 2n−m(G) .

PROOF. Fix an arbitrary balanced partition of the vertices of G into two parts. The
partition corresponds to a partition (x , y) of the variables of fG . Let r = r1(x)∧r2(y) be
an arbitrary rectangle function with respect to this partition, and suppose that r ≤ f .
Our goal is to show that then r can accept at most 2n−m(G) vectors.

By the definition of m(G), some set M = {x1 y1, . . . , xm ym} of m = m(G) crossing
edges x i yi forms an induced matching of G. We set to 0 all variables corresponding to
vertices outside the matching M (see Fig. 4). Since M is an induced subgraph of G, the
obtained subfunction of fG is just the inner product function

I P2m(x1, . . . , xm, y1, . . . , ym) =

m∑

i=1

x i yi mod 2 .

The obtained subfunction r ′ = r ′1(x1, . . . , xm)∧ r ′2(y1, . . . , ym) of the rectangle function
r = r1 ∧ r2 is also a rectangle function such that r ′(a) ≤ I P2m(a) for all a ∈ {0,1}2m.

2An induced subgraph of a graph is obtained by removing vertices together with their adjacent edges.
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Since r ′ was obtained from r by setting to 0 at most n− 2m variables, we have that
|r−1(1)| ≤ |B| · 2n−2m where B = {a | r ′(a) = 1}. Hence, it remains to show that
|B| ≤ 2m. For this, let H be a 2m × 2m matrix defined by

H[x , y] = (−1)I P2m(x ,y)⊕1 .

Since, for every x 6= 0, I P2m(x , y) = 1 for exactly half of vectors y , this matrix is a
Hadamard matrix. The following property of Hadamard matrices is a special case of a
more general Lindsey’s Lemma (Lemma 10.25).

CLAIM 16.26. An n× n Hadamard matrix H can contain an a× b all-1 submatrix
only if ab ≤ n.

PROOF. Take an a× b all-1 submatrix, and let v = v1 + · · ·+ va be the sum of the
corresponding rows of H. Since this is an all-1 submatrix, the vector v must contain at
least b entries equal to a, implying that ‖v‖2 ≥ a2 b. On the other hand, since the rows
of H are pairwise orthogonal, we have that

‖v‖2 =
a∑

i=1

〈vi , v j〉 =
a∑

i=1

〈vi , vi〉 = an .

Altogether this yields ab ≤ n. □

Since our set B ⊆ {0,1}m × {0,1}m lies within I P−1
2m (1), it corresponds to an all-1

submatrix of H. Claim 16.26 implies that |B| ≤ 2m, as desired. □

16.3.1.3. Mixed graphs. By Lemma 16.25, we need graphs G such that, for any
balanced partition of their vertices, many crossing edges form an induced matching.
To ensure this, it is enough that the graph is “mixed enough”.

Say that a graph is s-mixed if every two disjoint sets of at least s vertices are joined
by at least one edge.

LEMMA 16.27. If an n-vertex graph G of maximum degree d is s-mixed, then

m(G)≥
n− 2s

4(d + 1)
,

and hence,

log2%( fG)≤ n−
n

4(d + 1)
+

s

2(d + 1)
.

PROOF. Fix an arbitrary balanced partition of the vertices of G into two parts. To
construct the desired induced matching, formed by crossing edges, we repeatedly take
a crossing edge and remove it together with all its neighbors. In each step we remove
at most 2d+1 vertices. If the graph is s-mixed, then the procedure will run for m steps
as long as bn/2c − (2d + 1)m is at least s. □

By Corollary 9.20 in Section 9.7, Ramanujan graphs G = RG(n,q) are are δn-
mixed for a constant δ < 1/2, as long as q ≥ 26. Since the degree of G = RG(n,q) is
q+ 1 (a constant, if q is constant), Lemma 16.27 implies

%( fG)≤ 2n−Ω(n) (16.3)

Fix now a Ramanujan graphs G = RG(n,q) with q ≥ 26, and consider the boolean
function

fn = fG ∧ (x1 ⊕ · · · ⊕ xn ⊕ 1) .

That is, given an input vector a ∈ {0,1}n, we remove all vertices i with ai = 0, and let
fn(a) = 1 iff the number of 1’s in a is even and the number of survived edges is odd.
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THEOREM 16.28. There is a constant ε > 0 such that any deterministic branching

program computing fn with the replication number R≤ εn requires size 2Ω(n).

PROOF. By (16.3), the function fG , and hence, also the function fn is rectangle-
free. Since the parity function is sensitive, the function fn is sensitive as well. Finally,
since fn is a polynomial of degree at most 3 over GF(2), Lemma 16.24 implies that fn

accepts at least 2n−3 vectors, and hence, is also dense, and Theorem 16.21 yields the
desired lower bound. □

Bibliographic Notes

Lemma 16.17 is due to Zák (1995) and Savický and Zák (1997). Theorem 16.15
was proved in [85]. Theorems 16.21 and 16.28 are from [82].



CHAPTER 17

Bounded Time

We consider functions f : Dn→ {0,1}, where D is a finite domain, not necessarily
{0,1}. We can extend the notion of nondeterministic (as well as deterministic) branch-
ing programs also for this case. In the case of boolean n.b.p. (when D = {0,1}) at each
edge some test of the form “x i = σ” with σ ∈ {0,1} is made. By a D-way branching
program we will mean a branching program where the tests of the form “x i = d” with
d ∈ D are made. Different edges leaving the same node may make the same test—this
is why a program is nondeterministic. Such a program accepts an input vector a ∈ Dn

if and only if all the tests along at least one s-t path are passed.

17.1. Short time forces large rectangles

We say that a program computes a given function f in time T if for every input
a ∈ f −1(1) there is a path from the source to a 1-sink which is consistent with a and
along which at most T tests are made. Important here is that the restriction concerns
only consistent paths, that is, paths along which no two tests x i = d1 and x i = d2

for d1 6= d2 are made. This makes the lower bounds problem more difficult. The
“syntactic” case, where the restriction is on all paths, be they consistent or not, is much
easier.

We now consider nondeterministic D-way branching programs working in time kn

where k is an arbitrary large constant. We want to show that some explicit functions
f : Dn → {0,1} cannot be computed by such programs using polynomial number of
nodes. The idea is to show that, if the number of nodes is small then the program
must accept all vectors of a large configuration, called “broom”. Having shown this,
we construct a function f that cannot accept many vectors of any broom. This will
imply that any program for f working in time kn must have large size.

Let X = {x1, . . . , xn} be a set of n variables. A subset R ⊆ {0,1}n of vectors is an
s-broom, if there exist two disjoint s-element subsets X0 and X1 of X , subsets R0 ⊆ DX0

and R1 ⊆ DX1 of vectors, and a vector w ∈ DX−(X0∪X1) such that (after some permutation
of the variables) the set R can be written as R0×{w}×R1; the vector w is then the stick

of the broom. That is, on the variables outside X0 ∪ X1 all vectors in R have the same
values as the vector w. With some abuse of notation we will write R = R0 × {w} × R1,
meaning that this holds after the corresponding permutation of variables.

Note that, for s ≤ n/2, each s-broom R is also a combinatorial rectangle, as defined
in the previous chapter. Such a rectangle has, however, special form: all vectors in R

have the same values in each of n− 2m positions, corresponding to the stick w of the
broom. This, in particular, implies that no s-broom can have more than |D|2s vectors.

The main property of s-brooms (as well as of rectangles, we have considered be-
fore) is the “cut-and-paste” property: if the broom R contains two vectors (a0, w, a1)

and (b0, w, b1), then it must contain both vectors (b0, w, a1) and (a0, w, b1).

232



17.1. SHORT TIME FORCES LARGE RECTANGLES 233

A function f : Dn → {0,1} is sensitive if any two accepted vectors differ in at
least two coordinates. The only property of such functions we will use is that in any
branching program computing such a function, along any accepting computation each
variable must be tested at least once.

LEMMA 17.1. Let f : Dn → {0,1} be a sensitive function and suppose that f can be

computed by a nondeterministic branching program of size ` working in time kn. Let

r = 10k2 and K = k5k. Then for every s ≤ n/K, there exists an s-broom R ⊆ f −1(1) of

size

|R| ≥
| f −1(1)| · |D|2s−n

`r
�n

s

�2 . (17.1)

In the proof we will use the following simple combinatorial fact. Say that a se-
quence S1, . . . ,Sr of finite subsets of an n-element set X is s-separated if there exist two
disjoint subsets X0 and X1 of X , each of size at least n/2N and such that, for each
i = 1, . . . , r, either Si ∩ X0 = ; or Si ∩ X1 = ; (or both) hold.

CLAIM 17.2. Let r > 8k2 and N :=
∑2k

i=0

�r
i

�
. If |Si | ≤ kn/r for all i = 1, . . . , r then

the sequence S1, . . . ,Sr of sets is s-separated with s ≥ n/2N .

PROOF OF CLAIM 17.2. Associate with each element x ∈ X , its trace

T (x) = {i | x ∈ Si} .

By double-counting,
∑

x∈X

|T (x)|=
r∑

i=1

|Si | ≤ kn . (17.2)

We will concentrate on elements whose traces are not too large. Namely, say that an
element x ∈ X is legal if |T (x)| ≤ 2k. It is clear that we must have at least n/2 legal
elements, for otherwise the first sum in (17.2) would be larger than (2k)(n/2) = kn.

Partite the legal elements into blocks, where two elements x and y belong to the
same block iff they have the same trace, that is, iff T (x) = T (y). Since |T (x)| ≤ 2k,
each block in this partition is determined by a subset of {1, . . . , r} of size at most 2k.
So, the total number of blocks does not exceed

∑2k

i=0

�r
i

�
= N .

Say that a legal element x ∈ X is happy if the (unique) block, which it belongs to,
has at least n/2N elements. If we will find two legal elements x 6= y ∈ X such that
both of them are happy and T (x)∩ T (y) = ;, then we are done.

First observe that, by the same averaging argument as above, at least half of all n/2
legal elements must be happy (belong to large blocks); hence, at least n/4 elements
are both legal and happy. Fix any such element x . We have only to show that there is
yet another legal and happy element y which belongs to none of the |T (x)| ≤ 2k sets
Si containing x . For this it is enough to observe that the total number of elements that
belong to some of the sets Si containing x is

����
⋃

i∈T (x)

Si

����≤
∑

i∈T (x)

|Si | ≤ |T (x)| ·max |Si | ≤
2k2n

r

which, due to our assumption r > 8k2, is strictly smaller than the total number n/4 of
legal and happy elements. □
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PROOF OF LEMMA 17.1. For each input a ∈ f −1(1), fix one accepting computation
path comp(a), and split it into r sub-paths p1, . . . , pr of length at most kn/r; the length
of a sub-path pi is the number of tests made along it. That is, we have r time segments

1, . . . , r, and in the ith of them the computation on a follows the sub-path pi .
Say that two inputs a and b in f −1(1) are equivalent if the starting nodes of the

corresponding sub-paths comp(a) = (p1, . . . , pr) and comp(b) = (q1, . . . ,qr) coincide.
Since we have at most s nodes in the program, the number of possible equivalence
classes does not exceed `r , where ` is the total number of nodes in our branching
program. Fix some largest equivalence class A⊆ f −1(1); hence,

|A| ≥ | f −1(1)|/`r .

Call a pair of disjoint subsets of variables X0 and X1 good for a vector a ∈ A if
along the computation comp(a) = (p1, . . . , pr) no subpath pi tests variables from both
sets X0 and X1. That is, if some variable from one set is tested along pi , then none of
the variables from the other set is tested along pi .

By letting Si be the set of variables tested along the ith time segment pi , Claim 17.2
implies that every every vector a ∈ f −1(1) has at least one good pair X0, X1 with
|X0|, |X1| ≥ n/K , where K = 2N = 2

∑2k

i=0

�r
i

�
≤ k5k. Since we have at most

�n
s

�2 pairs
of disjoint s-element subsets of variables, some of these pairs X0, X1 must be good for
all vectors in a subset B ⊆ A of size1 |B| ≥ |A|

�n
s

�−2. To finish the proof of Lemma 17.1,
we will now show that this set B forces a large broom lying entirely in A, and hence, in
f −1(1).

We can write each vector a ∈ Dn as a = (a0, w, a1), where a0 is the projection of a

onto X0, a1 is the projection of a onto X1, and w is the projection of a onto X−(X0∪X1).
Say that two vectors a = (a0, w, a1) and b = (b0, w′, b1) are equivalent if w = w′. Since
the sets of variables X0 and X1 are disjoint, each equivalence class is an m-broom.

Let R ⊆ B be a largest equivalence class lying in B; hence

|R| ≥
|B|
|D|n−2s

≥
|A|
�n

s

�2|D|n−2s
≥
| f −1(1)|

`r
�n

s

�2|D|n−2s
.

So, it remains to show that all vectors of the broom R are accepted by the program.
This is a direct consequence of the following more general claim.

CLAIM 17.3. If both vectors a = (a0, w, a1) and b = (b0, w, b1) belong to B, then
the combined vector (a0, w, b1) belongs to A.

To prove the claim, let comp(a) = (p1, . . . , pr) be an accepting computation on a =

(a0, w, a1), and comp(b) = (q1, . . . ,qr) an accepting computation on b = (b0, w, b1).
Consider the combined vector c = (a0, w, b1). Our goal is to show that then pt(c) ∨
qt(c) = 1 for all t = 1, . . . , r. That is, that for each t = 1, . . . , r, the combined vector c

must be accepted by (must be consistent with) at least one of the sub-paths pt or qt .
To show this, assume that c is not accepted by pt . Since pt accepts the vector

a = (a0, w, a1), and this vector coincides with the combined vector c = (a0, w, b1) on
all the variables outside X1, this means that at least one variable from X1 must be
tested along pt . But then, by the goodness of the pair X0, X1, no variable from X0 can
be tested along the sub-path qt . Since qt accepts the vector b = (b0, w, b1), and the

1This rough estimate makes the whole argument useless for the boolean case, that is, when D = {0, 1}.
At this place Ajtai (2005) uses probabilistic arguments to obtain a nontrivial lower bound on |B| also in the
boolean case; the arguments, however, do not work for nondeterministic branching programs.
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combined vector c = (a0, w, b1) coincides with this vector on all the variables outside
X0, the sub-path qt must accept the vector c, as desired.

This completes the proof of Claim 17.3, and thus the proof of Lemma 17.1. □

17.2. A lower bound for code functions

Let q be a sufficiently large prime power; q ≥ 3k5k is enough. Take D = GF(q) and
consider the function g(Y, x) in n2 + n variables, the first n2 of which are arranged in
an n× n matrix Y . Let

g(Y, x ) = 1 iff the vector x is orthogonal over GF(q) to all rows of Y .

In other words, g(Y, x ) = 1 iff the vector x belongs to a linear code defined by the
parity-check matrix Y .

THEOREM 17.4. Every nondeterministic D-way branching program computing g(Y, x )

in linear time must have size 2Ω(n).

The time restriction in this theorem concerns only the last n variables—the first n2

variables from Y can be tested an arbitrary number of times!

PROOF. Let k ≥ 1 be an arbitrary integer, and take a nondeterministic branching
program computing g(Y, x ) in time at most kn. Let r and K be the constants from
Lemma 17.1. Take d = s + 1 where s := bn/Kc. By the Gilbert–Varshamov bound,
linear codes C ⊆ GF(q)n of distance d and size |C | ≥ qn/V (n, s) exist, where

V (n, s) =
s∑

i=0

(q− 1)i
�

n

i

�
≤ dqs

�
n

s

�

is the number of vectors in a Hamming ball of radius s around a vector in GF(q)n.
Let Y be the parity-check matrix of such a code, and consider the function f :

GF(q)n → {0,1} such that f (x ) = 1 iff Y · x = 0. That is, f (x) = 1 iff x ∈ C .
The function f (x ) is a sub-function of g(Y, x). Hence, if the function g(Y, x) can be
computed by a nondeterministic branching program working in time kn, then the size
of this program must be at least the size ` of a nondeterministic branching program
computing f (x ) in time kn. To finish the proof of Theorem 17.4, it remains therefore
to show that ` must be exponential in s = n/K .

The function f (x ) accepts | f −1(1)| ≥ qn/V (n, s) vectors. Hence, by Lemma 17.1,
the code C must contain an s-broom R= R0 × {w}× R1 of size

|R| ≥
| f −1(1)|
`r
�n

s

�2 · q
2s−n =

q2s

`r
�n

s

�2
V (n, s)

≥
qs

`r d
�n

s

�3 . (17.3)

On the other hand, since the Hamming distance between any two vectors in C is at least
d = s+ 1, none of the sets R0 and R1 can have more than one vector. Hence, |R| ≤ 1.
Remembering that s = bn/Kc and q is large enough this, we have that

�n
s

�3 ≤ (q/2)s.
Together with |R| ≤ 1 and (17.3), this implies that `r ≥ 2s/d = 2Ω(s), and the desired
lower bound ` = 2Ω(s/r) = 2Ω(n) follows. □

RESEARCH PROBLEM 17.5. Prove an exponential lower bound on the size of for nonde-

terministic boolean (D = {0,1}) branching programs in n variables, all whose consistent

paths have length at most n+ 1.
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Thus, if the computed function is sensitive, then only one variable is allowed to be
re-tested along each accepting computation. But what makes the problem non-trivial
is that the restriction is only on consistent paths. The case when the restriction is on all

paths (be they consistent or not) is much easier to analyze, and we do this in the next
section.

17.3. Syntactic read-k times programs

A nondeterministic branching program is syntactic read-k times program (k-n.b.p.)
if along each its path (be it consistent or not) from the source to the target node each
variable appears at most k times.

LEMMA 17.6. Let f : {0,1}n → {0,1} be a sensitive boolean function, r = 10k2 and

K = k5k. If f can be computed by a k-n.b.p. of size `, then for every s ≤ n/K, there exists

an s-broom R ⊆ f −1(1) of size

|R| ≥ | f −1(1)| · 22s−n · `−r .

PROOF. As in the proof of Lemma 17.1, for each input a ∈ f −1(1), fix one accepting
computation path comp(a), and split it into r sub-paths comp1(a), . . . , compr(a) length
at most kn/r; as before, the length of a sub-path is the number of tests made along
it. Call two inputs a and b in f −1(1) equivalent if, for each i = 1, . . . , r, the starting
nodes of the corresponding sub-paths compi(a) and compi(b) coincide. Since we have
at most ` nodes in the program, the number of possible equivalence classes does not
exceed `r . Fix some largest equivalence class A⊆ f −1(1); hence, |A| ≥ | f −1(1)|/`r . Let

Si = {x j | x j or ¬x j appears along compi(a) for some a ∈ A}
be the set of variables that are tested along the ith sub-computation on at least one
vector from A. Since our program is syntactic read-k, no variable can belong to more
than k of the sets S1, . . . ,Sr : otherwise we could find a (non necessarily consistent)
path containing more than k ocurrencies of this variable. So, Claim 17.2 implies that
there must be a pair X0, X1 of disjoint subsets of variables, each of size at least n/2N

with N =
∑2k

i=0

�r
i

�
and such that Si ∩ X0 = ; or Si ∩ X1 = ; for each i = 1, . . . , r. The

rest of the proof is now the same as that of Lemma 17.1 with set A instead of B. □

To show an explicit lower bound for the size of k-n.b.p., consider binary linear
(n, m, d)-codes. Recall that such a code is a linear subspace C ⊆ GF(2)n of dimension
n−m such that the Hamming distance between any two vectors in C is at least 2d+1.
Bose-Chaudhury codes (BCH-codes) are linear (n, m, d)-codes C with m ≤ d log2(n+

1). Such codes can be constructed for any n such that n+ 1 is a power of 2, and for
every d < n/2.

COROLLARY 17.7. For every integer k ≥ 1, the characteristic function of BCH-codes of

minimal distance d = Ω(
p

n) require k-n.b.p. of size 2Ω(
p

n).

PROOF. Let C ⊆ {0,1}n be a BCH (n, m, d)-code with d =
�
ε
p

n
�

, where ε > 0 is
a sufficiently small constant. Let also fC be the characteristic function of C , that is,
fC(x) = 1 iff x ∈ C . Let ` be the smallest size of a k-n.b.p. computing fC . Since k

is constant, both r = 10k2 and K = k5k are constants. Moreover, m ≤ d log2(n+ 1),
implying that

| f −1(1)|= 2n−m ≥ 2n/(n+ 1)d .
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Let s = bn/Kc; hence, s = Θ(n). We already know (see Claim 15.4 in Section 15.1)
that no code of minimal distance at least 2d + 1 can contain an s-broom of size larger
than 22s
� s

d

�−2. By Theorem 17.6, this implies that

`r ≥ | f −1(1)| · 2−n ·
�

s

d

�2
≥ exp
�

2d log2(s/d)− d log2(n+ 1)
�

= exp
�

d log2

s2

d2(n+ 1)

�
= exp(d) = 2Ω(

p
n) . □
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We only note that Ajtai’s argument essentially employs the fact that the underlying
branching program is deterministic: this gives a 1-to-1 correspondence between input
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CHAPTER 18

Propositional Proof Complexity

Propositional proof systems operate with boolean formulas, simplest of them being
clauses, i.e., with ORs of literals, where each literal is either a variable x i or its negation
¬x i . A truth-assignment is an assignment of constants 0 and 1 to all the variables. Such
an assignment satisfies (falsifies) a clause if it evaluates at least one (respectively, none)
of its literals to 1. A set of clauses, that is, a CNF formula is satisfiable if there is an
assignment which satisfies all its clauses. The basic question is:

Given an unsatisfiable CNF formula F , what is the length of (number of clauses
in) a proof that F is indeed unsatisfiable.

Such a proof starts with clauses of F (called axioms), at each step applies one of sev-
eral (fixed in advance) simple rules of inferring new clauses from old ones, and must
eventually produce an empty clause 0 (which, by definition, is satisfied by none of the
assignments.

For such a derivation to be a legal proof, the rules must be sound in the following
sense: if some assignment (of constants to all variables) falsifies the derived clause,
then it must falsify at least one of the clauses from which it was derived. Then the
fact that 0 was derived implies that the CNF F was indeed unsatisfiable: given any
assignment α we can traverse the proof going from 0 to an axiom (a clause of F), and
soundness of rules will give us a clause of F which is not satisfied by α.

The main goal of proof complexity is to show that some unsatisfiable CNFs require
long proofs. The reason is its connection with the famous P versus NP question. This
is because the problem SAT—given a CNF formula F , detect whether F is satisfiable
or not—is an NP-complete problem. It is long known that NP = co-NP iff there is
a propositional proof system giving rise to short (polynomial in |F | length) proofs of
unsatisfiability of all unsatisfiable CNFs F .

Thus, a natural strategy to approach the P versus NP problem is, just like in the
circuit complexity, to investigate more and more powerful proof systems and show
that some unsatisfiable CNFs require exponentially long proofs. In this chapter we
will demonstrate this line of research on some basic proof systems, like resolution and
cutting planes proofs.

18.1. Resolution and branching programs

The resolution proof system was introduced by Blake (1937) and has been made
popular as a theorem-proving technique by Davis and Putnam (1960) and Robin-
son (1965).

Let F be a set of clauses and suppose that F is not satisfiable. A resolution refutation

proof) (or simply, a resolution proof) for F is a sequence of clauses R = (C1, . . . , Ct)

where Ct = 0 is the empty clause (which, by definition, is satisfied by no assignment)
and each intermediate clause Ci either belongs to F or is derived from some previous

238
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FIGURE 1. A resolution refutation proof of a CNF formula F . Leaves
(fanin-0 nodes) are clauses of F , and each inner node is a clause
obtained from previous ones by the resolution rule.

two clauses using the following resolution rule:

A∨ x i B ∨ x i

A∨ B
(18.1)

meaning that

the clause A∨ B can be inferred from two clauses A∨ x i and B ∨¬x i .

In this case one also says that the variable x i was resolved to derive the clause A∨ B.
The size (or length) of such a proof is equal to the total number t of clauses in the
derivation. It is often useful to describe a resolution proof as a directed acyclic graph,
see Fig. 1. If this graph is a tree, then one speaks about a tree-like Resolution proof. For
technical reasons the following “redundant” rule, the weakening rule, is also allowed:
a clause A∨ B can be inferred from A.

Observe that the resolution rule is sound: if some assignment (of constants to all
variables) falsifies the derived clause A ∨ B, then it must falsify at least one of the
clauses A∨ x i and B ∨ ¬x i from which it was derived. It is also known (and easy to
show, see Exercise 18.2) that Resolution is complete: every unsatisfiable set of clauses
has a resolution refutation proof.

What about the size of such derivations? Due to its practical importance, this
question bothered complexity theoreticians and logicians for a long time. Interestingly
enough resolution proof have a relation to a model we already considered above—
branching programs.

This is a reason why we include resolution proofs in a part devoted to branching
programs.

Let F be an unsatisfiable CNF formula, that is, for every input a ∈ {0,1}n there
is a clause C ∈ F for which C(a) = 0. The search problem for F is, given a, to find
such a clause. (There may be several such clauses; the goal is to find at least one of
them.) Such a problem may be solved by a branching program with |F | leaves: label
the leaves by clauses from F ; then every input (truth assignment) a ∈ {0,1}n follows a
unique path and finally reaches some leaf labeled by a clause C for which C(a) = 0.

Let SR(F) be the smallest size of a resolution refutation of F , and BP(F) the small-
est size of a deterministic branching program solving the search problem for F . It is not
difficult to show that SR(F) ≥ BP(F) (see the first part of the proof of Theorem 18.1
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FIGURE 2. A branching program obtained from the resolution proof
given in Fig. 1: just reverse the direction of arcs and label them ac-
cordingly. The program is not read-once.

below). But the gap between these two measures may be exponential: any unsatisfi-
able CNF F has a trivial branching program of size |F | whereas, as we will show in the
next section, some CNFs require SR(F) exponential in it variables. It is an interesting
question to find a model of computation that is polynomialy equivalent to resolution.

First exponential lower bounds for Resolution proofs were obtained long ago by
Tseitin (1968) under additional restriction that along every path every particular vari-
able x i can be resolved at most once. He called this model regular resolution. In
particular, every tree-like resolution proof is regular. It turns out that this model just
coincides(!) with the known model of read-once branching programs.

Let 1-SR(F) be the smallest size of a regular resolution refutation proof for F , and
1-BP(F) the smallest size of a deterministic read-once branching program solving the
search problem for F .

THEOREM 18.1. For every unsatisfiable CNF formula F, we have that

SR(F)≥ BP(F) and 1-SR(F) = 1-BP(F) .

PROOF. To show that 1-SR(F)≥ 1-BP(F), letR be a resolution refutation proof for
F . Construct a branching program as follows.

a. The nodes of the program are clauses C of R .
b. The source node is the last clause in R (the empty one), the sinks are the

initial clauses from F .
c. Each non-sink node C has fanout 2 and the two edges directed from C to the

two clauses C0 and C1 from which this clause is derived by one application of
the resolution rule; if the resolved variable of this inference is x i then the edge
going to the clause containing x i is labeled by the test x i = 0, and the edge
going to the clause containing ¬x i is labeled by the test x i = 1 (see Fig. 2).

It is straightforward to verify that all clauses on a path determined by an input a ∈
{0,1}n are falsified by a, and hence, the last clause of F reached by this path is also
falsified by a. That is, the obtained branching program solves the search problem and
is read-once if R was regular.

It remains to prove the more interesting direction that 1-SR(F) ≤ 1-BP(F). Let
P be a deterministic read-once branching program (1-b.p.) which solves the search
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problem for F . That is, for every input a ∈ {0,1}n the (unique) computation path on a

leads to a clause C ∈ F such that C(a) = 0. We will associate a clause to every node of
P such that P becomes a graph of a resolution refutation for F . A vertex v labeled by
a variable will be associated with a clause Cv with the property that

Cv(a) = 0 for every input a ∈ {0,1}n that reaches v. (18.2)

We associate clauses inductively from the sinks backwards. If v is a sink then let Cv be
the clause form F labeling this sink in the program P.

Assume now that the node v of P corresponds to a variable x i and has edges
(v,u0) for x i = 0 and (v,u1) for x i = 1. By induction we may assume that u0 and u1

are labeled by clauses C0 and C1 satisfying (18.2).

CLAIM 18.2. C0 does not contain ¬x i and C1 does not contain x i .

PROOF. Otherwise, if C0 contains ¬x i , take an input a with ai = 0 that reaches v.
Such an input exists since by the read-once assumption on P, the ith bit x i was not
asked along any path from the source to v. The input a can reach u0 and it satisfies C0,
in contradiction to the inductive hypothesis. The proof in the case when C1 contains
x i is similar. □

We conclude that either: (i) C0 = (x i ∨ A) and C1 = (¬x i ∨ B), or (ii) one of C0

and C1 does not contain x i ,¬x i at all. In the first case label v with Cv = A∨ B. In the
second case label v with the clause that does not contain x i ,¬x i . (If both clauses do
not contain x i ,¬x i chose any of them.)

It is easy to see that the inductive hypothesis (18.2) holds for Cv: since the program
P is read-once, any computation path from the source node to v can be prolonged in
both directions. Moreover, the clause associated with the source node must be the
empty clauses, just because every input reaches it. Thus the obtained labeled digraph
represents a regular resolution derivation for F (possibly with some redundant steps
that correspond to the second case (ii) in the labeling above. □

REMARK 18.3. Note that Claim 18.2 holds for any deterministic branching pro-
gram, not just for read-once ones: it is enough that P is a minimal program. Indeed,
in this case a node must be reachable by (at least) two inputs a and b such that ai = 0
and bi = 1, for otherwise the test on the ith bit made at the node v would be redun-
dant. Where read-once property was important is the conclusion that so constructed
clause Cv satisfies (18.2). Namely, if C0 = (x i ∨ A), C1 = (¬x i ∨ B) and Cv = A∨ B,
and if A(a) = B(b) = 0 but A(b) = 1 or B(a) = 1, then C0(a) = 0 and C1(b) = 0 but
Cv(a) = 1 or Cv(b) = 1. In the read-once case such a situation cannot occur because
then every (single) computation reaching a node v can be extended in both directions.

18.2. Exponential lower bound for resolution

The pigeonhole principle asserts that if m ≥ n+ 1 then m pigeons cannot sit in n

holes so that every pigeon is alone in its hole. In terms of 0-1 matrices, this principle
asserts that, if m ≥ n + 1 then every m × n 0-1 matrix satisfies precisely one of the
following two conditions:

1. Every row has at least one 1.
2. Every column has at most one 1.
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To write this principle as an unsatisfiable CNF formula, we introduce boolean variables
x i, j interpreted as:

x i, j = 1 if and only if the ith pigeon sits in the jth hole.

Let PHPm
n

denote the AND of the following clauses (we call them axioms):

a. Pigeon Axioms: each of the m pigeon sits in at least one of n holes:

x i,1 ∨ x i,2 ∨ · · · ∨ x i,n for all i = 1, . . . , m.

b. Hole Axioms: no two pigeons sit is one hole:

¬x i1 , j ∨¬x i2 , j for all i1 6= i2 and j = 1, . . . , n.

Hence, truth assignments in this case are m× n (0,1) matrices α. Such a matrix can
satisfy all pigeon axioms iff every row has at least one 1, whereas it can satisfy all hole
axioms iff every column has at most one 1. Since m≥ n+1, no assignment can satisfy
pigeon axioms and hole axioms at the same time. So, PHPm

n
is indeed an unsatisfiable

CNF.

THEOREM 18.4. For a sufficiently large n, any resolution refutation proof of PHPn
n−1

requires size 2Ω(n).

PROOF. The proof is by contradiction. We define an appropriate notion of a “fat”
clause and show two things:

a. If PHPn
n−1 has a short resolution proof, then it is possible to set some variables

to constants so that the resulting proof is a refutation of PHPm
m−1 for a large

enough m, and has no fat clauses.
b. If m is large enough, then every refutation proof for PHPm

m−1 must have at
least one fat clause.

This implies that PHPn
n−1 cannot have short resolution proofs.

In the case of the CNF formula PHPn
n−1 truth assignments α are n by n− 1 (0,1)

matrices. We say that a truth assignment α is i-critical if

a. the ith row of α is the all-0 row, and
b. every column has exactly one 1.

Note that each such assignment α is barely unsatisfying: it satisfies all hole axioms as
well as the axioms of all but the ith pigeon. That is, the only axiom it falsifies is the
pigeon axiom Ci = x i,1 ∨ x i,2 ∨ · · · ∨ x i,n−1.

The properties of critical truth assignments make it convenient to convert each
clause C to a positive clause C+ that is satisfied by precisely the same set of critical
assignments as C . More precisely to produce C+, we replace each negated literal ¬x i, j

with the OR
X i, j = x1, j ∨ · · · ∨ x i−1, j ∨ x i+1, j ∨ · · · ∨ xn, j .

CLAIM 18.5. For every critical truth assignment α, C+(α) = C(α).

PROOF. Suppose there is a critical assignment α such that C+(α) 6= C(α). This
can only happen if C contains a literal ¬x i, j such that ¬x i, j(α) 6= X i, j(α). But this is
impossible, since α has precisely one 1 in the jth column. □

Associate with each clause in a refutation of PHPn
n−1 the set

Pigeon(C) = {i | there is some i-critical assignment α such that C(α) = 0}
of pigeons that are “bad” for this clause: some critical assignments of these pigeons
falsify C .
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FIGURE 3. Assignment α′ is obtained from α by interchanging the ith
and jth rows.

CLAIM 18.6. Every resolution refutation of PHPn
n−1 must have a clause C with

|C+| ≥ n2/9.

PROOF. Define the weight of a clause C as µ(C) := |Pigeon(C)|. By the definition,
each hole axiom has weight 0, each pigeon axiom has weight 1, and the last (empty)
clause has weight n since it is falsified by any truth assignment. Moreover, this weight
measure is “subadditive:” if clauses A and B imply clause C , then µ(C) ≤ µ(A)+µ(B):
every assignment falsifying C must falsify at least one of the clauses A and B. Therefore,
if C is the first clause in the proof with µ(C) > n/3, we must have

n/3 < µ(C)≤ 2n/3 . (18.3)

Fix such a “medium heavy” clause C and let s = µ(C) be its weight. Since n/3 <
s ≤ 2n/3, it is enough to show that the positive version C+ of this clause must have
|C+| ≥ s(n− s) distinct variables.

Fix some i ∈ Pigeon(C) and let α be an i-critical truth assignment with C(α) = 0.
For each j 6∈ Pigeon(C), define the j-critical assignment α′, obtained from α by toggling
rows i and j. That is, if α maps the ith pigeon to the kth hole, then α′ maps the jth
pigeon to this hole (see Fig. 3).

Now C(α′) = 1 since j 6∈ Pigeon(C). By Claim 18.5, we have that C+(α) = 0 and
C+(α′) = 1. Since the assignments α,α′ differ only in the variables x i,k and x j,k, this
can only happen when C+ contains the variable x i,k.

Running the same argument over all n− s pigeons j 6∈ Pigeon(C) (using the same
α), it follows that C+ must contain at least n− s of the variables x i,1, . . . , x i,n−1 cor-
responding to the ith pigeon. Repeating the argument for all pigeons i ∈ Pigeon(C)
shows that C+ contains at least s(n− s) variables, as claimed. □

We can now finish the proof of Theorem 18.4 as follows. Let R be a resolution
refutation proof of PHPn

n−1, and S = |R| be the total number of clauses in it. Let a

and b ≥ 2 be positive constants (to be specified later). For the sake of contradiction,
assume that

S < en/a .

Together withR we consider the setR+ = {C+ | C ∈R} of positive versions of clauses
in R . Say that a clause of R+ is fat if it has at least n2/b variables. Since each fat
clause has at least a 1/b fraction of all the variables, there must be (by the pigeonhole
principle!) a variable x i, j which occurs in at least S/b of fat clauses in R+.

Set this “popular” variable to 1, and at the same time set to 0 all the variables x i, j′

and x i′ , j for all j′ 6= j, i′ 6= i (see Fig. 4). After this setting, all the clauses containing
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FIGURE 4. Setting of constants to eliminate clauses containing x i, j;
non-shaded positions are not set. This way PHPn

n−1 is reduced to
PHPn−1

n−2 .

x i, j will disappear from R+ (they all get the value 1) and the variables which are set
to 0 will disappear from the remaining clauses.

Applying this restriction to the entire proofR leaves us with a refutation proof R1

for PHPn−1
n−2 , where the number of fat clauses in R+1 is at most S(1− 1/b). Continue

in this fashion until we have set all fat clauses to 1. Applying this argument iteratively
d = b ln S < (b/a)n times, we are guaranteed to have knocked out all fat clauses,
because

S(1− 1/b)d < elnS−d/b = 1 .

Thus, we are left with a refutation proof for PHPm
m−1, where

m = n− d ≥ (1− b/a)n ,

and where |C+| < n2/b for all its clauses. But Claim 18.6 implies that any refutation
proof of PHPm

m−1 must contain a clause C for which

n2/b > |C+| ≥ m2/9= (1− b/a)2n2/9 .

To get the desired contradiction, it is enough to chose the parameters a and b so that
(1− b/a)2 ≥ 9/b which, in particular, is the case for b = 16 and a = 4b. □

The reader may wonder where in this proof we used that the clauses in a refutation
are derived using only resolution and weakening rules? The same argument seems to
work for more general derivations? And this is indeed so—the only important thing
was that the formulas in such a derivation are clauses: this allowed us to kill off a
clause by setting just one variable to constant.

A closer look at the proof shows that it also works for any semantic derivation
R = (C1, . . . , Ct) such that Ct = 0 is the empty clause and each C j is either an axion
(belongs to F) or is implied by some k previous clauses Ci1

, . . . , Cik
in a sense that, for

all α ∈ {0,1}n,

Ci1
(α) = 1, . . . , Cik

(α) = 1 implies C j(α) = 1 .

The only difference is that now instead of (18.3) we will have

n

k+ 1
< µ(C)≤

kn

k+ 1
,

which results in a lower bound |C+| ≥ n2/(k+1)2 in Claim 18.6. The rest ist the same
with constants b := 4(k+ 1) and a := 2b.
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18.3. Short proofs are narrow

We have already seen that “fat” clauses—those whose length exceeds some given
threshold value—play a crucial role in trying to show that the size of a resolution
proof (= the total number of lines in it) must be large. We are now going to show
that this is a general phenomenon, not just an accident: If any resolution proof for an
unsatisfiable CNF formula F must contain at least one fat clause, then F cannot have
a short resolution proof.

The width w(C) of a clause is just the number of literals in it. If F is a set of clauses
then its width w(F) is the maximum width of its clause. Recall that each resolution
refutation R is also a set (more precisely, a sequence) of clauses. Hence, the width of
a refutation is also the maximum width of a clause participating in it.

Let now F be an unsatisfiable CNF in n variables. Define its resolution refutation

width wR(F) as the minimum width of a resolution refutation of F . The resolution

refutation size SR(F) is, as before, the minimum number of clauses in a refutation of F .
That is,

wR(F) =min{w(R) : R is a resolution refutation proof of F}
and

SR(F) =min{|R| : R is a resolution refutation proof of F} .
Note that refutation proofs R achieving wR(F) and SR(F) may be different!

What is the relation between these parameters? If we use all clauses of the CNF
F in its refutation, then wR(F) ≥ w(F). But it is not true in general: one may not use
all clauses of F for its refutation, one might be able to deduce the empty clause from a
subset of its clauses.

The relation SR(F) ≤ (2n)wR(F) between prof-size and proof-width is easy to see:
since we only have 2n literals, the number of all possible clauses of width k does not
exceed (2n)k. Much more interesting is the following lower bound on proof size in
terms of proof width: only CNF formulas having narrow proofs can be proved in a
short time!

THEOREM 18.7. For any unsatisfiable k-CNF formula F in n variables,

log2 SR(F)≥
(wR(F)− k)2

16n
.

For the proof of this theorem we need a concept of a restriction of CNFs and of
refutation proofs. Let F be some set of clauses (think of F as a CNF or as a refutation
proof). Let x be some of its literals. If we set this literal to 0 and to 1, then we obtain
two sets of clauses:

Fx=0 is F with literal x removed from all clauses of F ;
Fx=1 is F with all clauses containing x removed from F .

Note that, if F was an unsatisfiable CNF, then both CNFs Fx=0 and Fx=1 remain unsatis-
fiable. Moreover, if R was a resolution refutation proof of F and a ∈ {0,1}, then Rx=a

is also a resolution refutation proof of Fx=a. If at some step in R a literal x is resolved
using the resolution rule, then this step in Rx=a corresponds to an application of the
weakening rule:

A∨ x B ∨¬x

A∨ B
7→

A

A∨ B
or

B

A∨ B
.

LEMMA 18.8. If wR(Fx=1) ≤ w − 1 and wR(Fx=0)≤ w, then wR(F)≤max{w, k}.
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PROOF. The idea is to combine refutations for Fx=1 and for Fx=0 into one refutation
proof for F . First we can deduce ¬x from Fx=1 using clauses of width at most w. To
do this, follow closely the deduction of an empty clause from Fx=1, which uses clauses
of width at most w−1, and add the literal ¬x to every clause in that deduction. Let R
be the resulting deduction of ¬x from Fx=1. Now, from ¬x and F we can deduce Fx=0

by using the resolution rule: just resolve ¬x with each clause of F containing x to get
Fx=0. This step does not introduce any clause of width more than k. Finally, deduce
the empty clause from Fx=0 using clauses of width at most w. □

Let now W be a parameter (to be specified later), and call a clause fat if it has
width larger than W . Set also

a :=
�

1−
W

2n

�−1
≥ eW/2n .

LEMMA 18.9. If a k-CNF F has a refutation that contains less than ab fat clauses then

wR(F)≤W + b+ k .

PROOF. We prove this by induction on b and n. The base case b = 0 is trivial, since
then we have no fat clauses at all implying that wR(F)≤W + k.

Assume now that the claim holds for all smaller values of n and b. Take a resolu-
tion refutationR of F using< ab fat clauses. Since there are at most 2n literals and any
fat clause contains at least W of them, an average literal must occur in at least W/2n

fraction of fat clauses. Choose a literal x that occurs most frequently in fat clauses and
set it to 1. The obtained refutation Rx=1 of Fx=1 has fewer than ab(1− W

2n
) = ab−1 fat

clauses. By induction on b we have wR(Fx=1) ≤ W + (b− 1) + k. On the other hand,
since Fx=0 has one variable fewer, induction on n yields wR(Fx=0) ≤ W + b+ k. The
desired upper bound wR(F)≤W + b+ k now follows from Lemma 18.8. □

PROOF OF THEOREM 18.7. Choose b so that ab = SR(F). Then

b =
log SR(F)

log a
≤

2n log SR(F)

W ln2
≤

4n log SR(F)

W

and, by Lemma 18.9,

wR(F)≤W +
4n log SR(F)

W
+ k .

Choosing W := 2
p

n log SR(F) to minimize the right-hand side yields the desired upper

bound wR(F)≤ 4
p

n log SR(F) + k. □

REMARK 18.10. That Theorem 18.7 cannot be substantially improved was shown
by Bonet and Galesi (1999): there are unsatisfiable c-CNF formulas F (c being a con-
stant) such that SR(F)≤ nO(1) but wR(F) = Ω(

p
n).

18.3.1. Expanding formulas require large refutation width. As such, the mea-
sure wR(F) is difficult to deal with: we must take all possible resolution refutations of F

into account. Still, there are properties of CNFs F forcing wR(F) to be large. Namely, it
is enough that F has good “expansion” properties. For this, we look at a CNF formula
F as a set of its clauses. Hence, |F | denotes the number of clauses in F , and G ⊆ F

means that the CNF G contains only clauses of F .
Let v(F) denote the number of variables in F , and call a CNF formula F is (r, c)-

expanding if

v(G)≥ (1+ c)|G| for every subset G ⊆ F of its |G| ≤ r clauses.
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We can associate with F a bipartite graph, where nodes on the left part are clauses of
F , nodes on the right part are variables, and a clause C is joined to a variable x iff x

or ¬x belongs to C . Then F is (r, c)-expanding iff every subset of s ≤ r nodes on the
left part have at least (1+ c)s neighbors on the right part.

THEOREM 18.11. For every unsatisfiable (r, c)-expanding CNF formula F,

wR(F)≥
cr

2
.

We first prove three claims relating the number of clauses with the number of
variables in unsatisfiable CNF formulas.

CLAIM 18.12. If |G| ≤ v(G) for every G ⊆ F , then F is satisfiable.

PROOF. We will use the well-known Hall’s Marriage Theorem. It states that a family
S = {S1, . . . ,Sm} has a system of distinct representatives (that is, a sequence x1, . . . , xm

of elements such that x i ∈ S j iff i = j) if the union of any number 1 ≤ k ≤ m of
members of S has at least k elements.

Assume now that |G| ≤ v(G) for all G ⊆ F . Then, by Hall’s theorem, we can find
for each clause C of F a variable xC ∈ v(C) which appears in none of the remaining
clauses of F . Since each variable xC is “unique” for the corresponding clause C , we
can set these variables to 0 or 1 independently to make the corresponding clauses true.
Hence, F is satisfiable. □

Say that an unsatisfiable CNF formula is minimal unsatisfiable if removing any
clause from it makes the remaining CNF satisfiable. The following claim is also known
as Tarsi’s Lemma.

CLAIM 18.13. If F is minimally unsatisfiable, then |F |> v(F).

PROOF. Since F is unsatisfiable, Claim 18.12 implies that there must be a subset of
clauses G ⊆ F such that |G| > v(G). Let G ⊆ F be a maximal subset of clauses with
this property. If G = F then we are done, so assume that G ⊂ F and we will derive a
contradiction.

Take an arbitrary sub-formula H ⊆ F − G, and let Vars(H) be the set of its vari-
ables. Due to maximality of G, Vars(H)− Vars(G) must have at least |H| variables, for
otherwise we would have that v(G∪H)< |G∪H|, a contradiction with the maximality
of G.

Thus, the CNF formula F − G satisfies the condition of Claim 18.12, and hence,
can be satisfied by only setting constants to variables in Vars(F)− Vars(G). Since F is
minimally unsatisfiable, the CNF formula G must be satisfiable using only the variables
in Vars(G). Altogether this gives us a truth assignment satisfying the entire formula F ,
a contradiction. □

We say that a CNF formula F implies a clause A if any assignment satisfying F also
satisfies A. We also say that F minimally implies A if the CNF formula F implies A but
no its proper subformula (obtained by removing any its clause) does this.

CLAIM 18.14. If F minimally implies A then |A|> v(F)− |F |.
PROOF. Let Vars(F) = {x1, . . . , xn} and assume w.l.o.g. that Vars(A) = {x1, . . . , xk}.

Take a (unique) assignment α ∈ {0,1}k for which A(α) = 0. Since F implies A, re-
stricting F to α must yield an unsatisfiable formula Fα on variables xk+1, . . . , xn. The
formula Fα must also be minimally unsatisfiable because F minimally implied A. By
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Claim 18.13, Fα must have more than n − k clauses. Hence, |F | ≥ |Fα| > n − k =

v(F)− |A|, as desired. □

We now turn to the actual proof of the theorem.

PROOF OF THEOREM 18.11. Let F be an (r, c)-expanding unsatisfiable CNF formula,
and let R be any resolution refutation proof of F . We can assume that both numbers
r and c are positive (otherwise there is nothing to prove). With each clause C in R
associate the number

µ(A) =min{|G| : G ⊆ F and G implies A} .
It is clear that µ(A) ≤ 1 for all clauses A of F . Furthermore, µ is subbaditive: µ(C) ≤
µ(A) +µ(B) if C is a resolvent of A and B. Finally, the expansion property of F implies
that µ(0)> r. Indeed, by the definition, µ(0) is the smallest size |G| of an unsatisfiable
subformula G ⊆ F , and Claim 18.13 yields |G| > v(G). Would we now have µ(0) ≤ r,
then we would also have |G| ≤ r and the expansion property of F would imply v(G)≥
(1+ c)|G|, a contradiction.

Hence, the subadditivity of µ implies that the refutation R of F must contain a
clause C such that r/2 ≤ µ(C) < r. Fix some G ⊆ F minimally implying C; hence,
|G| = µ(C) < r. By the expansion of F , v(G) ≥ (1+ c)|G|. Together with Claim 18.14
this implies |C | > v(G)− |G| ≥ c|G| ≥ cr/2, as desired. □

18.3.2. Matching principles for graphs. Given a bipartite m × n graph G =

([m], [n], E), we may consider the CNF formula PHP (G) which is an AND of the fol-
lowing set of axioms:

◦ Pigeon Axioms: Ci =
∨
(i, j)∈E x i, j for i = 1, . . . , m.

◦ Hole Axioms: ¬x i1, j ∨¬x i2 , j for i1 6= i2 ∈ [m] and j ∈ [n].
That is, the graph dictates what holes are offered to each pigeon, whereas hole axioms
forbid (as in the case of PHPm

n
) that two pigeons sit in one hole.

Observe that, if m > n and if the graph G has no isolated vertices, then the CNF
formula PHP (G) is unsatisfiable. Indeed, every truth assignment α defines a subgraph
Gα of G. Now, if α satisfies all hole axioms then Gα must be a (possibly empty) match-
ing. But we have m > n vertices of the left side. Hence, at least one of these vertices
i ∈ [m] must remain unmatched in Gα, implying that Ci(α) = 0.

Observe also that PHPm
n
= PHP (Km,n) where Km,n is a complete bipartite m× n

graph. Moreover, if G′ is a subgraph of G, then every resolution refutation for PHP (G)

can be turned to a resolution refutation of PHP (G′) just by setting to 0 all variables
corresponding to edges of G that are not present in G′. Thus, to prove a lower bound
of the resolution complexity of PHP (G) it is enough to prove such a bound for any

subgraph of G.
This opens plenty of possibilities to prove large lower bounds for PHPm

n
: just show

that the exists a graph G (a subgraph of Km,n) such that PHP (G) requires large long
resolution refutations. By Theorems 18.7 and 18.11, this can be done by showing that
the CNF formula F = PHP (G) has large expansion. This, in turn, can be achieved if
the underlying graph G itself has good expansion properties.

A bipartite graph is (r, c)-expander if every set of k ≤ r vertices on the left part has
at least (1+ c)k neighbors on the right part. It can be easily shown (Exercise 18.4)
that if G is an (r, c)-expander then the CNF formula PHP (G) is (r, c)-expanding.

Using a simple probabilistic argument it can be shown that (r, c)-expanders with
c > 0, r = Ω(n) and constant left-degree exist (Exercise 18.5). Hence, the CNF formula
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F = PHP (G) has N = O(m) variables and each its clause has constant width. Theo-
rem 18.11 implies that wR(F) = Ω(n). So, by Theorem 18.7, every resolution refutation
for F , and hence, for PHPm

n
must have size exponential in wR(F)

2/N = Ω(n2/m).
This lower bound is super-polynomial, as long as we have m� n2/ log n pigeons.

However, the larger m is, the more true the pigeonhole principle itself is, and it could
be that PHPm

n
could be refuted by much shorter resolution refutation proof. And

indeed, all attempts to overcome this “n2 barrier” for the number of pigeons failed for
many years. This was one of most famous open problems in the propositional proof
complexity. The “n2 barrier” for PHPm

n
was first broken by Raz (2001): PHPm

n
requires

resolution proofs of exponential size for any number m ≥ n+ 1 of pigeons. A simpler
proof was then found by Razborov (2003), and we will present it in Section 18.6.

18.4. Local search for satisfiability

The 3SAT-problem is, given a 3-CNF F to decide whether it is satisfiable. This is
the most famous NP-complete problem. Thus, any proof that 3SAT requires a super-
polynomial (in the number of clauses) time would imply P 6= NP. Due to its impor-
tance, many algorithms for 3SAT were introduced, resolution being one of them: try
to resolve literals one by one until a contradiction (an empty clause) is produced. But
if the CNF is satisfiable, such an algorithm will stuck without an answer.

A trivial algorithm, which newer gets stuck, is just to probe all 2n possible assign-
ments. A less trivial algorithm does a “local search:” it starts with some assignment,
and tries to flip its bits one by one in a hope to reach a satisfying assignment, if there
is one.

18.4.1. Local search for 2-CNFs works well. Let F be a CNF in n variables,
and suppose that we know that it is satisfiable. How quickly can we find a satisfying
assignment? If each clause of F has exactly 2 literals, then a satisfying assignment can
be found in O(n2) steps by the following simple randomized procedure.

Suppose we start with an arbitrary assignment of values to the literals. As long as
there is a clause that is unsatisfied, we modify the current assignment as follows: we
choose an arbitrary unsatisfied clause and pick one of the (two) literals in it uniformly
at random; the new assignment is obtained by complementing the value of the chosen
literal. After each step we check if there is an unsatisfied clause; if not, the algorithm
terminates successfully with a satisfying assignment.

THEOREM 18.15. Suppose that F is a satisfiable 2-CNF in n variables. Then, with

probability at least 1/2, the above algorithm will find a satisfying assignment in 2n2

steps.

PROOF. Fix an arbitrary satisfying assignment α ∈ {0,1}n for F , and refer to the
values assigned by α to the literals as the “correct values.”

The progress of the above algorithm can be represented by a particle moving be-
tween the integers {0,1, . . . , n} on the real line. The position of the particle indicates
how many variables in the current solution have “incorrect values,” i.e., values differ-
ent from those in α. At each iteration, we complement the current value of one of the
literals of some unsatisfied clause, so that the particle’s position changes by 1 at each
step. In particular, a particle currently in position i, for 0 < i < n, can only move to
positions i − 1 or i + 1 (see Fig. 5).

Let t(i) denote the expected number of steps which a particle, started in position
i, makes until it reaches position 0. Our goal is to show that t(i)≤ n2 for all i.
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FIGURE 5. Random walk on a line for 2-CNFs. The particle being in
position i means that the current assignment differs in i bits from the
fixed (but unknown) satisfying assignment.

A particle at location n can only move to n−1, and the process terminates when the
particle reaches position 0 (although it may terminate earlier at some other position
with a satisfying assignment other than a). Hence, t(n) ≤ t(n− 1) + 1 and t(0) = 0.
In general, we have that

t(i) = pi,i−1 · (1+ t(i− 1)) + pi,i+1 · (1+ t(i+ 1)) ,

where pi, j is the probability with which the particle moves from position i to position
j ∈ {i− 1, i + 1}.

The crucial observation is the following: in an unsatisfied clause at least one of
the literals has an incorrect value. Thus, with probability at least 1/2 we decrease the
number of variables having false values. The motion of the particle thus resembles a
random walk on the line where the particle moves from the ith position (0< i < n) to
position i − 1 with probability pi,i−1 ≥ 1/2. This implies that

t(i)≤
t(i− 1) + t(i+ 1)

2
+ 1.

Replace the obtained inequalities by equations

x(0) = 0,

x(i) =
x(i− 1) + x(i + 1)

2
+ 1,

x(n) = x(n− 1) + 1 .

This resolves to x(1) = 2n−1, x(2) = 4n−4 and in general x(i) = 2in− i2. Therefore,
t(i)≤ x(i)≤ x(n) = n2, as desired.

By Markov’s inequality, a random variable can take a value 2 times larger than its
expectation only with probability < 1/2. Thus, the probability that the particle will
make more than 2 · t(i) steps to reach position 0 from position i, is smaller than 1/2.
Hence, with probability at least 1/2 the process will terminate in at most 2n2 steps, as
claimed. □

18.4.2. Local search for 3-CNFs fails. The local search algorithm for a satisfiable
CNF picks an initial assignment in {0,1}n at random, and flips its bits one by one trying
to satisfy all clauses. At each step, the decision on what bit of a current assignment
α to flip is also random one. The algorithm first constructs a set I ⊆ [n] of bits such
that flipping any bit i ∈ I increases the number of satisfied clauses. Then it chooses
one of these bits at random, and flips it. If I = ;, then the algorithm chooses one bit at
random from the set of bits that do not lead to the decrease of the number of satisfied
clauses. If all variables lead to such a decrease, it chooses at random a bit from [n]

The algorithm works in iterations, one iteration being a random choice of an initial
assignment. We are interested in how many iterations are needed to find a satisfying
assignment with a constant probability.
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THEOREM 18.16. There is a satisfiable 3-CNF formula F with n variables and O(n3)

clauses such that the local search algorithm needs 2Ω(n) iterations to find a satisfying

assignment with a constant probability.

PROOF. The desired CNF formula F is an AND of two CNFs G and H. The first CNF
G consists of n+ 1 clauses:

¬x1 ∨ x2 , ¬x2 ∨ x3 , . . . , ¬xn ∨ x1 and ¬x1 ∨¬x2 .

The first n clauses express that in every satisfying assignment for G the values of all its
bit must be equal. The last clause of G ensures that all these values must be equal to
0. Hence, α = 0 is the only assignment satisfying all the n+ 1 clauses of G.

The second CNF H consists of al n
�n−1

2

�
clauses of the form

¬x i ∨ x j ∨ xk .

Hence, α = 0 is the unique satisfying assignment for the entire CNF F = G ∧ H. The
clauses in H are intended for “misleading” the algorithm.

We will show that there is a threshold t such that the assignments with t 1’s form
an “insurmountable ring” around the (unique) satisfying assignment 0. Namely, if
the algorithm encounters an assignment α with1 |α| ≥ t, then it chooses a wrong bit
for flipping. That is, on such assignments α the algorithms flips some 0-bit to 1-bit,
and hence, goes away from the satisfying assignment 0. As a threshold t we take
t := n/3+ c where c is a sufficiently large constant. Important for us will only be that
under this choice, we have for all k ≥ t:

(k− 1)(n− k− 1)>

�
n− k

2

�
+ 4 .

CLAIM 18.17. Let α ∈ {0,1}n be an assignment with |α| ≥ t. Then the number of
satisfied clauses of F :

a. decreases when flipping a 1-bit of α to 0;
b. increases when flipping a 0-bit of α to 1.

PROOF. Fix an i ∈ [n] such that αi = 1. Flip the ith bit of α from 1 to 0, and let
Won(1 7→ 0) be the set of clauses of F that were unsatisfied by α but are satisfied by
the new assignment α′. Similarly, let Lost(1 7→ 0) be the set of clauses of F that were
satisfied by α but are satisfied by the new assignment.

Each clause C ∈ Won(1 7→ 0) has the form C = ¬x i ∨ xu ∨ xv where u and v are
such that αu = αv = 0. The number of such clauses is therefore

|Won(1 7→ 0)| ≤
�

n− |α|
2

�
+ 2 ,

because flipping one bit can increase/decrease the number of satisfied clauses in the
first CNF G by at most 2. On the other hand, each clause C ∈ Lost(1 7→ 0) has the form
C = ¬xu∨ x i ∨ xv where u and v are such that αu = 1 and αv = 0. The number of such
clauses is

|Lost(1 7→ 0)| ≥ (|α| − 1)(n− |α|)− 2>

�
n− |α|

2

�
+ 2≥ |Won(1 7→ 0)| .

This completes the proof of the first claim (a). The proof of the second claim (b) is
similar. □

1Here |α| stands for the number of 1’s in α.
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By Claim 18.17, the algorithm can find the (unique) satisfying assignment 0 for
F only if it starts with an initial assignment with at most t = n/3+ c 1’s. Since the
fraction of such assignments is 2−Ω(n), the probability that the algorithm finds this
satisfying assignment in one iteration is also 2−Ω(n). So, 2Ω(n) iterations are necessary
to achieve a constant probability error. □

18.5. Geometric resolution: cutting plane proofs

A proof system strengthening resolution is the cutting plane proof system. It orig-
inated in works on integer programming by Gomory (1963) and Chvátal (1973). As
a proof system it was first considered in Cook, Coullard and Túran (1987). The basic
idea is to prove using a few elementary rules that a system of linear inequalities with
integer coefficients does not have a 0-1 solution.

Let M be a matrix with integer entries, and b an integer vector. Say that the system
M x ≥ b of inequalities is unsatisfiable if it has no solution x ∈ {0,1}n. That is, instead
of unsatisfiable CNF now we have an unsatisfiable system of linear inequalities, and
our goal is to prove this (unsatisfiability) using as few applications of rules as possible.
Note that a system M x ≥ b may be unsatisfiable even if it is feasable, that is, has real

values solutions x : we are interested in 0-1 solutions.
Each formula in such a proof is an inequality of the form f (x) ≥ A, where f (x) =∑

i ai x i , and ai and A are integers. Since we want to prove nonexistence of 0-1 so-
lutions, besides the axioms arising from M x ≥ b, there are standard axioms x i ≥ 0
and x i ≤ 1. In order to keep the same “direction” of inequalities, we use that fact that
f ≤ g is equivalent to − f ≥ −g. That is, besides the axioms given by M x ≥ b we
have integrity axioms for each variable: x i ≥ 0 and −x i ≥−1. There are three rules of
derivation:

a. Addition of two inequalities:

f (x)≥ A g(x) ≥ B

f (x) + g(x) ≥ A+ B
.

b. Multiplication by a non-negative integer constant:

f (x)≥ A

c f (x)≥ cA
(c non-negative integer).

c. Division by a positive integer c ≥ 1 with rounding:

c f (x) ≥ A

f (x)≥
 

A

c

£ and
c f (x) ≤ A

f (x)≤
�

A

c

�

where dαe=min{m ∈ Z | α ≤ m} and bαc=max{m ∈ Z | m ≤ α}.
Given a system M x ≥ b with no 0-1 solution x , the goal of a CP proof (“CP” stands for
“cutting planes”) is to derive a contradiction, represented as

0≥ 1 .

The first two rules are “innocent”—the whole power of cutting plane proof system
comes from the third rule, because of rounding. Important in this rule is that the
coefficients ai are integers—otherwise this rule would be not valid.

Let us first show that cutting plane proof are not less efficient than resolution.
First, we replace each clause by an inequality using the translation x i 7→ x i and ¬x i 7→
1− x i . For example, the clause x ∨ ¬y translates to an inequality x + (1− y) ≥ 1,
which is the same as x − y ≥ 0. Then an assignment a = (a1, a2) ∈ {0,1}2 satisfies the
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FIGURE 6. A cutting plane proof.

clause iff a1 − a2 ≥ 0, that is, iff either a1 = 1 or a2 = 0. In this way each unsatisfiable
CNF translates to an unsatisfiable system of linear inequalities. For example, the CNF

(x ∨ y)(¬x ∨ y)(x ∨¬y)(¬x ∨¬y)

translates to the system

x + y ≥ 1 , (1− x) + y ≥ 1 , x + (1− y)≥ 1 , (1− x) + (1− y)≥ 1

or simpler,

x + y ≥ 1 , −x + y ≥ 0 , x − y ≥ 0 , −x − y ≥−1 .

More generally, each clause C translates to the inequality
∑

i

ai x i ≥ 1−m ,

where m is the number of negated literals in C , and

ai =





1 if x i ∈ C ,
−1 if ¬x i ∈ C ,

0 if neither in C .

PROPOSITION 18.18. The cutting planes proof system can efficiently simulate resolu-

tion.

PROOF. Suppose we have a resolution refutation proof R of some unsatisfiable
CNF. By adding a trivial derivation rule “derive C∨z from C”, we can assume that each
resolution inference in this proof has the form

C ∨ x i C ∨ x i

C
.

Let f =
∑

j a j x j ≥ 1− m be the inequality corresponding to clause C; here m is the
number of negated literals in C . Then the inequality for the clause C ∨ x i is f + x i ≥
1− m (x i comes positive in this clause), and the inequality for the clause C ∨ ¬x i is
f − x i ≥ 1−m− 1. Now apply the sum-rule

f + x i ≥ 1−m f − x i ≥ 1−m− 1

2 f ≥ 2− 2m− 1
,
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and then the division rule2

2 f ≥ 2− 2m− 1

f ≥ 1−m

to obtain the inequality for the clause C . □

We will now show that, in fact, cutting plane proofs for some CNFs may be even
exponentially shorter that resolution proofs. So, proving lower bounds for the former
model is a more difficult task.

18.5.1. Tree-like CP proofs. In a general CP proof one derived inequality can be
used many times without re-deriving it. That is, the underlying graph of a derivation
here may be an arbitrary directed acyclic graph. A tree-like CP proof is a special case
of a CP proof, where the underlying graph is a tree. That is, every inequality in the
proof, except for the initial inequalities, is used at most once as an antecedent of an
implication.

Although restricted, tree-like CP proofs are still powerful. So, for example, we
already know that the CNF formula PHPn+1

n
formalizing the pigeonhole principle has

no resolution proof of polynomial length. On the other hand, tree-like CP proof for
this CNF is relatively short.

THEOREM 18.19. PHPm
n

has a tree-like cutting plane proof of polynomial size.

PROOF. When translated to the language of inequalities, the axioms for the pigeon-
hole principle PHPm

n
consist of the following inequalities:

a. Pigeon axioms: x i1 + x i2 + · · ·+ x in ≥ 1 for all i = 1, . . . , m.
b. Hole axioms: x i j + xk j ≤ 1 for all 1≤ i < k ≤ m, j = 1, . . . , n.
c. Integrity axioms: x i j ≥ 0; x i j ≤ 1 for i = 1, . . . , m, j = 1, . . . , n.

For each j we first derive x1 j + x2 j + · · ·+ xmj ≤ 1 inductively. The inequality x1 j ≤ 1
is an integrity axiom, and inequality x1 j + x2 j ≤ 1 is a hole axiom. For k from 3 to m,
suppose we have already derived x1 j + x2 j + · · ·+ x(k−1) j ≤ 1. We can then derive the
inequality with k− 1 replaced by k as follows.

- Multiply x1 j + x2 j + · · ·+ x(k−1) j ≤ 1 by k − 2 and add to the result the hole
axioms x i j + xk j ≤ 1, i = 1, . . . , k− 1 to get

(k− 1)x1 j + (k− 1)x2 j + · · ·+ (k− 1)xk j ≤ 2k− 3 .

a. Apply division rule to get

x1 j + x2 j + · · ·+ xk j ≤
�

2k− 3

k− 1

�
=

�
2−

1

k− 1

�
= 1 .

Summing these inequalities x1 j+ x2 j+ · · ·+ xmj ≤ 1 over all holes j gives that the sum
S of all variables is at most n, that is, −S ≥ −n. On the other hand, summing pigeon
inequalities x i1+ x i2+ · · ·+ x in ≥ 1 over all pigeons i gives that S ≥ m. Summing these
two last inequalities gives 0≥ m− n≥ 1, the desired contradiction. □

We are now going to prove an exponential lower bound on the size of tree-like CP
proofs using communication complexity arguments.

Let M x ≥ b be an unsatisfiable system of inequalities. As in the case of CNFs,
every proof of the unsatisfiability of the system M x ≥ b can be viewed as an algorithm
for the following search problem: Given an assignment α ∈ {0,1}n find an axiom (an

2d−1/2e = 0
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FIGURE 7. The original tree-like CP proof (left), and the obtained
threshold tree (right).

inequality in our system) which is not satisfied by α. To see this, just traverse the proof
starting from its last inequality 0≥ 1 until a “hurt” axiom is found.

Inequalities in a CP proof are not arbitrary: they are derived from axioms using
the cutting planes rules. We now relax this and allow arbitrary inequalities to be used
in the search problem. This gives rise to so-called “threshold trees.”

By a threshold function we will now mean a boolean function which, on input
vector x ∈ {0,1}n, outputs 1 iff the vector x satisfies the inequality

∑n
i=1 ai x i ≥ A,

where the threshold A as well as the weights ai are arbitrary integers. A threshold

tree for an unsatisfiable system M x ≥ b is a decision tree whose leaves are labeled by
inequalities of the system. At each inner node, a decision (where to branch) is made
using to an arbitrary threshold function.

LEMMA 18.20. If an unsatisfiable system M x ≥ b has a tree-like cutting planes proof

of size S, then the search problem for this system can be solved by a threshold tree of depth

at most 1+ log2 S.

PROOF. Take an arbitrary tree-like cutting plane proof of size S for the system
M x ≥ b, and let T be its underlying tree. We argue by induction on S.

If S = 1 then the system consist of a single unsatisfiable inequality, and we can
take it as the only inequality in our threshold tree.

For the induction step, assume that the lemma is true for all decision trees of size
smaller than S.

By Claim 2.2, there must be a subtree T0 of T rooted in some node v and such
that S/3 ≤ |T0| ≤ 2S/3. Cut off this subtree T0 from the entire proof T , assign its
root (now a leaf) the inequality 1 ≥ 1, and let T1 be the resulting decision tree. Let
also f (x) ≥ A be the linear inequality associated with the root of T0 in the original
proof T . We now can construct a new threshold tree as follows. We first query the
function g(x) = 1 iff f (x) ≥ A. If g evaluates to 0, we proceed on the subtree T0;
otherwise we proceed on the subtree T1 (see Fig. 7). By the induction hypothesis,
since both T0 and T1 have size at most 2S/3, the depth of the decision tree obtained
will be 1+ log2(2S/3) ≤ 1+ log2 S.

To see that the new tree solves the search problem for M x ≥ b, take an assignment
α ∈ {0,1}n. If g(α) = 0 then we proceed on the subproof corresponding to the subtree
T0. Since the proof is sound, and the root inequality of T0 is false on α, this implies that
one of the leaf inequalities must be falsified by α. If g(α) = 1 then we proceed on the
subproof corresponding to the subtree T1. Again since the root inequality 1 ≥ 0 of T1

is false, one of the leaf inequalities of the original proof T must be falsified by α. This
inequality cannot lie in the removed subtree T0 because its root inequality g as well as
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the inequality 1 ≥ 1 are satisfied by α. So, α must falsify some other leaf inequality of
T1. □

Let M x ≥ b be an unsatisfiable system of inequalities, and let I , J be a partition
of the index set {1, . . . , n} of its variables x1, . . . , xn. By a communication game for
M x ≥ b under this partition we will mean a Karchmer–Wigderson type game where,
for an assignment α ∈ {0,1}n, Alice gets its projection onto I , Bob gets the projection
onto J , and their goal is to find an inequality falsified by α.

LEMMA 18.21. If the search problem for M x ≥ b has a threshold tree of depth d where

all threshold functions have polynomial-sized weight, then there exists a communication

protocol for this problem where O(d log n) bits are sent.

PROOF. Let a1 x1 + a2 x2 + · · ·+ an xn ≥ t be the first inequality queried at the root
of the threshold decision tree for M x ≥ b, and let g(x) be the corresponding thresh-
old function. Then g(x) can be written as A(x) ≥ B(x), where A(x) =

∑
i∈I ai x i and

B(x) = t −
∑

i∈J ai x i . Alice first communicates the value of A(x) to Bob; this only
requires O(log n) many bits (assuming polynomial-sized weights). Bob then completes
the computation of g(x), and sends the value g(x) to Alice. The two players then
continue on the half of the decision tree which agrees with the value of g(x). The
protocol terminates after d rounds, and each round only requires O(log n) bits of com-
munication. □

In Section 8.4 we have considered the following communication game on a com-
plete graph with n= 3m vertices:

MATCHn: Alice gets a matching p consisting of m edges and Bob gets an (m − 1)-
element set q of vertices. Find an edge e such that e ∈ p and e ∩ q = ;.

We proved (Theorem 8.12) that any deterministic communication protocol for this
game requires Ω(n) bits of communication. We now will turn this “search an edge”
problem into a search problem for an unsatisfiable CNF formula Matchn with O(n2)

variables and O(n4) clauses.
Assume for a moment that we already have such a CNF formula Matchn. Then the

communication complexity of the corresponding to Matchn search problem is Ω(n).
By Lemma 18.21, if a threshold tree T only has threshold functions of polynomial-
sized weight and solves the search problem for the corresponding to Matchn system of
inequalities M x ≥ b, then T must have depth d = Ω(n/ log n). By Lemma 18.20, this
means that any tree-like CP proof for M x ≥ b, all coefficients in which are polynomial
in n, must have exponential size 2Ω(n/ log n).

To describe the desired CNF formula Matchn, we encode each m-matching p =

{e1, . . . , em} by an m× (3m) matrix of variables X = (x i j), where x i j = 1 iff j ∈ ei . Each
(m− 1)-element subset q = {v1, . . . , vm−1} of [3m] is encoded by an (m− 1)× (3m)

matrix Y = (yi j), where yi j = 1 iff vi = j. That is, the ith row of X specifies the ith
pair in the matching p, whereas the ith row of Y specifies the ith vertex in the set q.
The CNF formula Matchn consists of three CNFs:

a. F1(X ) is satisfied iff p is an m-matching: every row of X has two 1’s, and every
column has at most one 1.

b. F2(Y ) is satisfied iff q is an (m − 1)-subset of [3m]: every row of of Y has
exactly one 1, and and every column has at most one 1.
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c. F3(X , Y ) is satisfied iff every edge in p has at least one endpoint in q:

¬xki ∨¬xk j ∨
m−1∨

`=1

y`i ∨
m−1∨

`=1

y` j for all 1≤ k ≤ m and 1≤ i 6= j ≤ 3m.

By what was said, we have proved the following

THEOREM 18.22. Any tree-like CP proof for Matchn, all coefficients in which are

polynomial in n, must have size 2Ω(n/ log n).

In fact, a similar lower bound 2Ω(n/ log3 n) for Matchn also holds without any re-
strictions on the size of coefficients used in a CP proof—being tree-like is the only
restriction. For this, it is enough to observe that Theorem 8.12 about the determinis-
tic communication complexity of the game MAT CHn can be extended to randomized

protocols: R1/n(MAT CHn) = Ω(n/ log n). It remains then to combine this lower bound
with the following “randomized” version of Lemma 18.21.

LEMMA 18.23. If the search problem for M x ≥ b has a threshold tree of depth d, then

there exists a randomized communication protocol for this problem where O(d log2 n) bits

are sent.

PROOF. It is enough to use two facts about threshold functions. The first (classi-
cal) fact is that any threshold function in n variables can be computed as a threshold
function with weights at most 2O(n log n) (see [115], Theorem 9.3.2.1). The second fact
is that R1/n(GTn) = O(log2 n), where GTn(x , y) is the grater than function on two n-bit
integers which outputs 1 iff x ≥ y (see Exercise 7.5). The rest is the same as in the
proof of Lemma 18.21. □

18.5.2. Arbitrary CP proofs. The lower bound above only holds for tree-like CP
proofs: we have no analogon of Lemma 18.20 for general CP proofs. When trying
to prove lower bounds for the length of (=number of inequalities in) general cutting
plane proofs, an interesting connection with monotone circuits was detected. The
connection is via so-called “interpolation theorem” in logics.

Namely, suppose that our system of inequalities has the form F = A(x , y)∧B(y, z),
where the inequalities in A(x , y) do not have z-variables, and those in B(y, z) do not
have x-variables. If F is unsatisfiable, then an interpolant of F is a function C(y) (on
the common variables) such that for any truth assignment α to the y-variables,

a. C(α) = 0 implies A(x ,α) is unsatisfiable, and
b. C(α) = 1 implies B(α, z) is unsatisfiable.

That is, given any assignment α to y-variables, the interpolant says which one of
A(x ,α) and B(α, z) is unsatisfiable. Note that at least one of them must be unsatis-
fiable, for otherwise the whole system F would be satisfiable: inequalities in A(x ,α)
and B(α, z) have no variables in common.

This gives us the following decision problem for F = A(x , y) ∧ B(y, z): Given a
truth assignment α to the y-variables, decide whether A(x ,α) is unsatisfiable. We call
such an algorithm an interpolating algorithm for F .

LEMMA 18.24. Every cutting plane proof for F of size ` gives an interpolating algo-

rithm for F running in time polynomial in `.

PROOF. Take a cutting plane proof for F . The idea is, given an assignment α to
the common y-variables, to split the proof so that we get a refutation either from
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x-axioms A(x ,α) or from z-axioms B(α, z). The only rule which can mix x-variables
and z-variables in the original proof is the addition of two inequalities, yielding an
inequality

f (x) + g(y) + h(z)≥ D .

The strategy is (after the assignment y 7→ α) not to perform this rule in such a case
and keep two inequalities

f (x) ≥ D0 and h(z)≥ D1 ,

where D0, D1 are integers. The sums f (x) and g(z) may be empty, in which case they
are treated as 0. What we need is only to ensure that this pair of inequalities is at least
as strong as the original inequality after the assignment α, which means that we need
to ensure the property:

D0 + D1 ≥ D− g(α) . (18.4)

To achieve this, the axioms are replaced (after the assignment y 7→ α) by pairs of
inequalities as follows:

f (x) + g(y)≥ a by pair f (x)≥ a− g(α) and 0≥ 0 ;
g(y) + h(z)≥ b by pair 0≥ 0 and h(z)≥ b− g(α) .

The addition rule is simulated by performing additions of the first inequalities from
pairs and the second inequalities in the pairs in parallel. This clearly preserves the
property (18.4) we need. The multiplication rule is simulated in a similar way.

But what about the division rule? We perform this rule also in parallel on the two
inequalities in the pair. The divisibility condition is clearly satisfied, as we have the
same coefficients at variables x and z as in the original inequality. The only “sorrow” is
therefore to make sure that the property (18.4) is preserved under rounding. For this,
look at an inequality c · f (x) + c · h(z) ≥ D in the proof after assignment y 7→ α. By
inductive assumption, we have the following inferences:

c · f (x)≥ D0

f (x)≥ dD0/ce
and

c · h(z)≥ D1

h(z)≥ dD1/ce
.

Write Di/c = di +δi , where di ∈ Z and δi ∈ [0,1). Then
�

D0

c

�
+

�
D1

c

�
= (d0 + dδ0e) + (d1+ dδ0e) = d0 + d1 + dδ0e+ dδ1e ≥

�
D0 + D1

c

�
.

This implies that for a positive integer c which divides all the coefficients of g(y), we
have that

D0 + D1 ≥ D− g(α) implies

�
D0

c

�
+

�
D1

c

�
≥
�

D

c

�
−

g(α)

c
.

Consider now the pair corresponding to the final inequality 0 ≥ 1. It is of the form
0 ≥ D0, 0 ≥ D1 where D0 + D1 ≥ 1. Since D0 and D1 are integers, this implies that
either D0 ≥ 1 or D1 ≥ 1. Thus we have a proof of contradiction either from A(x ,α)
or from B(α, z). To know which one is the case, the algorithm may just test whether
“D0 ≥ 1” or not. By only looking at the first inequality in each pair, the CP proof gives
us an algorithm A which, given an assignment α to y-variables, compute a number
A (α) = D0 such that D0 ≥ 1 implies A(x ,α) is unsatisfiable, and D0 ≤ 0 implies B(α, z)
is unsatisfiable. □
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Having an interpolating algorithm we can turn it into a sequence of boolean cir-
cuits. Thus, if any interpolating circuit for F must be large, then F cannot have small
cutting plane proofs. This is the main idea of relating proofs with circuits. Of course,
so as it is, this idea is of little help: no nonlinear lower bound for circuits is known.
An intriguing aspect, however, is that under some mild conditions on the form of in-
equalities in F , the circuits can be made monotone: we only have to allow monotone
real-valued functions as gates.

Namely, say that a system A(x , y) ∧ B(y, z) of linear inequalities is separated if all
y-variables appear in all inequalities of A(x , y) with nonnegative coefficients, or all
appear with nonpositive coefficients in B(y, z).

THEOREM 18.25. If an unsatisfiable system F of linear inequalities is separated then

it has an interpolating monotone real circuit of size polynomial in the minimal cutting

plane proof size of F.

PROOF. It is enough to turn the algorithm from Lemma 18.24 into a monotone real
circuit whose size is polynomial in the size of the underlying cutting proof of F . Let
us first realize that we only need to compute the constant D0 (or only D1) correspond-
ing to the last inequality. We shall assume w.l.o.g. that all y-variables appear in all
inequalities of A(x , y) with nonnegative coefficients.

Recall that, in each step, we replace an inequality f (x) + g(α) ≥ a by f (x) ≥ D0

with D0 = a − g(α). Since the coefficients of y-variables in A(x , y) are nonnegative,
it is more convenient to talk about −D0 = g(α)− a; then we do not need to multiply
g(α) by a negative constant −1.

Thus, we only need to compute successively −D0 for each pair. For this, we can
use the graph of the circuit for constructing a circuit. Each gate will produce a new
−D0 from previous ones. The circuit has 0 and 1 as inputs corresponding to the truth
assignment α to y-variables, but computes arbitrary integers in the inner nodes.

If f (x) + g(y) ≥ a is an axiom, where g(y) =
∑

ci yi , then the function α 7→
−D0 = g(α)− a is nondecreasing because all coefficients ci are nonnegative, by our
assumption. Hence, if α ≤ β are two 0-1 vectors, then g(α) ≤ g(β). Thus, operations
we need are:

a. addition of an integer constant,
b. multiplication by a non-negative integer constant,
c. addition,
d. division be a positive integer constant with rounding,
e. to get a 0-1 output we add a threshold gate at the output gate, that is, the

unary gate t defined by t(ξ) = 1 if ξ≥ 0 and t(ξ) = 0 otherwise.

All the operations are nondecreasing except for multiplication by negative constants.
In general they are needed in the initial inequalities, where for f (x) + g(y) ≥ a we
need to compute g(α)− a. However (as we observed above), we do not need mul-
tiplication by negative constants there, since we assume that coefficients in g(y) are
all nonnegative. The remaining inequalities where we need multiplication by negative
constants are −yi ≥ −1. These, however, can be treated as inequalities containing
z-variables, that is, we can put D0 = 0 for them. Thus we get all gates nondecreasing.

As in the proof of Theorem 18.25, for each assignment α to y-variables, the input
to the last gate t(ξ) is an integer ξ = −D0 such that D0 ≥ 1 implies A(x ,α) is unsat-
isfiable, and D0 ≤ 0 implies B(α, z) is unsatisfiable. Hence, t(ξ) = 0 implies A(x ,α)
is unsatisfiable (because then ξ = −D0 ≤ −1, or equivalently, D0 ≥ 1), and t(ξ) = 1
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implies B(x ,α) is unsatisfiable. Thus, the obtained circuit is indeed an interpolating
circuit for A(x , y)∧ B(y, z). □

Theorem 18.25 reduces the lower bounds task for cutting planes to that for mono-
tone real circuits. We already know (see Theorem 4.16) that every monotone boolean
function f in n variables with the following two properties requires monotone real
circuits of size 2nε . Inputs of f are graphs G on n vertices, encoded by

�n
2

�
boolean

variables, and

a. f (G) = 1 if G contains a k-clique,
b. f (G) = 0 if G is (k− 1)-colorable.

What we need is a system of linear inequalities A(x , y) ∧ B(y, z) such that any inter-
polant f (y) for this system satisfies these two conditions. That is, we only need to
write the statement

a graph contains a k-clique and is (k− 1)-colorable

as an unsatisfiable system of linear inequalities. For this we take three groups of vari-
ables:

y-variables yi, j encoding the edges: yi, j = 1 iff the edge {i, j} is present;
x-variables x i , one for each vertex, encoding cliques;
z-variables zi,c , one for each vertex i and color c encoding (k−1)-colorings: zi,c = 1

iff vertex i has color c.
We want to impose the conditions:

(i) The set of nodes {i | x i = 1} forms a clique of size ≥ k.
(ii) For all c = 1, . . . , k− 1, the set {i | zi,c = 1} is an independent set.

The underlying graph is given by the values of y-variables. We now describe
a system of inequalities Clique(x , y) corresponding to the first condition (i), and a
system of inequalities Color(y, z) corresponding to the second condition (ii).

Clique(x , y): For V = {i | x i = 1} to form a clique, besides the inequality
∑

i

x i ≥ k

we also need to ensure that all nodes in V are pairwise adjacent. That is,
we need that x i = 1 and x j = 1 implies yi, j = 1. This can be written as an
inequality

yi, j − x i − x j ≥−1 .

Color(y, z): For the sets I = {i | zi,c = 1} to be independent sets (color classes), we
first need that each vertex i receives exactly one color:

∑

c

zi,c = 1

and that no two adjacent vertices i 6= j receive the same color. This last con-
dition means that zi,c = 1 and z j,c = 1 must imply yi, j = 0, and this can be
written as an inequality

−yi, j − zi,c − z j,c ≥−2 .

Note that the y-variables occur in Clique(x , y) only with positive signs, and occur with
negative signs in Color(y, z). Hence, the system of inequalities F = A(x , y)∧ B(y, z) is
separated. By Theorem 18.25, this system has an interpolating monotone real circuit
C(y) of size polynomial in the minimal CP proof size of F .
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Let us look at what this circuit C(y) does. For every assignment α ∈ {0,1}(
n

2) to
y-variables, Clique(x ,α) is satisfiable if the graph Gα encoded by α contains a k-clique,
whereas Color(α, z) is satisfiable if the graph Gα is colorable by k − 1 colors. Hence,
C(α) = 1 if Gα has a k-clique, and C(α) = 0 if the graph Gα is (k − 1)-colorable. By
Theorem 4.13, we know that, for k =Θ(

p
n), the circuit C(y) must have size 2nε for a

constant ε > 0. This gives us

COROLLARY 18.26. Any cutting plane derivation of the contradiction 0 ≥ 1 from

Clique(x , y)∧ Color(y, z) has size at least 2nε .

This proof is not quite satisfying—it is not as “combinatorial” as that for resolution
refutations. It would be nice to find a lower bounds argument for cutting plane proofs,
explicitly showing what properties of inequalities do force long derivations.

RESEARCH PROBLEM 18.27. Find a combinatorial lower bounds argument for cutting

plane proofs.

18.6. Addendum: Arbitrary number of pigeons

We have already seen how to prove super-polynomial lower bound on the size of
resolution refutations of PHPm

n
for up to m� n2/ log n pigeons (see Section 18.3.2).

However, the larger m is, the more true the pigeonhole principle itself is, and it could
be that PHPm

n
could be refuted by much shorter resolution refutation proof. And

indeed, all attempts to overcome this “n2 barrier” for the number of pigeons failed for
many years. This was one of most famous open problems in the propositional proof
complexity.

The “n2 barrier” for PHPm
n

was broken by using a more subtle concept of “pseudo-
width” of clauses, tailor made for this particular CNF formula. It turns out that PHPm

n

requires resolution proofs of exponential size for any number m≥ n+ 1 of pigeons!

THEOREM 18.28. For every m ≥ n+1, every resolution refutation proof of PHPm
n

has

length at least 2Ω(n
1/4).

Recall that PHPm
n

denotes the AND of the following clauses (we call them axioms):

a. Pigeon Axioms: each of the m pigeon sits in at least one of n holes:

x i,1 ∨ x i,2 ∨ · · · ∨ x i,n for all i = 1, . . . , m.

b. Hole Axioms: no two pigeons sit is one hole:

¬x i1 , j ∨¬x i2 , j for all i1 6= i2 and j = 1, . . . , n.

A special feature of this CNF is that any resolution refutation of the set all its
axioms (clauses) can be transformed to a monotone refutation of its pigeon axioms
without any increase in size of a derivation. To define monotone refutations, let X i, j

be the OR of all but the ith variable in the jth column:

X i, j = x1, j ∨ · · · ∨ x i−1, j ∨ x i+1, j ∨ · · · ∨ xm, j .

By a monotone refutation of PHPm
n

we will mean a derivation of an empty clause from
pigeon axioms and using the following monotone resolution rule:

A∨ x i, j B ∨ X i, j

A∨ B
.

Such a derivation can be obtained from the original (non-monotone) derivation by
replacing each negated variable ¬x i, j by the OR of variables X i, j . Note that, in general,
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this rule is not sound: there are assignments satisfying both assumptions but falsifying
the conclusion. Still, the rule is sound if we consider only assignments satisfying all
hole axioms; we call such assignments legal. That is, an assignment α is legal if it sends
no two pigeons to the same hole (no column has more than one 1).

The following fact reduces the lower bounds problem for PHPm
n

to its monotone
version.

LEMMA 18.29. If PHPm
n

has a resolution refutation of size `, then PHPm
n

also has a

monotone refutation of size at most `.

PROOF. Given a resolution refutation proof for PHPm
n

, just replace all occurrences
of a negated variable ¬x i, j by the OR X i, j =

∨
k 6=i xk, j . It can be shown (do this!) that

the resulting sequence of monotone clauses is a monotone refutation of the pigeon
axioms. □

For the proof in the case when m is arbitrarily large, it will be convenient to in-
crease the power of refutations by allowing a larger set of monotone derivation rules:

C0 ∨ X I0 , j C1 ∨ X I1 , j

C
,

where X I, j =
∨

i∈I x i, j, I0 ∩ I1 = ; and C0 ∨ C1 ≤ C . From now on, by a monotone

refutation of PHPm
n

we will mean a refutation of pigeon axioms using any of these
rules. Note that these rules are still sound with respect to all legal truth assignments,
that is, assignments sending no two pigeons to one hole: if such an assignment satisfies
both clauses C0 ∨ X I0 , j and C1 ∨ X I1 , j then, due to the condition I0 ∩ I1 = ;, it must also
satisfy at least one of the clauses C0 or C1, and hence, the clause C as well.

18.6.1. Size versus pseudo-width of refutations. Suppose we have a monotone
refutation proof R of the pigeon axioms

X i,[n] =

n∨

j=1

x i, j , i = 1, . . . , m.

To analyze the refutation R , we are going to allow much more axioms. For this we fix
two parameters. First set

δ :=
n

2 log2 m
.

A threshold string is a string d = (d1, . . . , dm) of positive integers with δ < di ≤ n for all
i. Having such a string d, we will allow all clauses of the form

X i,J =

n∨

j∈J

x i, j with i ∈ [m] and |J | ≥ di

be used as axioms; we call such axioms d-axioms. Note that every monotone refutation
of PHPm

n
is a monotone refutation of the set of d-axioms for the threshold string d =

(n, . . . , n).
Allowing more axioms does not hurt us, since our goal is to prove a lower bound

on the size of a refutation. The reason for introducing new axioms is that we can then
“filter out” from the refutation proof all clauses containing at least one such axiom: we
just replace each such clause by the corresponding axiom.
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For this purpose we consider the degree of freedom di(C) of each pigeon i in a
clause C: this is the number of holes offered by C to this pigeon, that is, the number
of holes j such that the variable x i, j (ith pigeon sits in the jth hole) belongs to C:

di(C) =
��{ j : x i, j ∈ C}
�� .

The clause C is “filtered out” from the proof (i.e. can be replaced by an axiom) if
di(C)≥ di for at least one pigeon i.

The main concept of our analysis will be the following very special notion of the
“width” of refutation proofs for PHPm

n
, tailor made for this particular set of CNFs

Namely, define the pseudo-width wd(C) of a clause as the number

wd(C) =
��{i : di(C) ≥ di − δ}

��

of pigeons whose degree of freedom in this clause is large. The pseudo-width of a
refutation R is the maximum pseudo-width of a clause in it.

Our first task (Lemma 18.30 below) will be to show that if the thresholds di are
chosen in a clever way, then in every clause C ∈ R passing the filter—that is, having
di(C) < di for all pigeons i—almost all, namely, at least m−O(log |R|) pigeons pass
it safely: their “degree of freedom” in C is well below the corresponding threshold di ,
is ≤ di − δ. Thus, the number of pigeons who narrowly (= non-safely) pass the filter
(d1, . . . , dm) must be at most O(log |R|).

LEMMA 18.30 (Short proofs have small pseudo-width). If PHPm
n

has a resolution

refutation of size S then there exists a threshold string d such that some set of at most S

d-axioms has a monotone refutation of size S and pseudo-width O(log S).

PROOF. To prove the lemma, we have to somehow “filter out” clauses of large
pseudo-width. For this we need the following combinatorial lemma; we will give its
proof later in Section 18.6.2.

LEMMA 18.31 (Pigeon filter lemma). Let R= {ri,k} be an m× S matrix with integer

entries. If S is sufficiently large, then there exists a sequence r1, . . . , rm of integers such

that ri < blog mc and for every column k at least one of the following two events happen:

(i) ri,k ≤ ri for at least one row i;

(ii) ri,k ≤ ri + 1 for at most O(log S) rows i.

Suppose now that PHPm
n

has a resolution refutation of size S. Then, by Lemma 18.29,
the set of all m pigeon axioms has a monotone refutation of size S. Fix such a refu-
tation R an consider an m× S matrix R = {ri,C} whose rows correspond to pigeons
i ∈ [m] and columns to clauses C of this refutation. Define the entries of this matrix
by

ri,C :=

�
n− di(C)

δ

�
+ 1.

Let r1, . . . , rm be a sequence of integers guaranteed by Lemma 18.31. Set

di := bn− δric+ 1 ,

and note that di > δ because ri < log m. Hence, d = (d1, . . . , dm) is a threshold string.
This special choice of the entries ri,C as well as of the di guarantee us two properties
(check this!):

(iii) If ri,C ≤ ri then di(C)≥ di .
(v) If di(C)≥ di − δ then ri,C ≤ ri + 1.
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Now take an arbitrary clause C ∈ R . Our goal is to show that either C contains a
d-axiom (and C can be replaced by that axiom which reduces its pseudo-width wd(C)

to 1) or wd(C) = O(log S).
If the first case (i) in Lemma 18.31 takes place, then ri,C ≤ ri for some pigeon i,

and by (iii), di(C) ≥ di . Hence, in this case C contains a subclause X i,J which is a
d-axiom, and can be replaced by this axiom.

If the second case (ii) in Lemma 18.31 takes place, then the number of pigeons i for
which ri,C ≤ ri+1, and hence, by (v), the number of pigeons i for which di(C)≥ di−δ
does not exceed O(log S). Hence, in this case the pseudo-width wd(C) of C cannot
exceed O(log S). □

The second task is to show that the number of pigeons who narrowly passed the
filter must be at least Ω

�
n/ log3 |R|
�

. This implies log |R| ≥ Ω(n1/4), as desired.

LEMMA 18.32 (Pigeonhole proofs have large pseudo-width). For every threshold

string d, every monotone refutation R of a set of S d-axioms requires pseudo-width at

least Ω
�

n/ log3 S
�

.

This lemma, together with Lemma 18.30 and an observation that in any refutation
of PHPm

n
of size S at most m ≤ 2S pigeons can be used, implies that the minimal size

S of a resolution refutation of PHPm
n

must satisfy the inequality S ≥ 2n1/4
claimed in

Theorem 18.28.

PROOF OF LEMMA 18.32. Let d = (d1, . . . , dm) be an integer vector with δ < di ≤ n

for all i. Take an arbitrary setA of |A | ≤ S d-axioms, and set

w0 :=
εδ2

n log |A |
where ε > 0 is a sufficiently small constant. Take an arbitrary monotone refutation R
ofA . We will show that wd(C) > w0 for at least one clause C in R .

Suppose the opposite, i.e., that wd(C) ≤ w0 for all clauses C ∈ R . Our goal is to
show that then the empty clause 0 does not belong toR , i.e., thatR is not a refutation
ofA .

Recall that each axiom in A has the form X i,J :=
∨

j∈J x i, j for some pigeon i and
some set J of |J | ≥ di holes; X i,J is the axiom for the pigeon i. Let

Ai =
¦

X i,J ∈ A : |J | ≥ di

©

denote the set of all such axioms inA , and letAI :=
⋃

i∈IAi . For a clause C in R let

AC =
⋃

i:di(C)≥di−δ
Ai

denote the set of all axioms in A corresponding to pigeons that are “free enough” in
the clause C .

As before, truth assignments are m× n (0,1) matrices α. Such an assignment is
legal if it satisfies all hole axioms, that is, if no column has more than one 1. Say that
an assignment α is critical if it is legal and no row of α has more than

` :=

�
δ

4w0

�

1-entries. We say that a set C of clauses implies a clause C , and write C |= C , if every
critical assignment α satisfying all clauses of C also satisfies C .
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J
0i J (C) J

J1

0

holes

pigeons

0J 2

rJ

(a)

FIGURE 8. I−{i0}= {1, . . . , r}, Ji = { j | ai, j = 1}, J(a) = { j | ai0, j = 1}
and J(C) = { j | x i0 , j ∈ C}.

CLAIM 18.33. For every clause C in R we have thatAC |= C .

This already gives the desired contradiction, because δ < di for all i implies that
A0 = ;, and hence, thatA0 6|= 0. Thus, it remains to prove the lemma.

To prove Claim 18.33, we argue by induction on the number of steps in the deriva-
tion of C in R . The case C ∈A is obvious since then C ∈AC .

For the inductive step suppose that AA |= A, AB |= B and C is obtained from
clauses A, B by a single application of the monotone refutation rule. Since the rule is
sound with respect to all legal (and hence, also for all critical) truth assignments, we
have that {A, B} |= C . Hence, if we take the set

I = {i | di(A)≥ di − δ or di(B)≥ di −δ}
of pigeons of large degree of freedom in at least one of the clauses A or B, then |I | ≤
2w0 and AI |= C . Let us choose a minimal I ⊆ {1, . . . , m} such thatAI |= C; then still
|I | ≤ 2w0. We will show that, in fact,

I ⊆ {i | di(C) ≥ di − δ} ;
this will obviously implyAI ⊆AC , and hence,AC |= C .

Assume the contrary, and pick an arbitrary i0 ∈ I with di(C) < di − δ. Since I is
minimal, we have that AI−{i0} 6|= C . Hence, there is a critical assignment α = (ai, j)

which satisfies all clauses inAI−{i0} but falsifies C . We may assume that ai, j = 0 for all
i 6∈ I − {i0} and all j, because C is positive and none of such variables x i, j appears in
AI−{i0}. Let now

J =
�

j | x i0 , j 6∈ C and ai, j = 0 for all i ∈ I −{i0}
	

be the set of holes “permissible” for the pigeon i0 (see Fig. 8): if we pick an arbitrary
subset J ′ ⊆ J of size |J ′|= ` and change the assignment α by letting ai0 , j = 1 iff j ∈ J ′,
then we will get a critical assignment α′ which still satisfies all clauses in AI−{i0} (we
have not touched other pigeons) but falsifies C .

We want to show that J ′ can be chosen in such a way that this new assignment α′

will also satisfy all clauses inAi0
; this will give the desired contradiction withAI |= C .

First, observe that the set J is large enough: since di0
(C) < di0

− δ and each row
of α has at most ` 1-entries, we have that

|J | ≥ n−
�
|I | · `+ di0

(C)
�
≥ n−
�
2w0`+ (di0

−δ)
�
≥ n− di0

+δ/2 . (18.5)
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Now pick J uniformly and at random among all `-element subsets of J , and let α be
the random assignment resulting from the assignment a by setting to 1 all ai0 , j with
j ∈ J. Take an arbitrary axiom A ∈ Ai0

, and let JA = { j | x i0 , j ∈ A} be the set of holes
offered by the clause A to the pigeon i0. Since |JA| ≥ di0

, by (18.5) we have

|JA ∩ J | ≥ δ/2 .

Now we can apply Chernoff’s inequality and conclude that

Pr[A(α) = 1] = Pr[JA ∩ J 6= ;] ≥ 1− e−Ω(p·δ) ≥ 1− e−Ω(δ`/n).

Since
δ`

n
≥

δ2

4w0n
=
δ2

4n
·

n · log |A |
εδ2 =

log |A |
4ε

,

we obtain that
Pr[A(α) = 1] ≥ 1− |A |−2,

if the constant ε is sufficiently small. Since clearly, |Ai0
| < |Ai0

|2 ≤ |A |2, this implies
that, for at least one choice α′ of α, all axioms in Ai0

will be satisfied. Since (as we
observed above) the assignment α′ also satisfies all axioms in AI−{i0} but falsifies C ,
we obtained a contradiction withAI |= C .

This completes the proof of Claim 18.33, and thus, the proof of Lemma 18.32. □

18.6.2. Proof of the pigeon filter lemma. The lemma is a direct consequence of
the following property of randomly chosen numbers. Let m and S be positive integers.
Set t := blog mc−1, and let r be a random variable taking its values in [t] = {1, . . . , t}
with probabilities

Pr[r = t] = 2−(t+1) and Pr[r = s] = 2−s for each s = 1,2, . . . , t − 1.

CLAIM 18.34. Let S be a positive integer, x = (x1, . . . , xm) an integer vector, and
Let r1, . . . , r m be m independent copies of r . Then with probability at least 1−O(S−2)

at least one of the following two events happens:

Ax : r i ≥ x i for at least one integer x i;
Bx : r i < x i − 1 for all but at most O(log S) integers x i .

PROOF. Our goal is to show that at least one of Pr[¬Ax] and Pr[¬Bx] is at most
O(S−2), implying that the desired sequence r1, . . . , rm satisfying both conditions of
Lemma 18.31 exist with probability at least 1−O(S−2).

Define the “weight” of x as W (x) :=
∑m

i=1 2−x i . We consider two cases depending
on whether W (x)≥ 2 ln S or not.

Case 1: W (x)≥ 2 ln S. Let I = {i | x i ≤ t} and note that
∑

i 6∈I

2−x i ≤ m2−(t+1) ≤ 2 .

Therefore, ∑

i∈I

2−x i ≥W(x)− 2≥ 2 ln S − 2 . (18.6)

On the other hand, for every i ∈ I we have Pr[r i ≥ x i] ≥ 2−x i , and these events are
independent. Since Pr[r i ≥ x i] = 0 for all i 6∈ I , we have that in this case

Pr[¬Ax] = Pr[∀i : r i < x i] =
∏

i∈I

�
1− 2−x i
�
≤ exp

�
−
∑

i∈I

2−x i

�
≤ e2S−2 ,

where the last inequality follows from (18.6).
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Case 2: W(x) ≤ 2 ln S. We first show that Pr[r ≥ x i − 1] ≤ 22−x i for every i.
Indeed, if x i > t then either x i = t + 1 and

Pr[r ≥ x i − 1] = Pr[r = t] = 21−t = 22−x i ,

or x i ≥ t + 2 and Pr[r ≥ x i − 1] = 0. If x i ≤ t then

Pr[r ≥ x i − 1] =
t∑

s=x i−1

2−s ≤ 21−x i

∞∑

j=0

2− j ≤ 22−x i .

Hence, the expected number of i for which r i ≥ x i − 1 does not exceed

m∑

i=1

22−x i = 4
m∑

i=1

2−x i = 4W (x)≤ 8 ln S .

Since the events “r i ≥ x i − 1” are independent, we may apply Chernoff’s inequality
and conclude that, for any sufficiently large constant c,

Pr[¬Bx] = Pr[|{i : r i ≥ x i − 1}| ≥ c ln S]≤ S−2 . □

Exercises

EX. 18.1 (Cliques and CNFs). Given a graph G = (V, E), define the CNF formula

FG =
∧

{i, j}6∈E

(x i ∨ x j).

Each assignment α = (α1, . . . ,αn) ∈ {0,1}n can be interpreted as an incidence vector
of the set of vertices Sα = {i | αi = 1}. Show that Sα is a clique in G if and only if α
satisfies the formula FG .

EX. 18.2. Show that Resolution is complete: every unsatisfiable CNF formula F

has a resolution refutation proof. Hint: Show that the search problem for F can be solved by a

decision tree, and use Theorem 18.1.

EX. 18.3. Let F be a CNF formula and x a literal. Show that F is unsatisfiable if
and only if both CNFs Fx=1 and Fx=0 are unsatisfiable.

EX. 18.4. Let G be a bipartite (r, c)-expander graph. Show that then the induced
CNF formula PHP (G) is (r, c)-expanding.

EX. 18.5. Show that for every constant d ≥ 5, there exist bipartite n× n graphs of
left degree d that are (r, c)-expanders for r = n/d and c = d/4− 1.

Hint: Construct a random graph with parts L and R, |L| = |R| = n, by choosing d neighbors for each
vertex in L. For S ⊆ L and T ⊆ R, let ES,T be the event that all neighbors of S lie within T . Argue that,

Pr[ES,T ] = (|T |/n)d|S| . Let E be the event that the graph is not the desired expander, i.e., that all neighbors
of some subset S ⊆ L of size |S| ≤ n/d lie within some subset T ⊆ R of size |T | < (d/4)|S|. Use the union

bound for probabilities and the estimate
�n

k

�
≤
�

en

k

�k
to show that

Pr[E]≤
n/d∑

i=1

�
e

4

�ds/2
.

Use our assumption d ≥ 5 together with the fact that
∑∞

i=0 x i = 1/(1− x) for any real number x with |x | < 1

to conclude that Pr[E] is strictly smaller than 1.

A CNF formula F is k-satisfiable if any subset of its k clauses is satisfiable.
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EX. 18.6 (3-satisfiable CNFs). Given a 3-satisfiable CNF formula F in n variables,
define a random assignment α = (α1, . . . ,αn) ∈ {0,1}n by the following rule:

Pr[αi = 1] =





2/3 if F contains a unary clause (x i);
1/3 if F contains a unary clause (x i);
1/2 otherwise.

a. Why this definition is consistent? Hint: 3-satisfiability.

b. Show that Pr[y(α) = 1] ≥ 1/3 for each literal y ∈ {x i , x i}, which appears in the
formula F (independent of whether this literal forms a unary clause or not).

c. Show that the expected number of clauses of F satisfied by α is at least a 2/3 fraction
of all clauses.

Hint: Show that each clause if satisfied by α with probability at least 2/3. The only non-trivial case is

when the clause has exactly 2 literals. Treat this case by keeping in mind that our formula is 3-satisfiable,

and hence, cannot have three clauses of the form (y ∨ z), (y) and (z).

EX. 18.7 (2-satisfiable CNFs). Prove the Lieberher-Specker result for 2-satisfiable
CNF formulas: if F is a 2-satisfiable CNF formula then at least γ-fraction of its clauses
are simultaneously satisfiable, where γ = (

p
5− 1)/2> 0.618.

Hint: Define the probability of a literal y to be satisfied to be: a (a > 1/2) if y occurs in a unary clause,

and 1/2 otherwise. Observe that then the probability that a clause C is satisfied is a if C is a unary clause,

and at least 1− a2 otherwise (at worst, a clause will be a disjunction of two literals whose negations appear

as unary clauses); verify that a = 1− a2 for a = γ.

EX. 18.8. Write down explicitely the CNF formulas F1(X ) and F2(Y ) in the defini-
tion of the CNF formula Matchn in Section 18.5.1.

EX. 18.9. The probability distribution of r in Claim 18.34 is defined somewhat
“artificially”? Why we could not take just Pr[r = s] = 2−s for all s ≤ t? Hint:

∑n
i=1 ai =

(an+1 − a)/(a− 1).
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Epilog

In this book we have learned almost all arsenal of existing lower bounds argu-
ments. They work well for different restricted circuit classes but, so far, have not led to
a non-linear lower bound for unrestricted circuits. In this concluding chapter we sketch
several general results explaining this failure (the phenomenon of “natural proofs”) as
well as showing a possible line of further attacks (the “fusion method”).

Pseudo-random generators

When trying to prove a lower bound, we try to show that something cannot be
computed efficiently. It turned out that this task is closely related to proving that
something—namely, so-called “pseudorandom generators”—can be efficiently com-
puted!

Informally speaking, a pseudorandom generator is an “easy to compute” function
which converts a “few” random bits to “many” pseudorandom bits that “look random”
to any “small” circuit. Each one of the quoted words is in fact a parameter, and we
may get pseudorandom generators of different qualities according to the choice of
these parameters. For example, the standard definitions are: “easy to compute” =
polynomial time; “few” = nε; “many” = n.

DEFINITION 18.35. A function G : {0,1}l → {0,1}n with l < n is called an (s,ε)-
secure pseudorandom generator if for any circuit C of size s on n variables,

��Pr[C(y) = 1]− Pr[C(G(x)) = 1]
�� < ε ,

where y is chosen uniformly at random in {0,1}n, and x in {0,1}l .

That is, a pseudorandom generator G stretches a short truly random seed x into a
long string G(x) which “fools” all circuits of size up to s: no such circuit can distinguish
G(x) from a truly random string y .

Note that the definition is only interesting when l < n, for otherwise the generator
can simply output the first n bits of the input, and satisfy the definition with ε = 0
and arbitrarily large circuit size s. The larger the fraction n/l is, the stronger is the
generator. Note also that, if the input x is taken in {0,1}l at random, the output G(x)

of a generator is also a random variable in {0,1}n. But if l � n, the random variable
G(x) is by no means uniformly distributed over {0,1}n since it can take at most 2l

values with nonzero probability.
Pseudorandom generators have many applications in computer science. It is there-

fore important to know how to construct them. It turns out that this problem (con-
struction of good pseudorandom generators) is related to proving lower bounds on
circuit size.

269
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DEFINITION 18.36. Let f : {0,1}n→ {0,1} be a boolean function. We say that f is
(s,ε)-hard if for any circuit C of size s,

���Pr[C(x) = f (x)]−
1

2

���< ε ,

where x is chosen uniformly at random in {0,1}n.

The meaning of this definition is that hard functions f must be “really hard:” no
circuit of size s can even approximate its values, that is, any such circuit can do nothing
better then just guess the value. So, the function f looks random for each such circuit.

The idea of how hard boolean functions can be used to construct pseudorandom
generators is well demonstrated by the following construction of a generator stretching
just one bit.

LEMMA 18.37. Let f be an (s + 1,ε)-hard boolean function in n variables. Then

the function G f : {0,1}n → {0,1}n+1 defined by G f (x) :=
�

x , f (x)
�

is a (s,ε)-hard

pseudorandom generator.

PROOF. The intuition is that, since f is hard, no small circuit C should be able to
figure out that the last bit f (x) of its input string

�
x , f (x)
�

is not just a random bit.
By the definition of a pseudorandom generator, we want the following to hold for any
circuit of size at most s on n+ 1 variables:

��Pr[C(y) = 1]− Pr[C(G f (x)) = 1]
��< ε ,

where y is chosen uniformly at random in {0,1}n+1, and x in {0,1}n. Assume that
this does not hold. Then there is a circuit C that violates this property. Without loss of
generality, we may assume that

Pr[C(G f (x)) = 1]− Pr[C(y) = 1]≥ ε .

This can be done because we can take ¬C if this is not the case. The above is the same
as

Pr[C(x , f (x)) = 1]− Pr[C(x , r) = 1] ≥ ε ,

where x is chosen uniformly at random in {0,1}n, and r is a random bit in {0,1} with
Pr[r = 0] = Pr[r = 1] = 1/2. A way to interpret this inequality is to observe that
when the first n input bits of C are a random string x , the circuit C is more likely to
accept if the last bit is f (x) than if the last bit is random. This observation suggests
the following strategy in order to use C to predict f (x): given an input x for which we
want to compute f (x), we guess a value r ∈ {0,1} and compute C(x , r). If C(x , r) = 1
we take it as an evidence that r was a good guess for f (x), and output r. If C(x , r) = 0,
we take it as evidence that r was the wrong guess for f (x), and we output 1− r. Let
Cr(x) be a random circuit (with just one random input r) we just described. We claim
that

Pr
x ,r
[Cr(x) = f (x)]≥

1

2
+ ε . (18.7)
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Since Cr(x) = r iff C(x , r) = 1, this can be shown by elementary calculations:

Pr[Cr(x) = f (x)]

= Pr[Cr(x) = f (x)|r = f (x)] · Pr[r = f (x)]

+ Pr[Cr(x) = f (x)|r 6= f (x)] · Pr[r 6= f (x)]

= 1
2
· Pr[Cr(x) = f (x)|r = f (x)] + 1

2
· Pr[Cr(x) = f (x)|r 6= f (x)]

= 1
2
· Pr[C(x , r) = 1|r = f (x)] + 1

2
· Pr[C(x , r) = 0|r = f (x)]

= 1
2
+ 1

2
· Pr[C(x , r) = 1|r = f (x)]− 1

2
· Pr[C(x , r) = 1|r = f (x)]

= 1
2
+ Pr[C(x , r) = 1|r = f (x)]

− 1
2

�
Pr[C(x , r) = 1|r = f (x)] + Pr[C(x , r) = 1|r 6= f (x)]

�

= 1
2
+ Pr

x
[C(x , f (x)) = 1]− Pr

x ,r
[C(x , r) = 1]

≥ 1
2
+ ε .

From (18.7) we obtain that there must be a constant r ∈ {0,1} such that

Pr
x
[Cr(x) = f (x)]≥ 1/2+ ε .

Since the size of Cr is at most s+ 1 (plus 1 could come from starting with ¬C instead
of C), which is a contradiction with the hardness of f . □

To push this strategy further, what we could do is to beak up the input into k

blocks and then apply f to them. This way we get a generator stretching n bits into
n+ k pseudorandom bits. But this is not too much: for applications we need gener-
ators stretching n bits into 2nε pseudorandom bits. To achieve this, we need to use
intersecting blocks. But we also have to ensure that these blocks do not intersect too
much. This is the main motivation for the construction of generators known as Nisan–

Wigderson generators. The starting point of this construction are combinatorial object
known as “partial designs.”

A collection of subsets S1, . . . ,Sn of [l] = {1, . . . , l} is called partial m-design if
|Si |= m for all i, and |Si ∩ S j| ≤ log n for all i 6= j.

Given such a design and a boolean function f : {0,1}m → {0,1}, the Nisan–
Wigderson generator G f : {0,1}l → {0,1}n is defined by:

G f (x) =
�

f (x↾S1
), f (x↾S2

), . . . , f (x↾Sn
)
�

,

where x↾S is the substring (x i | i ∈ S) of x . That is, the ith bit of G f (x) is just the value
of f applied to the substring of x determined by the ith set of the design.

Using a similar argument as for the one-bit generator above, one can prove the
following:

THEOREM 18.38. If the function f is (n2, 1/n2)-hard, then G f is an (n2/2,2/n2)-

secure pseudorandom generator.

Natural proofs

So far, none of existing lower bounds arguments was able to separate P from
NP. Razborov and Rudich (1997) gave an explanation: all these proof techniques
are “natural”, and natural proofs cannot prove P 6= NP, unless good pseudo-random
generators do not exist. Since the existence of such generators is widely believed, it
seems very unlikely that natural proofs could do this separation. We are not going to
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Φ = 1Φ = 0

decision by circuits in Γ

Λ

FIGURE 9. A random function f should have a non-negligible chance
of having the property Φ. But the value Φ( f ) must be computable by
a circuit in Γ taking the 2n bits of the truth table of f as input.

sink into details of how this is proved; interested reader can just look at a well-written
paper of Razborov and Rudich. We just briefly mention what is meant under a “natural
proof” and how one could try to avoid this “naturality”.

Let Bn be the set of all boolean functions f : {0,1}n → {0,1}, and let Γ and Λ be
some classes of boolean functions. We can think of Λ being, say, the class of all boolean
functions computable by circuits of size n2, and Γ being the class P/poly of boolean
functions computable by circuits of polynomial in n size. Hence, f ∈ Λ iff f can be
computed by relatively small circuit (of quadratic size).

Given a specific boolean function f0 ∈ Bn, our goal is to show that f0 6∈ Λ. A
possible proof of this fact is a property Φ :Bn→ {0,1} of boolean functions such that
Φ( f0) = 1 and Φ( f ) = 0 for all f ∈ Λ. Each such property is a witness for (or a proof
of) the fact that “ f0 6∈ Λ.”

A Γ-natural proof against Λ is a property Φ :Bn → {0,1} satisfying the following
three conditions:

(1) Usefulness against Λ: Φ( f ) = 1 implies f 6∈ Λ.
(2) Largeness: Φ( f ) = 1 for at least 2−O(n) fraction of all 22n

functions f inBn.
(3) Constructivity: Φ ∈ Γ, that is, when looked at as a boolean function in N = 2n

variables, the property Φ itself belongs to the class Γ.

The first condition (1) is obvious: after all we want to prove that f0 6∈ Λ. If
Λ 6= ;, this condition also ensures that Φ cannot be trivial, i.e., take value 1 on all
functions. Condition (2) corresponds to our intuition that any reasonable lower bounds
argument, designed for a given function f0, should be also able to show the hardness
of the hardest functions—random ones. Thus, a random function f should have a
non-negligible chance of having the property Φ. What makes the property ‘natural” is
the last condition (3). That is, the requirement that the property itself can be tested by
not too large circuits.

We emphasize that when property Φ( f ) is computed, the input is the truth table
of f , whose size is 2n, not n. Thus, a property is P/poly-natural, if it can be computed
by circuits of size 2O(n), which is more than exponential in n(!)

EXAMPLE 18.39. Let us consider the case when Λ = AC0, the class of all boolean
functions computable by constant depth circuits with polynomial number of NOT and
unbounded fanin AND and OR gates. The proof that Parity 6∈ AC0 (Section 11.1)
involves the following steps: (i) Show that every AC0 circuit can be simplified to a
constant by restricting at most n− nε input variables to constants, and (ii) show that
Parity does not have this property. (Here 0 < ε ≤ 1/2 is a constant depending only on
the depth of a circuit, and property (ii) trivially holds, as long as n− nε ≥ 1.) Thus the
natural property lurking in the proof is the following:
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Φ( f ) = 1 iff f cannot be made constant by restricting its all but nε variables.

Clearly, if Φ( f ) = 1 then f 6∈ AC0, so Φ is useful against AC0. Furthermore, the number
of functions that can be made constant by setting its n− k variables does not exceed
2
�n

k

�
22n−k ≤ 2n2n−k

, and this is a negligible fraction of all 22n

functions. Hence, Φ has
largeness property as well. Finally, Φ is constructive in a very strong sense: given a
truth table of f , the value Φ( f ) can be computed by a depth-3 circuit of size 2O(n) as
follows. List all

�n
k

�
2n−k = 2O(n) restrictions of n− k variables. For each one there is a

circuit of depth 2 and size 2O(n) which outputs 1 iff that restriction does not leave f a
constant function, that is, iff the positions in the truth sub-table, corresponding to that
restriction, not all are equal. Output AND of all these circuits. The resulting circuit has
depth 3 and is polynomial-sized in 2n.

Thus, property Φ is AC0-natural against AC0.

Now we show that natural properties cannot be useful against substantially larger
classes of boolean functions, like P/poly, unless good pseudorandom generators do not
exist.

A pseudo-random function generator is a boolean function f (x , y) : {0,1}n+n2 →
{0,1}. By setting the y-variables at random, we obtain its random subfunction fy(x) =

f (x ,y). Let h : {0,1}n → {0,1} be a truly random boolean function. A generator
f (x , y) is secure against Γ-attacks if for every circuit C in Γ,

��Pr[C( fy) = 1]− Pr[C(h) = 1]
�� < 2−n2

. (18.8)

That is, no circuit in Γ can distinguish fy from a truly random function; here again,
inputs for circuits are truth tables of boolean functions.

THEOREM 18.40. If a complexity class Λ contains a pseudo-random function generator

that is secure against Γ-attacks, then there is no Γ-natural proof against Λ.

PROOF. Suppose that a Γ-natural proof Φ against Λ exists. To get a contradiction,
we will show that then the proof Φ can be used to distinguish fy from a random func-
tion h.

Since f (x , y) belongs to Γ, every subfunction f y(x) with y ∈ {0,1}2n belongs to Γ
as well. The usefulness of Φ against Λ implies that Φ( f y) = 0 for all y . Hence,

Pr[Φ( fy) = 1] = 0 .

On the other hand, the largeness of Φ implies that Pr[Φ(h) = 1]≥ 2−O(n). Hence,
��Pr[Φ( fy) = 1]− Pr[Φ(h) = 1]

�� ≥ 2−O(n) ,

and thus Φ is a distinguisher. But by constructivity, the boolean function Φ itself be-
longs to Γ, a contradiction with (18.8). □

It is known that pseudo-random function generators may be constructed starting
from simpler objects—pseudo-random number generators. These are just functions
gn : {0,1}n → {0,1}2n. Such a function gn is secure against Γ-attacks if for every
circuit C in Γ, ��Pr[C(gn(x)) = 1]− Pr[C(y) = 1]

�� < 2−n2
.

Here x is chosen at random from {0,1}n and y is chosen at random from {0,1}2n. That
is, given a random seed x, gn produces a random string y′ = gn(x) in {0,1}2n, and no
circuit in Γ can distinguish this produced string y′ from a truly random string y.
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Starting from a pseudo-random number generator g : {0,1}n → {0,1}2n, one can
construct a pseudo-random function generator f (x , y) : {0,1}n+n2 → {0,1} as follows.
Associate with g two functions g0, g1 : {0,1}n → {0,1}n, where g0(x) is the first and
g1(x) the second half of the string g(x). Having a vector y ∈ {0,1}n2

, we can define
a function Sy : {0,1}n → {0,1}n which is a superposition Sy = g yn

◦ g yn−1
◦ · · · ◦ g y1

of
these two functions g0 and g1 defined by the bits of y . Then just let f (x , y) be the first
bit of the superposition Sy applied to input x .

It is widely believed that the class Λ = P/poly (and even much smaller classes)
contain pseudo-random number generators gn that are secure enough against P/poly-
attacks. It is also known that the pseudo-random function generator f (x , y) con-
structed from gn is then also secure enough against P/poly-attacks. Together with The-
orem 18.40, this means that no P/poly-natural proof can lead to a super-polynomial
lower bound on circuit size.

MARGINAL NOTE. This result raised some pessimism among the complexity people: Why try
things that are (most probably) impossible? To my opinion, the pessimism is not well founded.

1. The main goal of circuit complexity is not to separate P from NP or some other “uni-
form” complexity classes—this will probably be done by some cute diagonalization argument
(diagonalization is not natural). Also, there is a big difference between the classes P and P/poly:
the first is “uniform” (requires one Turing machine for all boolean functions fn in the sequence
{ fn | n = 1, 2, . . .}), whereas the second only requires that for each n a small circuit computing
fn exists. At the beginning of complexity theory, some people (including a great mathematician
Kolmogorov) even believed that the whole NP is doable with circuits of linear size. Decades
passed, and this belief ist still not refuted! The goals of circuit complexity are therefore much
more “prosaic:” to prove lower bounds for “simple” explicit functions. In this (pragmatic) re-
spect, even restricted circuit models—like decision trees, bounded-depth circuits, time-restricted
branching programs, etc.—are important as they are.

2. The phenomenon of “natural proofs” should be looked at as a guide and a hint that some
lower bound arguments cannot be fetched too far. It also answers the question: why proving
lower bounds is so difficult? This is difficult because any such proof gives us an algorithm to
break down a pseudorandom generator (for the corresponding class of circuits). That is, when
proving that something is not possible, we actually try to prove that something very strange is

possible!
3. The discovery of natural proofs phenomenon gives us an additional motivation to search

for new arguments. This (striving for better arguments) was always present in circuit complexity.
New is that now we know what this “new” means: the arguments must avoid largeness and/or
constructivity. So, for example, Chow (2009) has already shown that, if one replaces the large-
ness condition by “Φ( f ) = 1 for at least |Bn|/2q(n) functions” where q(n) is quasi-polynomial in
n, then the resulting “almost-natural” proofs against P/poly exist!

4. Mathematics is full with non-constructive proofs—why should we stick on constructive
ones?

5. Our intuition that any lower bounds proof should also work for a random function
(the largeness condition) might also be wrong. For example, the property of being K2,2-free
is not shared by random graphs, whereas dense K2,2-free graphs have many nice special prop-
erties. Thus, the approach based on graph structure of boolean functions—known as “graph
complexity”—could also be promising; we sketched this approach in Sections 1.8 and 10.4.

6. We cannot just put the lower bounds problem away—it is too important, both for math-
ematics and for praxis. My overall opinion is that the idea of natural proofs is just a very nice
conceptual frame to classify existing and forthcoming lower bound arguments, as well as an invi-
tation to search for non-constructive, not computable in polynomial time lower bounds criteria.
Anyway, this is not a “sentence of depth” for circuit complexity. Just the opposite: thanks to this
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discovery, a wild collection of deep and nice lower bound arguments now begins to become a
Theory.

The fusion method

In order to show, by contradiction, that a given circuit C is too small for computing
a given boolean function f one could try to argue in the following way: try to combine
(or “fuse”) correct rejecting computations of C on inputs in f −1(0) into an incorrect

rejecting computation on an input in f −1(1).
The idea is to look at circuit C = (g1, . . . , gt) of size t as a set ΦC of local tests on

strings r = (r1, . . . , rt) in {0,1}t . Namely,

each gate gi = ϕ(gi1
, . . . , gid

) corresponds to a test ri

?
= ϕ(ri1

, . . . , rid
).

The first n bits of r correspond to an input vector, and each subsequent bit must pass
the corresponding test. If, for example, we consider circuits over the basis {∧,∨,¬},
then each of the tests looks at ≤ 3 bits of r and has one of the forms

ri

?
= ¬r j ri

?
= r j1
∧ r j2

or ri

?
= r j1
∨ r j2

( j, j1, j2 < i) .

It is clear that each computation C(a) = (g1(a), . . . , gt(a)) on a input vector a ∈ {0,1}n
must pass all the tests. It is, however, important to note that also the opposite holds:

A string r ∈ {0,1}t is a computation of C iff it passes all tests in ΦC .

Indeed, if r passes all tests in ΦC then r is just a computation of C on input a =

(r1, . . . , rn), and the result of this computation is the last bit rt of r .
This suggests the following “diagonalization” argument to prove that a given func-

tion f cannot be computed by a circuit of size t:

Show that, for every set Φ of |Φ| ≤ t local tests, there exists a vector r in {0,1}t
such that r passes all tests in Φ but rt 6= f (r1, . . . , rn).

There are two general ideas of how to construct such a "diagonal computation" r :
the "topological approach" of Sipser (1985) and the "fusion method" first proposed by
Razborov (1989a) and then put in a more general frame by Karchmer (1993).

Let f (x1, . . . , xn) be a given boolean function, and let U = f −1(0) be the set of all
vectors rejected by f . We look at each gate g : {0,1}n → {0,1} as a (column) vector
g ∈ {0,1}m with m = |U | whose jth position is the value of g when applied to the jth
vector in U . In particular, the vector x i corresponding to an input variable x i has a
1 in the jth position iff the jth vector of U has 1 the ith position. Put otherwise, the
columns x 1, . . . , x n form an m× n matrix A such that f (a) = 0 iff a is a row of A.

This way we can look at any circuit G = (g1, . . . , gt) as a boolean m by 2n+t matrix
M , a computation matrix, whose columns are the vectors g 1, . . . , g t (see Fig. 18.6.2).
This matrix has the following properties:

a. the (n+ i)-th column is the negation of the i-th column, for i = 1, . . . , n;
b. if gi = g j∧gk then the i-th column is the AND of the j-th and the k-th columns;
c. if gi = g j ∨ gk then the i-th column is the OR of the j-th and the k-th columns,

where here and throughout, boolean operations on boolean vectors are performed
component-wise.

Each boolean function f determines the set U = f −1(0) of its zeroes, as well as the
first 2n columns x 1, . . . , x n and ¬x 1, . . . ,¬x n of a computation matrix M of any circuit
for f . The remaining columns, however, are determined by the gates of a concrete
circuit we are considering. To construct a “diagonal” computation we will combine
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x1 · · · xn ¬x1 · · · ¬xn · · · gi · · · gt

a1 0 · · · 1 1 · · · 0 · · · 0 · · · 0
a2 1 · · · 1 0 · · · 0 · · · 1 · · · 0
...

...
am 1 · · · 0 0 · · · 1 · · · 0 · · · 0

F(x 1) · · · F(x n) F(¬x 1) · · · F(¬x n) · · · F(g i) · · · 0

FIGURE 10. A matrix of a circuit. In a row for vector a, the first n po-
sitions is the vector a itself, the next n positions is the complemented
vector a ⊕ 1, and the ith further position is the value gi(a) of the
ith gate gi . The last (t-th) position in each row must be 0, since
gt(a) = f (a) = 0 for all a ∈ U = f −1(0).

columns in a new row using boolean functions F : {0,1}m → {0,1} defined on the
column space.

We call such a function F a fusing functional for f if F(0) = 0 and F(¬x i) = ¬F(x i)

for all i = 1, . . . , n, that is, if F respects negations of “basis” columns x 1, . . . , x n. Say
that a pair (a, b) of vectors in {0,1}m covers a functional F if

F(a)∧ F(b) 6= F(a ∧ b) . (18.9)

We can now introduce a combinatorial (set-covering) measure characterizing the size
of circuits.

Let µ( f ) be the smallest number of pairs of vectors in {0,1}m satisfying the fol-
lowing condition: each monotone fusing functional F for f such that

f (F(x 1), . . . , F(x n)) = 1 (18.10)

is covered by at least one of these pairs. Let s( f ) be the smallest number of gates in a
DeMorgan circuit computing f .

LEMMA 18.41. For every boolean function f , s( f ) ≥ µ( f ).

PROOF. Let U = f −1(0), m = |U | and let G = (g1, . . . , gt) be a circuit computing
f . Take an arbitrary monotone functional F : {0,1}m→ {0,1} for f satisfying (18.10).
Say that a gate gi = g j ∗ gk with ∗ ∈ {∧,∨} covers F if F(g j)∗ F(g k) 6= F(g j ∗g k). Note
that, if none of the gates in G would cover F , then r = (r1, . . . , rt) with ri = F(g i)

would be a computation G(a) = (g1(a), . . . , gt (a)) of our circuit G on the input

a := (F(x 1), . . . , F(x n)) .

The fact that F(g t) = F(0) = 0 would imply that this is a rejecting computation. But
(18.10) implies that f (a) = 1, and hence, the vector a should be accepted by G, a
contradiction.

Thus, the functional F must be covered by at least one gate of G. It suffices
therefore to show that if a ∨-gate covers F , then F is also covered by an ∧-gate. To
show this, let S be the set of all gates in G that cover F . For the sake of contradiction,
assume that S contains no ∧-gates.

By the definition of cover we have that for each gi = g j ∨ gk in S,

F(g j)∨ F(g k) 6= F(g j ∨ g k) .
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Since F is monotone, the only possibility is that

F(g j) = F(g k) = 0 and F(g j ∨ g k) = 1 . (18.11)

Let G′ be a circuit identical to G except that each gate gi = g j ∨ gk in S is replaced by
the instruction g ′

i
= 1∨ 1. We concentrate on the behavior the both circuits G and G′

on the input vector

a = (F(x 1), . . . , F(x n))

defined by the functional F , and make the following two observations:

a. G′(a) = 1. This is because we have only changed gates gi , whose values were
0 on this input (by (18.11)). Since the circuit uses only AND and OR gates,
which are monotone, we have that G′(a)≥ G(a) = f (a) = 1.

b. The computation of G′(a) =
�

g ′1(a), . . . , g ′
t
(a)
�

on input a coincides with the
string F(g 1), . . . , F(g t), that is, g ′

i
(a) = F(g i) for all i = 1, . . . , t. We show this

by induction on the position of the gates in G′. Since the first n gates of G′

are the same as in G, namely – the variables x1, . . . , xn, the claim holds for all
i = 1, . . . , n. Take now a gate gi = g j ∗ gk and assume the claim holds for both
its inputs, that is g ′

j
(a) = F(g j) and g ′

k
(a) = F(g k).

- Case: gi = g j ∧ gk. Since, by our assumption, ∧-gates do not cover F , we
obtain:

g ′
i
(a) = g ′

j
(a)∧ g ′

k
(a) = F(g j)∧ F(g k) = F(g j ∧ gk) = F(g i) .

- Case: gi = g j∨ gk. If gi 6∈ S, then gi does not cover F , and the claim follows
as in the previous case. If gi ∈ S, then (18.11) holds, implying that

g ′
i
(a) = 1∨ 1= 1= F(g j ∨ g k) = F(g i) .

Putting observations (1) and (2) together, we get that g ′
t
(a) = gt(a) = f (a) = 1,

on one side, and g ′
t
(a) = F(g t) = F(0) = 0, on the other side. Thus, we have a

contradiction that S can contain only ∨-gates, that is, that only OR gates can cover F .
This means that at least one of the pairs (g j , g k) of vectors in {0,1}|U |, corresponding
to ∧-gates gi = g j ∧ gk of G, will cover F in the sense of (18.9), as desired. □

It can also be shown (we will not do this) that the lower bound in Lemma 18.41 is
tight enough: s( f )≤ c(µ( f )+n)2 for a constant c. Thus, at least in principle, diagonal
computations for (deterministic) circuits can be produced by only using monotone
functionals. It turned out that different classes of fusing functionals capture different
circuit models. A boolean function F(x) is self-dual if F(¬x) = ¬F(x), and is affine if
it is a parity (sum modulo 2) of an odd number of variables.

a. Monotone functionals capture deterministic circuits as well as nondeterminis-
tic branching programs: classes P and NL.

b. Monotone self-dual functionals capture nondeterministic circuits: the class NP.
c. Affine functionals capture nondeterministic circuits as well as parity branching

programs: classes NP and ⊕L.

How does this happen can be found in a nice survey of Wigderson (1993) and in the
literature cited therein.
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TABLE 1. In the next two tables we shortly summarize some (not all!)
lower bounds arguments as well as some properties of boolean func-
tions making them hard to compute.

Property of f Circuit model Meaning

Mixed General fanin-2 circuits
read-once branching programs

For every k-element subset of variables Y ,
no two assignments to Y lead to the same
subfunction.

Robust DeMorgan formulas,
constant depth over {∧,∨,¬}

Assigning all but a nontrivial portion
of variables to constants leaves a non-
constant function.

Hard to cover DeMorgan formulas Many rectangles in any monochromatic de-
composition of S f = f −1(0)× f −1(1).

Hard to

approximate

constant depth modular circuits, | f ⊕ p| � 2n−nε for any degree nε polyno-
mial p.

monotone circuits Any r-CNF C and s-DNF D with C ≤ f or
f ≤ D requires many clauses/monomials.

Clique-free depth-3 over {⊕,∧,∨, 1} M f has many 1’s but no large all-1 subma-
trix. Example: f (x , y) = 1 iff
xi ∧ yi = 0 for all i.

Large rank monotone formulas, Formula size( f ) ≥ rk(D f ), where D f is the
disjointness matrix of minterms/maxterms
of f .

monotone span programs Program size( f ) ≥ rk(D f ) if maxterms can
be splitted b = b0 ∪ b1 so that |a ∩ b0| 6= ;
⇐⇒ |a ∩ b1| = ; for all minterms a.

Large rigidity constant depth over {⊕,∧,∨, 1}, Inputs are any matrices of rank 1.

log-depth circuits over {⊕, 1} RA

�
nδ
�
> n1+ε implies super-linear lower

bound.

Large entropy general depth-2 circuits Setting all but one variable in a subset
Y ⊆ X of |Y | = k variables leads to about
2k different suboperators of f : {0, 1}n →
{0, 1}n. Examples: matrix product, convo-
lution

Rectangle-free multi-partition communication
branching (1,+R)-programs

If r(X ) = r1(X1)∧ r2(X2) with X1 ∩ X2 = ;
and |X1| = |X2|, and if and r ≤ f , then
|r−1(1)| is small.
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TABLE 2

Argument How it works

Counting/Entropy:

formulas,
branching programs,
span programs,
general depth-2 circuits

Split the variables into disjoint blocks Y1, . . . , Yk and, for each block Yi , show
that many different subfunctions of f can be obtained by setting variables
outside Yi to constants.

Gate elimination:

general circuits
Show that fixing k inputs to constants eliminates the need of more that k

gates.

Random restrictions:

DeMorgan formulas,
bounded-depth circuits,
resolution proofs

Set some variables to constants at random and show that the size of a circuit
drops down quickly.

Rank arguments:

monotone formulas,
monotone span programs,
communication protocols

Transform the boolean function f into an appropriate disjointness matrix
D f , or any other matrix whose rank is large. For this, use the cross-
intersection property of minterms and maxterms. Show that small circuit
for f would allow to reduce the rank of D f .

Approximations:

monotone circuits,
bounded-depth circuits,
circuits for matrices,
circuits with modular gates

Together with random restrictions, this was one of the most fruitful argu-
ments so far! Show that at each gate only a small “progress” towards com-
puting the function f can be made. For this, gradually associate with gates
some simpler objects (“approximators”), show that at each gate only few
errors can be introduced, and finally, use the properties of the boolean func-
tion f computed at the output gate to show that any approximator for f

must differ from f on many inputs. So, the number of gates must be large.

Finite limits:

depth-3 circuits
monotone circuits

Vector x ∈ A is k-limit for set B ⊆ {0, 1}n if, for every S ⊆ [n], |S| = k there
is y ∈ B such that y↾S= x↾S . Then no depth-2 circuit of bottom fanin ≤ k,
which accepts all vectors in A and rejects all vectors in B, can detect the fact
x 6∈ B.

Amplification:

communication complexity
If the density |S|/nk of a set S ⊆ [n]k of “surviving” inputs with respect to
the entire universum [n]k becomes too small, take a projection S′ of S onto
some l < k coordinates, so that the density |S′|/nl of S′ with respect with
this smaller universum [n]l is again large enough.

Adversary arguments:

decision tree depth
Fix the bits one by one. Depending on what the algorithm has chosen so far,
set the next bit so that the “uncertainty” about the value of f is the largest
one.

Spectral arguments:

decision tree size
If the sum of absolute values of subsequent Fourier coefficients of f is large,
then any decision tree for f needs many nodes.

Cut-and-paste:

branching programs
This is a kind of diagonalization. Combine correct accepting computations
in a wrong accepting computation.
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1-term, 8
ACC circuits, 130, 152, 180
Π-scheme, 3
Π3 circuit, 138
P/poly, 264
Σ3 circuit, 138
∨-decision tree, 201
⊕-decision tree, 154
k-CNF, 43

exact, 43
k-DNF, 43

exact, 43
k-dimensional cube, 125
k-threshold function, 159
n-operator, 168
s-broom, 230
t–(v, k,λ) design

partial, 57

Adleman’s theorem, 7
amplification of density, 115
Andreev’s n2.5 lower bound, 23
approximate disjointness problem, 120
Approximation Lemma

for functions, 161
for matrices, 166

approximator, 162
in monotone circuits, 44
left, 44
right, 44

assignment, 236

balanced partition, 131
Barrington’s Theorem, 213
binary decision diagram (BDD), see also

branching program
boolean function, 72

d-rare, 221
k-fold extension, 70
m-dense, 221
m-mixed, 215
t-simple, 44

block sensitivity of, 186
certificate complexity of, 186
communication matrix of, 12, 84
decrease of, 62
dense, 223
evasive, 187
Fourier coefficient of, 193
Fourier transform of, 193
lower one of, 217
lowest one of, 217
monotone, 9
negative input of, 46
positive input of, 46
random, 33
rectangle-free, 223
rectangular, 223
sensitive, 223
symmetric, 180, 187
truth matrix of, 12
weakly t-simple, 48
weakly symmetric, 188

branching program
deterministic, 3
length of, 208
nondeterministic, 2

size of, 2
oblivious, 208
parity modus, 4
read-once, 214
replication of, 214
syntactic read-k times, 234
weakly read-once, 218
width of, 208

Cauchy–Schwarz inequality, 26
certificate, 186
chain, 62

jump position, 62
characteristic function, 219
Chernoff inequalities, 151
circuit, 1

depth of, 164
inversion complexity of, 62
linear, 172, 180, 181
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modular, 162
monotone, 43
monotone real-valued, 48
probabilistic, 7
representing a graph, 13
representing a matrix, 172
symmetric, 130, 180
unstable, 16

clause, 8, 43, 236
length of, 8

CNF, 8
k-satisfiable, 259
DNF-tree of, 9
expanding, 244
interpolant of, 255
minimally unsatisfiable, 245
resolution refutation size of, 243
resolution refutation width of, 243
search problem for, 237
unsatisfiable, 236

Coding Principle, 158
combinatorial rectangle, see also rectangle
common neighbor, 40, 41
communication complexity

nodeterministic, 89
the fooling-set bound, 90

communication game
best-partition, 84, 101
clique versus independent set, 95
edge-nonedge game, 109, 118
fixed-partition, 84
Karchmer–Wigderson game, 105
multi-party pame, 120
set packing problem, 121
with the referee, 135

communication protocol, 85
deterministics, 85
mixed, 208
randomized, 98
simultaneous messages, 130

communication tree, see also communication
protocol

connector, 65
cross intersection, 76

local intersection, 76
cross-intersection, 10

of partitions, 122
cutting plane proof, 250
cylinder, 124
cylinder intersection, 124, 135

decision tree, 184
∨-decision tree, 201
for graph properties, 189
for search problems, 198
nondeterministic, 184
spectral lower bound, 195

degree, 74

dependency program, 80
discrepancy, 125

of a function, 124
Discriminator Lemma, 149
disjointness function, 148
disjointness matrix, 94, 100

general, 77
of a pair of families, 76
of a single family, 78

DNF, 8
Drag-Along Principle, 34

element distinctness function, 25, 204
entropy of operators, 169
Euler’s theorem, 74
exact perfect matching, 217
Expander Mixing Lemma, 133

fat matching, 147
finite limit, 141
forgetting pair, 221
fork position, 113
formal complexity measure, 33

submodular, 33
formula, 2

DeMorgan, 2
depth of, 2
inversion complexity of, 66
leaefsize of, 2

fusing functional, 268
fusion method, 267

gate-elimination, 6
generalized inned product, 127
generalized inner product, 135, 152
graph
(r, c)-expander, 246
4-cycle in, 38
Ka,b-free, 146
k-separated, 41, 78
k-star, 132
s-starry, 132
chromatic number of, 55
clique number of, 55
connected, 74
connected component of, 74
fat covering of, 147
induced subgraph of, 227
matching number of, 227
mixed, 132, 228
odd factor in, 74
Paley, 42, 79
quadratic function of, 38, 226
triangle-free, 38

graph complexity, 13
graph function, 55

clique-like, 55
graph property

monotone, 189
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trivial, 189
graph representation, 13
greedy covering, 90

Hadamard graph, 150
Hadamard matrix, 149, 176, 228
Hall’s Marriage Theorem, 245
Hamming distance, 25
Hamming sphere, 123

center of, 123
forbidden, 123

hyperedge, 131
hypergraph, 131

k-matching, 131
induced, 131
induced sub-hypergraph, 131

inner product function, 150
Isolation Lemma, 205
iterated disjointness function, 143
iterated majority function, 196
iterated NAND function, 197

Jensen’s inequality, 29

König-Egervary theorem, 90
Khrapchenko’s theorem, 25

fractional version, 27
Kneser graph, 148

k-limit, 141
Lindsey’s Lemma, 104, 149, 228
linear code, 209, 219

BCH-code, 210, 223
Reed–Muller code, 220
universal function of, 233

linear space, 160
dimension of, 160

literal, 8
Little Birdie Principle, 189
local search algorithm, 248
lower bounds criterion

for graph properties, 51
for monotone boolean circuits, 44
for monotone real circuits, 48
for nondeterministic read-once programs, 217

Magnification Lemma
for Σ3 circuits, 145
for matrices, 12

matrix
α-dense, 115
clique number of, 90
communication complexity of, 85
complement of, 92
cover number of, 89
decomposition number of, 85, 95
discrepancy of, 87
distributional complexity of, 99
Frobenius norm of, 88

line weight of, 90
rectangular, 164
representation by circuits, 172
rigidity of, 165, 177
term-rank of, 90
trace of, 88
triangular, 97

matrix multiplication, 129
matrix norm, 31
matrix product, 170
matrix rigidity, 165, 177
maxterm, 8
minterm, 8, 157
modular gate MODp , 162
monochromatic rectangle, 105

separating position of, 105
monochromatic submatrix, 85
monomial, 8, 43
multivariate polynomial

number of roots, 226

natural proof, 264
Nechiporuk’s theorem, 24

for branching programs, 203
network

switching-and-rectifier, 203
Nisan–Wigderson generator, 263

operator, 169
entropy of, 169
linear, 172

orbit of a vector, 188
orthonormal basis, 194

Paley graph, 42, 79
parity branching program, 4, 218
parity function, 6
parity rectangle, 28, 106
partial m-design, 263
partial assignment, see also restriction
permutation branching program, 211
Perseval’s Theorem, 201
Pigeonhole Principle PHPm

n , 239
pointer function, 216
projections of linear codes, 219
projective plane, 40, 146
pseudorandom generator, 261

Ramanujan graphs, 134, 228
Ramsey graphs, 150
rectangle, 10

fractional partition number of, 27
fractional partition of, 27
full rectangle, 10
monochromatic, 11
monocrhomatic, 105
monotone partition number of, 37
rank lower bound, 37
subrectangle, 10
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rectangle function, 27
normalized, 27

rectangle measure
additive, 29
convex, 27
matrix based, 31
polynomial, 30

rectangular function, 223
rectangular matrix, 12
regular resolution, 238
replication number, 214
resolution

completeness of, 237
regular, 238
soundness of, 236

resolution refutation proof, 236
tree-like, 237

resolution rule, 237
restriction, 8, 155
Rychkov’s lemma, 11

search problem, 198
set packing problem, 121
slice function, 57, 60
span, 160
span program, 72

canonical, 79
spectral norm, 31
sphere, 123

center of, 123
forbidden, 123

Spira’s theorem, 20
storage access function, 17
stright line program, see also circuit
Subbotovskaya’s n1.5 lower bound, 21
subgraph

spanning, 74
suboprator, 169
sunflower, 173
Sunflower Lemma, 173
Switching Lemma, 155, 167

monotone version of, 43
non-monotone version of, 155

switching-and-rectifair network, see also

branching program
Sylvester graph, 151
Sylvester matrix, 104

Tarsi’s Lemma, 245
threshold cover, 148
threshold function, 6, 152
truth assignment

i-critical, 240
truth-assignment, 236

weakening rule, 237


