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Preface

Computational complexity theory is the study of the inherent hardness or easiness
of computational tasks. Research in this theory has two main strands.

One of these strands—called also structural complexity—deals with "high level"
complexity questions: is space a more powerful resource than time? Does randomness
enhance the power of efficient computation? Is it easier to verify a proof than to
construct one? So far we do not know the answers to any of these questions; thus most
results in "high level" complexity are conditional results that rely on various unproven
assumptions, like P 7 NP. While many interesting connections have been established
between different computational problems and computational resources, and many
beautiful and important results have been achieved, the major open problems here
remain widely open.

The second strand of research in complexity theory—called also concrete complex-
ity or circuit complexity—deals with establishing concrete lower bounds, that is, lower
bounds on the computational complexity of specific problems, like multiplication of
numbers or their factorization. This is essentially a "low level" study of computation;
it typically centers around particular models of computation such as decision trees,
boolean formulas, restricted classes of boolean circuits, and the like. In this line of
research unconditional lower bounds are established which rely on no unproven as-
sumptions.

Research in circuit complexity began about 60 years ago starting from a seminal
work of Claude Shannon. A burst of activity in circuit complexity exploded about 25
years ago with first exponential lower bounds for some circuit models, like bounded
depth circuits, monotone circuits, restricted branching programs, etc. Since then there
has been steady progress made over the years using a range of techniques from com-
binatorics, algebra, analysis, and other branches of mathematics. In fact, circuit com-
plexity is the “most combinatorial” part of the whole computer science.

The focus of this book' is on the second stream: concrete, "low-level" complexity,
with a special focus on lower bounds. I give self-contained proofs of a wide range
of unconditional lower bounds for interesting and important models of computation,
covering many of the "gems" of the field that have been discovered over the past several
decades, right up to results from the last year or two.

The book is not an all-inclusive historical survey—bibliographical references are
only given for results that are actually described here. Instead, the book is an almost
all-inclusive survey of known lower bounds techniques with full proofs.

The reason to write this book was threefold.

First, 20 years passed since the well known books on circuit complexity of Savage
(1976), Nigmatullin (1983), Wegener (1987) and Dunne (1988), as well as a famous

IThis is a draft version. Any critics, detected errors in proofs, missing references, comments on topics
worth to be discussed, etc. are more than welcome!
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PREFACE ix

survey paper of Boppana and Sipser (1990), were written. It came the time to summa-
rize the development in circuit complexity during these two decades.

Second, newly written nice books on computational complexity are mainly de-
voted to research in the first direction—structural complexity and, quite naturally, the
treatment of “low level” complexity is there only fragmentary.

Finally, the discovery of “natural proofs” waked an impression that almost noth-
ing is possible in this field. Roughly speaking, this result says that it is (apparently)
impossible to separate complexity classes like P and NP using properties of boolean
functions that are easily verifiable and are shared by random functions. As such, this
is a serious warning: circuit lower bounds are indeed very hard to prove. It also says
that, like in other in other fields of mathematics, too general and too constructive ideas
cannot solve too difficult problems. But separating P from NP is not the main goal of
circuit complexity—this will be probably done by a cute diagonalization.

Circuits and Turing machines are very different models: the former is non-uniform,
and hence, much stronger. According to Leonid Levin, the co-founder of NP-completeness
phenomenon, Andrey Nikolaevich Kolmogorov, one of the greatest mathematicians of
the last century, even suspected that all NP can be apparently done by linear size
circuits! Decades passed, and this belief ist still not refuted. There are even some in-
dications that this prediction (or something similar) could be indeed true. Say, Mayer
auf der Heide (1984) shows that, for each n, the n—dimensional knapsack problem is
solvable in n*logn time. Another indication is given by Allender and Koucky (2008):
in a class of constant-depth threshold circuits, some boolean functions cannot have
circuits of polynomial size, if they do not have such circuits of size n'*® for an ar-
bitrary small constant ¢ > 0. These (and some other) indications show that circuits
of superlinear size may indeed accumulate an unexpected power. So large that cur-
rent mathematics is unable to engage such circuits. So, the goals of circuit complex-
ity are much more “pragmatic:” prove lower bounds in—restricted, but practically
important—circuit models. When trying to do this for harder and harder models many
nice mathematical ideas emerged, and my goal was to describe some of them here.

Just like proving lower bounds is a self-defeating task—prove that this was hard
to prove—the goals of this book are somewhat self-defeating as well. My goal was:

o to cover main developments in circuit complexity during the last two decades,
but also to be fairly compact;

o to give full proofs of core results, but also to be as concise and as intuitive as
possible.

o to write a text which can be relatively easily grasped by graduate students, but
remains of some interest for researchers, as well.

I've done my best to achieve a fair balance between these contradicting goals. The seek
for the balance has also influenced the choice of the material: the focus is on classical
models of circuits—results on their randomized, quantum or algebraic versions receive
less attention here. My goal was to give a “big picture” of existing most powerful lower
bound methods for classical circuit models, in a hope that the reader will be motivated
to find a new one. Many open problems, marked as “Research Problem”, are mentioned
along the way.

The text is self-contained. It assumes a certain mathematical maturity at an under-
graduate level but no special knowledge in theory of computing. Like in combinatorics
or in number theory, the problems here are usually quite easy to state and explain,
even for the layman. Their solutions often require a cute idea, but rarely an involved
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mathematics. The book may be used for a graduate course on circuit complexity or
as a supplement material in a more general course on computational complexity. The
material is split into mostly independent chapters, each devoted to a particular model
for computing boolean functions, so that the reader can choose her/his own order to
follow the book. The order of chapter has nothing to do with the “importance” of the
circuit model and/or techniques dealt with in them—it just reflects the chronological
order in which the results about these models were achieved. Say, the last chapter
“Propositional Proof Complexity” (Chapter 18) is nowadays one of the “hottest” places
of action.
Some features of the book (as I see them) include:

o It is the first book covering the happening in circuit complexity during the
past 20 years. A part of this happening—the communication complexity—was
already covered in an excelent book by Nisan and Kushilevitz (1997).

o It includes some topics, like graph complexity or method of finite limits, that
are not known well enough even for specialists.

o Gives full and intuitive proofs of basic lower bounds.

o Gives new proofs of classical results, like lower bounds for monotone and for
constant-depth circuits.

o Presents some topics never touched in existing books, like circuits with arbi-
trary boolean functions as gates.

o Relates the circuit complexity with one of the “hottest” nowadays topics — the
proof complexity.

Two apologies may be in order. The first of them goes to students: although an
attempt is made to keep the exposition as simple as possible, some proofs will still
require a considerable effort to get them. But remember: original proofs were even
more complicated. The second apology goes to purists: many of the estimations in our
arguments can be numerically improved by making more careful computations. The
reason for my carelessness was the desire to make the exposition as simple as possible.
So, my stress is on arguments and ideas used in the lower bound proofs rather than on
the numerical form of resulting bounds, unless the jump in the rate of growth is really
important, like linear to quadratic, polynomial to super-polynomial.

............. to be finished ............

Frankfurt/Vilnius, Juli, 2009 Stasys Jukna



CHAPTER 1

Our Adversary — The Circuit

Boolean or switching functions f : {0,1}" — {0, 1} map each sequence of bits to a
single bit 0 or 1. Simplest of such functions are the product x - y, sum x & y mod 2,
non-exclusive Or x V y, negation -x = x @& 1. The central problem of Boolean func-
tion complexity—the lower bounds problem—is: Given a boolean function how many
these simplest operations do we need to compute the function on all input vectors?
This is an extremal problem per se: how large boolean circuits for a given function
must be? The problem lies on the border between mathematics and computer sci-
ence: lower bounds themselves are of great importance for computer science but their
proofs require techniques from combinatorics, algebra, analysis, and other branches of
mathematics.

Mathematics is full of non-existence results. Circuit lower bounds are also non-
existence results, only on a “low level.” We restrict our world by circuits of reasonable
(say, linear or polynomial) size, and ask if a given boolean function belongs to this
world.

But is proving lower bounds important at all? Would it not be better to invest
our energy into proving good upper bounds, that is, into the design of efficient cir-
cuits? Yes and no. Yes, because cute algorithms detect some “singularity” in a given
problem making it efficiently solvable by a circuit. No, because lower bounds do just
the same! They detect singularities making the problem unsolvable by any circuit.
That is, proving upper bounds is a cooperative game with algorithms, whereas proving
lower bounds is an adversary game against algorithms. A progress in any direction is a
step towards the solution of the main problem of computer Science: understand what
algorithms can and what they can not.

1.1. Circuit models

Before we start with proving lower bounds, let us first recall the most fundamental
models for computing boolean functions.

Let 2 be a set of some boolean functions (elementary or basis operations). A circuit
(or a stright line program) over the basis 2 is just a sequence gi,..., g, of boolean
functions such that the first n functions are input variables g; = x,...,&, = X,, and
each subsequent g; is an application g; = ¢(g;,,.--,&;,) of some basis function ¢ € Q
(called the gate of g;) to some previous functions.

That is, the value g;(a) of the ith gate g; on a given input a € {0,1}" is the
value of the boolean function ¢ applied to the values g; (a),..., g;,(a) computed at the
previous gates. A circuit computes a boolean function (or a set of boolean functions)
if it (or they) are among the g;.
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ty

Maj(x,y,c)  x+y+c

FIGURE 1. A circuit with five gates over the basis {A, v, ®} computing
the sum x®y ®c of three bits modulo 2, and a carry bit Maj(x, y,c) =
1 iff at least two of there input bits are 1’s.

Each circuit can be looked at as a directed acyclic graph ' whose fanin-0 nodes
(those of zero in-degree) correspond to variables, and each other node v corresponds
to a function ¢ from Q. One (or more) nodes are distinguished as outputs. The value
at a node is computed by applying the corresponding function to the values of the
preceding nodes (see Fig. 1). The size of the circuit is the total number of its gates.

A formula is a circuit whose all gates have fanout at most 1. Hence, the underlying
graph of a formula is a tree. The leafsize of a formula is the number of input gates,
that is, the number of leaves in its tree, and the depth of a formula is the depth of its
tree. Note that the only (but crucial) difference of formulas from circuits is that, in the
later model, a result computed at some gate can be used many times with no need to
recompute it again and again, as in the case of formulas.

A DeMorgan circuit is a circuit whose inputs a variables and their negation, and
gates are fanin-2 AND and OR functions. That is, these are the circuits over the basis
{A,V,} where NOT gates are only applied to input variables. Such circuits are also
called circuits with tight negations. It can be easily shown (do this!) that any circuits
over {A,V,—} can be reduced to this form by at most doubling the total number of
gates.

Circuits and formulas are “parallel” models: given an input vector x, we process
some pieces of x in parallel and join the results by AND or OR gates. The oldest
“sequential” model for computing boolean functions, introduced already in pioneer-
ing work of Shannon (1949) and extensively studied in the Russian literature since
about 1950, is that of switching networks; a “modern” name for these networks is
nondeterministic branching programs.

A nondeterministic branching program (or a switching-and-rectifair network) is a
directed graph G = (V, E) with two specified vertices s, t € V, some of whose edges are
labeled by variables x; or their negations —x;. A labeled edge is also called a contact.
The graph may have multiple edges, i.e., several edges may have the same endpoints.
The size of G is defined as the number of contacts (labeled edges).

Each input a = (ay,...,a,) € {0,1}" switches the labeled edges on or off by the
following rule: the edge, labeled by x;, is switched on if a; = 1 and is switched off if
a; = 0; the edge, labeled by —x;, is switched on if a; = 0 and is switched off if a; = 1.

IThe graphs of circuits are often drawn starting from the output gate(s) and going down to inputs. But
then we must let trees grow from sky to the earth. I will therefore sometimes use a more “nature friendly”
way in pictures, and will draw circuits starting from inputs.
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FiIGURE 2. A switching network for the threshold-2 function
Thg(x, ¥,2) in three variables, which outputs 1 iff x + y +2z > 2.

FiGURE 3. Sequential connection corresponds to AND, and parallel
connection to OR.

A switching network G computes a boolean function in a natural way: it accepts the
input a if and only if there is a path from s to t along which all edges are switched
on by a. That is, each input switches the edges on or off, and we accept that input if
and only if after that there is a nonzero conductivity between the vertices s and ¢ (see
Fig. 2).

It is important to note that switching networks include DeMorgan formulas as
their special case. Namely, it can be easily shown that DeMorgan formulas correspond
to a very special type of switching networks—so called IT-schemes—whose underlying
graph consists of parallel-sequential components.

ProOPOSITION 1.1. Every DeMorgan formula can be simulated by a II-scheme of the
same size, and vice versa.

ProoF. This can be shown by induction on the leafsize of a DeMorgan formula F.
If F is a variable x; or its negation —x;, then F is equivalent to a switching network
consisting of just one contact. If F = F; AF, then, having switching networks S; and S,
for subformulas F; and F,, we can obtain a switching network for F by just identifying
the target node of S; with the source node of S,. If F = F; V F, then, having switching
networks S; and S, for subformulas F; and F,, we can obtain a switching network
for F by placing these two networks in parallel by gluing their source nodes and their
target nodes (see Fig. 3). O

Another special version of switching networks is the model of “deterministic branch-
ing programs”. In the past decades, this model deserved much more attention than
switching networks. The reason for this interest is that the logarithm of the number of
nodes in such programs captures the space of deterministic Turing machines, and the
model itself is easier to analyze.

A deterministic branching program for a given boolean function f in n variables
X1,...,X, is a directed acyclic graph with one source node and two sinks, i.e., nodes
of out-degree 0. The sinks are labeled by 1 (accept) and by 0 (reject). Each non-sink
node has out-degree 2, and the two outgoing edges are labeled by the tests x; = 0
and x; = 1 for some i € {1,...,n}. Such a program computes a boolean function
f :{0,1}" — {0,1} in a natural way: given an input vector a € {0,1}", we start
in the source node and follow the unique path whose tests are consistent with the



4 1. OUR ADVERSARY — THE CIRCUIT

1 (accept)

0 (reject)

FIGURE 4. A deterministic branching program computing x; @ x, ®
X3 ® x4. Each node is labeled by a variable x;. Dashed arrows corre-
spond to tests x; = 0 and the remaining arrows to test x; = 1. This
program is very specific: along every path each variable is tested only
once, and the variables are tested in the same order. Programs with
these two restrictions are known as ordered binary decision diagrams
(OBDDs).

corresponding bits of a; this path is the computation on a. This way we reach a sink,
and the input a is accepted iff this is the 1-sink (see Fig. 4).

Thus, if we remove the 0-sink (together with all edges entering it) in a determin-
istic branching program, we obtain a switching network with two restrictions:

a. every node has fanout at most 2, and
b. the two edges leaving the same node must be labeled by a variable and its
negation.

It is the second condition which makes such a network deterministic: every input
vector has a unique computation path. By the same reason, general switching networks
are also called “nondeterministic” branching programs: here one accepted input may
have many accepting paths from s to t.

A parity branching program is a nondeterministic branching program with the
“counting” mode of acceptance: an input vector a is accepted iff the number s-t paths
consistent with a is odd.

Branching programs are also called in the literature binary decision diagrams or shortly
BDDs. This term is especially often used in the circuit design theory as well as in other
fields where branching programs are used to represent boolean functions. Be how-
ever warned that the term “BDD” in such papers is often used to denote much weaker
model—that of OBDD, meaning oblivious read-once branching programs. These are de-
terministic branching programs of a very restricted structure as shown in Fig. 4: along
every computation path all variables are tested in the same order, and no variable is
tested more than once.

1.2. Random functions are complex

As mentioned above, we still cannot prove super-linear lower bounds for circuits
with AND, OR and NOT gates. This is in sharp contrast with the fact, proved 60 years
ago by Claude Elwood Shannon (1949), that most boolean functions require about
2" /n elementary operations. His argument was the first application of counting ar-
guments in boolean function complexity: count how many different boolean functions
in n variables can be computed using a given number of elementary operations, and
compare this number with the total number 22" of all boolean functions.

Most of lower bounds in circuit complexity are asymptotic, that is, ignore the constant
multiplicative factors. Moreover, boolean function f : {0,1}" — {0, 1} are parameter-
ized by their number of variables n. Hence, under a boolean function f we actually
understand an infinite sequence {f, | n = 1,2,...} of boolean functions. So, the claim
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“f requires Q(p(n)) gates” means that there is an absolute constant ¢ > 0 such that,
for infinitely many values of n, the function f, cannot be computed using fewer than

€ - p(n) gates.

THEOREM 1.2 (Circuits). Almost every Boolean function of n variables requires De-
Morgan circuits of size Q. (2" /n).

PrOOE. Let F(n, t) be the number of circuits with n variables which have size < t.
We will first show that
F(n,t) < ((2(t+2n)%)". (1.1)
Indeed, each gate in a circuit is assigned an AND or OR operator (2 possibilities) that
acts on two previous nodes, and each previous node can either be a previous gate (< t
choices), or a variable or its negation (< 2n choices) Thus each gate in a circuit has at
most 2(t + 2n)? choices. Since we have t gates, (1.1) follows.
Notice that for t = 2"/(10n), the right-hand of (1.1) is approximately 22"/> which
is < 22", Since there are exactly 22" Boolean functions of n variables, almost every
Boolean function requires circuits of size large than 2"/(10n). O

By this theorem, the average circuit complexity of boolean function in n variables
is exponential in n. But, so far, nobody was able to prove that some specific boolean
function requires more than 5n gates!

In the class of formulas (fanout-1 circuits) some boolean function require even
more that 2" /n leaves.

THEOREM 1.3 (Formulas). Almost every boolean function of n variables requires De-
Morgan formulas of leafsize Q (2"/logn).

ProoE. There are at most 2°() binary trees with at most t leaves, and for each
such tree, there are at most (2n + 2)" possibilities to turn it into a DeMorgan formula
(2n input literals and two types of gates, AND and OR). Hence, the number of different
formulas of leafsize at most t is at most n°). Since, we have 22" different boolean
functions, the lower bound ¢t = Q2 (2"/logn) follows. O

THEOREM 1.4 (Switching Networks). Almost every boolean function of n variables
requires switching networks with Q (2" /n) contacts.

PrOOF. Every set of t edges is incident with at most 2t nodes. Using these nodes,
at most r = (2t)? their pairs (potential contacts) can be built. Hence, the number of
switching networks with t edges is at most (rjt) = O(t)!. Since there are at most (2n)*

ways to turn a graph with t edges into a switching network, at most (nt)°(® different
boolean functions can be computed by switching networks with at most t contacts.
Comparing this number with the total number of all boolean functions, yields the
result. O

It is also known that all three lower bounds above are optimal up to constant
factors. These results, however, do not solve the problem: we know that almost all
boolean functions are complex, but no specific complex function is known. The highest
known lower bounds for circuits computing explicit boolean functions in n variables
have the form:

- 4n — 4 for circuits over {A, Vv, 7} computing x; ® x, & - - - ® x,,, Redkin (1973);
- 5n — o(n) for circuits over the basis with all fanin-2 gates, except the parity
and its negation, Iwama et al. (2001);
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- 3n—o(n) for general circuits over the basis with all fanin-2 gates, Blum (1984);

- n®7°M for DeMorgan formulas, Hastad (1993);

- Q(n?/log? n) for deterministic and ©(n*?/log n) for nondeterministic branch-
ing programs, Nechiporuk (1966).

We have only listed highest bounds we currently have. The bounds for circuits and
formulas were obtained by gradually increasing previous lower bounds. A lower bound
2n for general circuits was first proved by Schnorr (1974). Then Paul (1977) proved
a 2.5n lower bound, Stockmayer (1977) gave the same 2.5n lower bound for a larger
family of boolean functions, and finally Blum (1984) proved the lower bound 3n—o(n).
For circuits over the basis with all fanin-2 gates, except the parity and its negation, a
lower bound of 4n was earlier obtained by Zwick (1991b). For formulas, the first
nontrivial lower bound (n®/?) was proved by Subbotovskaya (1961), then a lower
bound Q(n?) was proved by Khrapchenko (1971), and a lower bound of Q(n®?) by
Andreev (1985).

All the lower bounds for general circuits were proved using the so-called “gate-
elimination” argument. The proofs themselves consist of a rather involved case analy-
sis, and we will not present them here. Instead of that we will demonstrate the main
idea by proving weaker lower bounds.

1.3. A 3n lower bound for circuits

The gate-elimination argument does the following. Given a circuit for the func-
tion in question, we first argue that some variable (or set of variables) must fan out
to several gates. Setting this variable to a constant will eliminate several gates. By
repeatedly applying this process, we conclude that the original circuit must have had
many gates.

To illustrate the basic idea, we apply the gate-elimination argument to threshold
functions

Thi(xy,...,x,) =1 iff x;+x5+---+x,>k.

THEOREM 1.5. Even if all boolean functions in at most two variables are allowed as
gates, the function Thy, requires at least 2n — 4 gates.

Proor. The proof is by induction on n.

For n = 2 and n = 3 the bound is trivial.

For the inductions step, take an optimal circuit for Th7, and suppose w.l.o.g. that
the bottom-most gate g acts on variables x; and x; (where i # j), i.e. that this gate has
the form g = ¢(x;, x;) for some ¢ : {0, 1}? — {0,1}. Notice that under the four pos-
sible settings of these two variables, the function Thj has three different subfunctions
Thy~?, Thi~? and Th} . It follows that either x; or x; fans out to another gate h, for
otherwise our circuit would have only two inequivalent sub-circuits under the settings
of x; and x;. Why? Just because the gate g = ¢(x;,x;) can only take two values, 0
and 1.

Suppose now that it is x; that fans out to h. Setting x; to O eliminates the need
of both gates g and h. The resulting circuit computes Thg_l, and by induction, has at
least 2(n — 1) — 4 gates. Adding the two eliminated gates to this bound shows that the
original circuit has at least 2n — 4 gates, as desired. O

Theorem 1.5 holds for circuits whose gates are any boolean functions in at most
two variables. For circuits over the basis {A, V, =} one can prove a slightly higher lower
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FIGURE 5. The two cases in the proof of Theorem 1.6.

bound. For this we consider the parity function
@n(x)leea)(z@"'@xn.

THEOREM 1.6. The minimal number of AND and OR gates in a circuit over {A,V,}
computing ®,, is 3(n — 1).

PrOOE. The upper bound follows since x @ y is equal to (x A —y) V (—=x A y). For
the lower bound we prove the existence of some x; whose replacement by a suitable
constant eliminates 3 gates. This implies the assertion for n = 1 directly and for n > 3
by induction.

Let g be the first gate of an optimal circuit for ®,(x). Its inputs are different
variables x; and X; (see Fig. 5). If x; would have fanout 1, that is, if g would be
the only gate which x; is feeding in, then we could replace x; by a constant so that
gate g would be replaced by a constant. This would imply that the output became
independent of the ith variable x; in contradiction to the definition of parity. Hence, x;
must have fanout at least 2. Let g’ be the other gate feeded in by x;. We now replace
x; by such a constant that g becomes replaced by a constant. Since under this setting
of x; the parity is not replaced by a constant, the gate g cannot be an output gate. Let
h be a successor of g. We only have two possibilities: either h coincides with g’ or not.

Case (a): g’ # h. Then we can set x; to a constant so that g will become set to a
constant. This will eliminate the need of all three gates g, g’ and h.

Case (b): g’ = h. In this case g has fanout 1. We can set x; to a constant so that
g’ will become set to a constant. This will eliminate the need of all three gates g, g’
and p.

In either case we eliminate at least 3 gates. U

1.4. Coin-flipping in circuits is useless

Probabilistic circuits have, besides standard inputs x,...,x,, some specially de-
signed inputs rq,...,r,, called random inputs. When these random inputs are chosen
from a uniform distribution on {0, 1}, the output of the circuit is a random variable. A
probabilistic circuit C(x) computes a boolean function f (x) if

Pr[C(x)=f(x)] >3/4 foreach xe{0,1}".

There is nothing special about using the constant 3/4 here—one can take any constant
> 1/2 instead.

Can probabilistic circuits have much smaller size than usual (deterministic) cir-
cuits? A negative answer is given by the following
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TueorEM 1.7 (Adleman 1977). If a boolean function f in n variables can be com-
puted by a probabilistic circuit of size ¢, then f can be computed by a deterministic circuit
of size O(nk).

Proor. Let C be a probabilistic circuit that computes f(x). Take k independent
copies of this circuit (each with its own random inputs), and consider the probabilistic
circuit C, that computes the majority of the outputs of these k circuits. Since each
of these outputs is correct with probability p > 3/4, Chernoff inequality yields that
Pr[Ci(x) # f(x)] < e M for each x € {0,1}". Therefore, for k = ©(n), there is a
setting of the random inputs, which always gives the correct answer. t

1.5. Recap: Normal forms and restrictions

A boolean function can be represented in several manners. The most commonly
used one is by means of a boolean (or propositional) formula in conjunctive (CNF) or
disjunctive (DNF) normal form. Let us shortly recall these concepts.

A literal is a boolean variable x; or its negation —x;; a negated variable is also
written as X; instead of —x;. Literals are also denoted as x{ where xl.1 stands for x; and
x? stands for —x;.

A clause is an OR of literals, whereas a monomial is an AND of literals. Clauses ¢
and monomials m containing a contradicting pair of literals are trivial: for them we
have ¢ = 1 and m = 0. We will often identify clauses and monomials with the sets of
their literals. The length of a clause or a monomial is the number of literals in it.

A conjunctive normal form or CNF is an AND of clauses, whereas a disjunctive
normal form or DNF is an OR of monomials. A CNF is a k-CNF if each its clause
has length at most k.

Let f be a boolean function, and X = {xy,...,x,} the set of its variables. A partial
assignment (or restriction) is a function p : X — {0, 1,*}, where we understand * to
mean that the corresponding variable is unassigned. Each such partial assignment p
yields a restriction (or a subfunction) f[, of f in a natural way:

er:f(Q(xl)"":Q(xn))-

Note that f [, is a function of the variables x; for which p(x;) = *. For example, if
F=0c1VaxyVxg) A(xy Vxa) Alxg Vxs)

and p(x;) =1, p(xy) = p(x3) = * then f[,= x,.

A 1-term of f is a partial assignment o such that f[,=1. That is, a 1-term of f is
a consistent set of literals such that evaluating these literals to 1 forces the function to
output 1 independent on the values of the (possibly) remaining free variables. O-terms
of f are defined dually: such are all partial assignments o such that f [,= 0. Minimal
under set inclusion 1-terms (resp., O-terms) are called minterms (resp., maxterms)
of f.

Namely, a minterm of f is a restriction o such that f [,= 1 and which is minimal
in the sense that un-specifying every single value p(x;) € {0, 1} already violates this
property. The length of a minterm is the number n—|p ~*(%)| of assigned variables. Each
restriction p can be looked at as monomial. For example, the restriction p(x;) = 0,
o(x3) = 1 can be looked at as a monomial m = x; A x3. Hence, minterms of f are
monomials m such that m(a) < f(a) for all input vectors a € {0,1}", but this does
not hold anymore if we remove at least one literal from m. Minterms of —f are called
maxterms of f.
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FIGURE 6. Two DNF-trees of the same CNF f = (x; VX3 V x3)(x; V
X9 V X4)(X3 V X3). The second tree is obtained by parsing the clauses
of f in the inverse order.

If all the minterms of f have length at most k then, clearly, f has a k-DNF (take
the Or of all these minterms). But the opposite is false! Namely, f can have a k-DNF
even though some of its minterms are much longer than k, see Exercise 1.5.

In some lower bound arguments—like those for monotone circuits or constant
depth circuits—we need a way to switch between k-CNFs and k-DNFs; this is done by
so-called “switching lemmas.” A useful way to visualize this “switching” is via transver-
sal trees.

Let f =c;A---Ac, be a CNE It will be convenient to identify clauses and monomials
with the sets of their literals. The DNF-tree T; of a CNF f is defined inductively as
follows (see Fig. 6).

a. The first node of T; corresponds to the first clause c;, and the outgoing |c, |
edges are labeled by the literals of c;.
b. Suppose we have reached a node v, and let m be the monomial consisting of
the labels of edges from the root to v.
- If mn¢; # 0 for all clauses c; of F, then v is a leaf.
- Otherwise, let ¢; be the first clause such that m N ¢; = . Remove from ¢; all
literals whose negations belong to m (if there are any) to obtain a clause ;.
Then the node v has |c;| outgoing edges labeled by the literals in c.

Each path from the root to a leaf of T corresponds to a monomial of f (since each such
path intersects all its clauses). Hence, the OR over all paths gives us a DNF formula
for f. Note, however, that different orderings of clauses in a given CNF may lead to
DNF-trees of entirely different form (cf. Fig. 6).

Using such a tree representation we can, for example, immediately show that every
k-CNF f can be represented as DNF containing at most k! (instead of all 2! (';) possible)
monomials of length i, for each i. This holds just because a DNF-tree of every k-CNF
has fanout at most k.

A boolean function f : {0,1}" — {0, 1} is monotone if x <y implies f(x) < f(¥),
where x < y means that x; < y; for all positions i (see Fig. 7).

Note that a minterm of a monotone boolean function is a minimal set of variables
which, if assigned the value 1, forces the function to take the value 1 regardless of the
values assigned to the remaining variables. Similarly, a maxterm of such a function is
a minimal set of variables which, if assigned the value 0, forces the function to take
the value 0 regardless of the values assigned to the remaining variables.

Note also that one set S can be both minterm and maxterm of the same function!
For example, if f(x,x,,x3) outputs 1 iff x; + x5 + x5 > 2, then S = {1,2} is both a
minterm and a maxterm of f, because f(1,1,x3) =1 and f(0,0,x3) =0.
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FIGURE 7. A distribution of the values of a monotone boolean function
in the binary n-cube {0, 1}". Along any path (or chain) from the all-0
vector 0" to the all-1 vector 17, the function can only change its value
from 0 to 1 (not from 1 to 0), and can do this at most once.

Yet another special property of monotone functions, not shared by other boolean
functions, is that each such function f can be written as a monotone CNF f = ¢; A
-+ A¢, as well as a monotone DNF f =m,; V---V m, in a unique way. Here c;,...,¢Cy
are all maxterms of f, and m,...,m, are all minterms of f; all they are monotone
(have no negated variables). Moreover, if we look at clauses/monomials as sets of
their variables, then these two families have the following cross-intersection property:
c;Nm; # @ for all i, j: Would we have ¢; N m; = @ for some i and j, then we could set
all variables of ¢; to 0 and all remaining variables to 1 so that the resulting input vector
a € {0,1}" would be forced to satisfy f (a) = 0, because c;(a) =0, as well as f(a) =1,
because m;(a) = 1, a contradiction.

Finally, note that there is a 1-to-1 correspondence between monotone boolean
functions f : {0,1}" — {0, 1} and anti-chains in [n], that is, families & of subsets of
[n] no member of which is contained in another. Namely, given such an anti-chain &,
we can associate with each its member S € & a monomial m = /\ies x;, and the OR of
all these monomials gives a DNF of a monotone boolean function. The other direction
follows from the uniqueness of DNFs.

1.6. Combinatorial rectangles

Important objects when analyzing boolean circuits are so-called “combinatorial
rectangles.” These are special subsets of {0,1}" x {0,1}", and are important when
dealing with formula size and circuit depth. We will use this concept quite often.

An n-dimensional combinatorial rectangle, or just a rectangle, is a non-empty Carte-
sian product S = S° x S! of two disjoint subsets S° and S! of vectors in {0, 1}". Vector
pairs e = (x, y) with x # y will be referred to as edges. A subrectangle of S is a subset
R C S which itself forms a rectangle. A boolean function f : {0,1}" — {0, 1} separates
the rectangle S = S° x S! if

0 forxesY,
1 forxeSh.

f(X)={

If the sets S° and S! form a partition of {0, 1}", then the rectangle S = S° x S is called
a full rectangle. Note that every boolean function f : {0,1}" — {0, 1} defines a unique
full rectangle

Spi=f7H0)x £71(1),
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FIGURE 8. The rectangle Sy of f when f = g Ah, and when f =g V h.

which we will call the rectangle of f. Note also that we have much more rectangles
than boolean functions.

Having rectangles S, := g 1(0)xg (1) and S, := h~1(0) x h~1(1) of two boolean
functions g and h, we can compute the rectangle Sy := f ~1(0) x £71(1) of their AND
f = g ANh by (see Fig. 8):

0_ c0y,¢O 1 _¢glAcl

Sp=S,US, and Sp=5,NS,, (1.2)
as well as of their OR f = g V h by:

§}=5;NnS; and S;=S,US,. (1.3)

Important class of rectangles are monochromatic rectangles which are the rectan-
gles that can be separated by a single variable x; or by a negated variable —x;. That is,
a rectangle M = M° x M! is monochromatic, if there exists an i € {1,...,n} such that
x; # y; for all edges (x,y) € M; here x; is the i-th bit in x.

The partition number D(S) of a rectangle S is the smallest number t such that S can
be decomposed into t disjoint monochromatic rectangles. Note that D(S) is monotone
under taking subrectangles: if R C S is a subrectangle of S then D(R) < D(S).

The following lemma reduces the (computational) problem of proving a lower
bound on the formula size to a (combinatorial) problem about decomposition of rect-
angles.

Let L(f) be the smallest leafsize of a DeMorgan formula computing f.

LEmmaA 1.8 (Rychkov 1985). For every boolean function f we have that
L(f)=D(Sf).

ProOE. Our goal is to show that the full rectangle Sy of f can be decomposed into
at most L(f) disjoint monochromatic rectangles. We argue by the induction on L(f).

Base case. If L(f) = 1 then f is just a single variable x; or its negation. In this
case Sy itself is a monochromatic rectangle.

Induction step. Let t = L(f) and assume that the theorem holds for all boolean
functions g with L(g) < t — 1. Take a minimal formula for f, and assume that its
last gate is an And gate (the case of an Or gate is similar). Then f = g A h for some
boolean functions g and h such that L(g) + L(h) = L(f). On the other hand, the
rectangle S; of f can be computed from the rectangles S, and S}, for functions g and
h using (1.2). By the induction hypothesis, the rectangle S, can be covered by at most
L(g) disjoint monochromatic rectangles, and S;, can be also covered by at most L(h)
such rectangles. By restricting these coverings to Sy, we obtain a covering of S; by at
most L(g) + L(h) = L(f) disjoint monochromatic rectangles, as desired.

It is not known whether some polynomial inverse of Rychkov’s lemma holds.
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RESEARCH PROBLEM 1.9. Does L(f) < D(S; Yoo
What we know is only a “quasi-polynomial” inverse
L(f) < D(Sf)21°g2 D(sy)

which we will prove later in the part devoted to communication complexity (see
Lemma 8.9). Still, the latter inequality implies that boolean functions f in n vari-
ables such that D(S;) > 2(1=0(DV™ exist. Hence, in principle, the partition number
D(S) can also achieve super-polynomial lower bounds on the formula size.

1.7. Matrix complexity

As pointed by Sipser (1992), one of the impediments in the lower bounds area
is a shortage of problems of intermediate difficulty which lend insight into the harder
problems. Most of known problems (boolean functions) are either “easy” (parity, ma-
jority, etc.) or are “very hard” (clique problem, satisfiability of CNFs, and all other
NP-hard problems). On the other hand, there are fields—like graph theory or matrix
theory—with much richer spectrum of known objects. It makes therefore sense to look
more carefully at the graph structure of boolean functions. That is, to move from a “bit
level” to a more global one and look at a boolean function as a matrix or as a bipartite
graph. This results into a concept of “graph complexity.”

We can look at every boolean function f(u,v) in 2m variables as an n x n (0,1)
matrix M with n = 2™ whose rows and columns are indexed by vectors in {0, 1} and
entries are the values of f: M;[u,v] = f(u,v). We call My the truth matrix of f; such
a matrix is also called in the literature the “communication matrix of f.”

The truth matrix M; of f(x,y) should not be mixed with the rectangle S; of f!
The first is a mapping

M, : {0,1}" x {0,1}™ — {0, 1},
whereas the second is a subset
Sy =f710)x f71(1) € {0,1}*™ x {0,1}°™.

Now, instead of computing a boolean function f starting from input literals, we can
consider the computation of its truth matrix M starting from some “simplest” matrices.
As these simplest matrices we take “rectangular” matrices .

A rectangular matrix is a (0, 1) matrix of rank 1. Each such matrix can be described
by a Cartesian product I x J corresponding to its all-1 submatrix. Boolean operation
on (0, 1) matrices are computed component-wise.

The relation between boolean functions and matrices is given by the following
simple lemma. Here by a circuit we mean an arbitrary boolean circuit with literals—
variables and their negations—as inputs.

LEMMA 1.10 (Magnification Lemma for Matrices). In every circuit computing f (x,y)
it is possible to replace its input literals by rectangular matrices so that the resulting circuit
computes the matrix M.

ProoE. Take an arbitrary circuit C(x,y) computing f. Replace each input literal
x{ with o € {0, 1} by the rectangular |I| x 2™ matrix, where I = {u € {0,1}" | u; = o},
and replace each input literal y by the rectangular 2™ x |J| matrix, where J = {v €
{0,1}™ | v; = o'}. That the resulting circuit computes the matrix M, can be shown by
induction on the size ¢ of our circuit.
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FiGure 9. The adjacency matrix of a bipartite graph represented by
an OR function g = \/VGAUB z,, and the adjacency matrix of a bipartite
graph represented by a Parity function g = @, ., 5 %, -

If ¢ = 0 then f itself is a literal, and M; in this case is one of the rectangular
matrices we just defined. The induction step follows from the fact that all boolean
operations (this time gates) operate on matrices component-wise. O

REMARK 1.11. Note that rectangular matrices used in the proof are very special:
we only have 4m such matrices, and each of them either consists of a half of rows and
all columns, or of a half of columns and all rows. Namely, each of them is just the truth
matrix of a corresponding input literal, if we view literals as boolean functions of all
2m variables. Would we allow only these 4m rectangular matrices as inputs, then we
would also have a converse.

1.8. Graph complexity

In a similar way one can consider computations of graphs when inputs are some
simplest graphs, like stars or cliques.

Let G = (V,E) be an n-vertex graph, and let Z = {z, | v € V} be a set of boolean
variables, one for each vertex. For two verticesu #v €V, let a,,, € {0,1}" be a vector
with exactly two 1’s in positions u and v.

Say that a boolean function g(Z) in these variables represents the graph G if, for
every two vertices u # v € V, we have that g(a,,) = 1 iff u and v are adjacent. If the
graph is bipartite then we only require that this must hold for vertices u and v from
different color classes. Note that in both cases (bipartite or not), on input vectors with
fewer that two 1’s as well as on vectors with more than two 1’s the function can take
arbitrary values!

Another way to treat this concept is to look at edges as 2-element sets of ver-
tices, and boolean functions as accepting/rejecting subsets of vertices. Then a boolean
function represents a graph if it accept all edges and rejects all non-edges.

For example, a single variable z, represents a complete star around the vertex v,
that is, the graph consisting of all edges connecting v with the remaining vertices. If
A,B €V and ANB = (), then the boolean functions (\/ueAzu) A (\/VGB zv) represents a
complete bipartite graph A x B. In particular, every graph G = (V, E) is represented by

\/ 2,2, aswell as by @ 2,2y -
uveE uveE

But these representations of n-vertex graphs are not quite compact: the number of
AND gates in them may be as large as ©(n?). If we allow unbounded fanin OR gates
then already 2n — 1 AND gates are enough:

Van( V=),

ues viuveE
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where S C V is an arbitrary vertex cover of G, that is, a set of vertices such that every
edge of G has is endpoint in S.

Now, given a model of boolean circuits, we can ask how many gates do we need to
represent a given graph? It turns out that in the case of bipartite graphs, this question
is related the circuit complexity of boolean functions. Namely, each boolean function
f(x,y) in 2m variables can be looked at as a bipartite graph G; = (V; U V,, E) with
color classes V; =V, = {0,1}™, in which two vertices (vectors) x and y are adjacent
iff f(x,y) = 1. Similarly, by fixing an encoding of vertices of a bipartite 2™ x 2™ graph
G by binary vectors, we obtain a boolean function f; in 2m variables, a characteristic
function of this graph defined by: f;(x,y) =1 iff x and y are adjacent in G.

Magnification Lemma!for graphs

LEMMA 1.12 (Magnification Lemma for Graphs). In every circuit computing f (x,y)
it is possible to replace its input literals by ORs of new variables so that the resulting circuit
represents the graph Gy.

Instead of ORs one can take other boolean functions g(Z). We only need that
g computes 0 on the all-0 vector, and computes 1 on any input vector with exactly
one 1. In particular, parity functions also have this property, as well as any function

8(Z)= (2, cs %) with ¢ : N — {0,1}, ¢(0) =0 and ¢(1) =1 does.

PrOOE Just replace input literals in the circuit computing f(x,y) by ORs as fol-

lows:
o g
x; — \/ z, and y — \/ Z, .

u€Vy,u;=o VEV,,V;=0

Observe that the adjacency matrices of the graphs, represented by these ORs, are pre-
cisely the rectangular matrices used in the proof of Lemma 1.10. t

This lemma is particularly appealing when dealing with circuits containing un-
bounded fanin OR (or unbounded fanin Parity gates) on the bottom, next to the inputs
layer. In this case the total number of gates in the circuit computing f and in the
obtained circuit representing the graph Gy is just the same! Thus, if we could prove
that some explicit bipartite n X n graph with n = 2™ cannot be represented by a such
circuit of size n®, then this would immediately imply that the corresponding boolean
function f(x, y) in 2m variables cannot be computed by a (non-monotone!) circuit of
size n® = 2°", which is already exponential in the number of variables of f. This is
where the term “magnification” comes from.

We will use Lemma 1.12 in Section 10.4.1 to prove truly exponential lower bounds
for unbounded fanin depth-3 circuits with parity gates on the bottom layer. Now we
show that, even in the class of monotone circuits with fanin-2 AND and OR gates, any
lower bound larger than 12n for graphs would yield an exponential (in the number
of their variables) lower bound for boolean functions in the class of non-monotone
circuits with AND, OR and NOT gates.

1.9. Monotone 12n lower bound for graphs implies P # NP

Recall that a DeMorgan circuit consist of fanin-2 AND and OR gates, and has
all variables as well as their negations as inputs. A circuit is monotone if it has no
negated inputs. For a graph G let C(G) be the smallest number of gates in a monotone
DeMorgan circuit representing G.
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ProrosITION 1.13. For almost all bipartite n X n graphs G, we have

nZ
C+(G)=Q(logn).

Proor. Easy counting (as in the proof of Theorem 1.2) shows that there are at
most t°) DeMorgan circuits with at most t gates. Since we have 2 graphs, and
different graph require different circuit, the lower bound follows. O

Thus, overwhelming majority of graphs requires almost quadratic number of gates
to represent them. On the other hand, we are now going to show (Corollary 1.16
below) that any explicit graph G with C,_(G) > 12n + ¢(n) would give us an explicit
boolean function f in 2m variables which cannot be computed by a non-monotone(!)
DeMorgan circuit with fewer than ¢(2™) gates. That is, linear lower bounds on the
monotone complexity of graphs imply exponential lower bounds on the non-monotone
complexity of boolean functions.

When constructing the circuit for the graph G, as in the Magnification Lemma, we
replace 4m input literals in a circuit for f; by 4m = 4log, n disjunctions of 2n = 2™*!
(new) variables. If we compute these disjunctions separately then we need about
mn = nlogn fanin-2 OR gates. The disjunctions can, however, be computed much
more efficiently—using only 12n OR gates—if we compute all these disjunctions si-
multaneously.

LEMMA 1.14. Any collection of k disjunctions over n variables can be computed using
at most n + 251 — k — 2 fanin-2 OR gates.

The proof of this lemma is a bit technical, and we postpone it to the end of this
section. For us is interesting the following its consequence.

CoROLLARY 1.15. Let n be a power of two. Then any collection of p log, n disjunctions
of variables x4, ...,x, can be simultaneously computed by a circuit consisting solely of at
most 3pn fanin-2 OR gates.

Proor. We want to compute m = plog,n disjunctions. Split these disjunctions
into p groups, each containing k = log, n disjunctions. Applying Lemma 1.14 to each
group separately, we get a circuit of size

p(n+ 2K —k —2) < pn+2p21°8:" = 3pn. O

Let now f(x,y) be a boolean function in 2m variables, and G; = (V;,V,, E) the
corresponding bipartite n x n graph with V; =V, = {0,1}"™. Let C(f) be the smallest
size of a DeMorgan circuit computing f, and C,(G) the smallest size of a monotone
DeMorgan circuit representing the graph G.

Cororrary 1.16. C(f) = C,(G;) — 12n.

PrROOE. By Magnification Lemma, all 2m = 2log, n x-literals are replaced by a
disjunctions on the set {z, | u € V;} of n variables. By Corollary 1.15 (with p = 2), all
these disjunctions can be computed using at most 6n fanin-2 OR gates. Since the same
holds also for y-literals, we are done. t

Hence, proving even linear lower bounds C, (G) > cn for graphs is a very difficult
task. Still, Exercise 1.4 shows that at least for ¢ = 2 this can be easily done.
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PrROOF OF LEMMA 1.14. Given a collection of k subsets S;,...,S; of [n] ={1,...,n},
our goal is to compute k disjunctions

\/xi, \/xi,... \/xi, 1.4
1€S5, i€S, 1ES)
by a circuit only containing fanin-2 OR gates. For each 0-1 string w of length? |w| < k
define an auxiliary set J,, by
J, =1 jeS;iff wii)=1}.

That is, we look at the first |w| sets Sy,...,S),| and include an element j in J,, iff w is
the indicator vector for the occurrence of j in these sets. The sets J,, have the following
properties:

J,Nd,, =0 forw #w’ and |w| = [w'[; (1.5)

Jy =JpoUd for |w| < k; (1.6)

si= UJ Jn fori=1,...,k. (1.7)
wiw|=i—1

The first property (1.5) follows from the observation that j € J,, for some w of length
|[w| = £ iff w is the indicator vector for the occurrence of j in the first £ sets S;,...,S,,
and no element x can have two such vectors.

The second property (1.6) follows from the observation that an indicator vector w
for an element j of length |w| =i < k can be extended to two vectors w0 and w1 of
length i + 1, and at least one of them must be an indicator vector for j of length i + 1,
depending on whether j belongs to the (i + 1)-th set S;,; or not.

To show the third property (1.7), observe that an element j can only then belong
to J,,; if it belongs to S, ;; = S;. On the other hand, if j € S; then j € J,,;, where w is
the indicator vector for j of length i — 1.

We can now compute our k disjunctions (1.4) as follows. First compute all 2%
disjunctions \/,_ ; x; with [w| = k. Since, by (1.5), the corresponding sets J,, in this
case are disjoint, this can be done using at most n ORs. Next we use (1.6) to compute
nonempty disjunctions \/;_ g, Xi for strings w of length |w| < k using the (already

computed) disjunctions \/,_ g, Xi and \/,_ g, Xi for longer strings:
V= Vo Vs
ieJ, i€l i€l

This can be done using 2¢ — 1 additional ORs. Finally, we use (1.7) to compute our
original disjunction (1.4) by the formula

\/Xj: \/ \/Xj-

JES; wilw|=i—1j€&J,,

This only requires |{w : [w| =i —1}| — 1 =2"! — 1 new ORs, and thus, fori =1,...,k
all together

k
D@t -n=2k-1-k
i=1

2In this proof, |w| denotes the total number of bits in w, not the number of 1’s.
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ORs. The number of ORs used in the entire circuit computing all disjunctions (1.4)
does not exceed

n+@k-D+@k-1-k)=n+21 —k-2. O

Exercises

Ex. 1.1 (Minimal circuits are very unstable). Let F be a circuit over some basis
computing a boolean functions f, and assume that F is minimal, that is, no circuit with
a smaller number of gates can compute f. In particular, minimal circuits are “unstable”
with respect to deletion of its gates: the resulting circuit must make an error. Prove
that, in fact, minimal circuits are unstable in a much stronger sense: we cannot even
replace a gate by another one; the size of the resulting circuit remains the same but,
nevertheless, the function computed by a new circuit differs from that computed by
the original one.

More precisely, write g < h for boolean functions in n variables, if g(v) < h(v) for
all v € {0,1}". Call a boolean function h a neighbor of a boolean function g if either
) g6 <h®s®1 forsome s ec{0,1},or g®x; < gdhforsomeic{l,..., n}.

(a) Show that constants 0 and 1 are neighbors of all non-constant functions.

(b) Show that neighbors of the OR gate V are all the two variable boolean functions,
except @ and the function V itself.

(c) Let F be a minimal circuit, e a gate in it of fanin m, and h be a boolean function in
m variables. Let F,_,;, be the circuit obtained from F as follows: replace the boolean
function attached to the gate e by h and remove all the gates that become redundant
in the resulting circuit. Prove that F,_,;, #F.

Hint: Case (i) can be proved as follows. Since F is optimal, we cannot replace the gate e by the
constant &, i.e. there must be at least one vector v € {0, 1}" such that F,_,5(v) # F(v). This, in particular,
means that g(f1(v),..., fn(v)) = 6®1, where g is a boolean function attached to the gate e, and f1, ..., f;
are boolean function computed at its inputs. Since g6 < h® 6 ®1, we have that h(f1(v),..., fn(v)) =6,
and hence, F,_,,(v) =F,_5(v) # F(v).

Ex. 1.2 (Circuits as linear programs). Show that for every circuit C(x) over
{A,V,} there is a system L(x,y) of linear constraints (linear inequalities with co-
efficients 1) such that:

a. For every x € {0,1}", C(x) = 1 iff there is an y such that all constraints in L(x,y)
are satisfied.

b. The number of constrains in L(x,y) is by only a constant fraction larger than the
number of gates in C.

c. The number of y-variables is at most the number of gates in C.

Hint: Introduce a variable for each gate. For an A-gate g = u A v use the constraints 0 < g < u < 1,
0<g<v<1,g>u+v—1. What constraints to take for —-gates and for V-gates? For the output gate
g add the constraint g = 1. Show that, if the x-variables have values 0 and 1, then all other variables are
forced to have value O or 1 equal to the output value of the corresponding gate.

Ex. 1.3. Let G = ([n], E) be an n-vertex graph, and d; be the degree of vertex i
in G. Then G can be represented by a monotone formula

Fe)=\/ xi/\( \/ xj).
i€[n] jii,j}€E

A special property of this formula is that the ith variable occurs at most d; + 1 times.
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Prove that, if G has no complete stars, then any minimal formula representing G

must have this property.
Hint: Take a minimal formula F for G, and suppose that some variable x; occurs m; > d + 1 times in
it. Consider the formula
F'=Fy,_oVF; with F;=x; A ( \/ xj),
jiijeE
where F,, o is the formula obtained from F by setting to 0 all m; occurrences of the variable x;. Show that
F’ represents G, and compute its leafsize to get a contradiction with the minimality of F.

Ex. 1.4. Let G, =K,_, +E; be a complete graph on n—1 vertices 1,2...,n—1 plus
one isolated vertex n. Let F(x,...,x,) be an arbitrary monotone circuit with fanin-2
AND and OR gates representing G,,.

a. Show: If n > 3 then every input gate x; fori =1,...,n — 1 has fanout at least 2.
b. Use the previous claim to derive that G, cannot be represented by a monotone
circuit using fewer than 2n — 6 gates.

Ex. 1.5. The storage access function f(x,y) is a boolean function in n + k vari-
ables x = (xy,...,x,) and y = (yy,...,y) where n = 2%, and is defined as follows:
f(x,¥) := Xpin(y), Where bin(y) = Zle ¥;2171 is the integer whose binary representa-
tion is vector y.

Show that the monomial K = x;x,--- X, is a minterm of f, but still f can be
written as a (k + 1)-DNE

Hint: For the second claim, observe that the value of f(x, y) depends only on k + 1 bits y;,..., y, and

Xbin(y)*

Bibliographic Notes
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CHAPTER 2

Boolean Formulas: The Classics

If not stated otherwise, by a formula we will understand a DeMorgan formula,
that is, a formula with fanin-2 AND and OR gates whose inputs are variables and their
negations. By L(f) we denote the minimal leafsize and by Depth(f) the minimal depth
of a DeMorgan formula computing a given boolean function f.

2.1. Size versus depth

Since the underlying graph of a DeMorgan formula is a binary tree, any formula
of depth d can have at most 2¢ leaves. This implies that, for every boolean function f,

Depth(f) > log, L(f).

In fact, we also have a converse inequality:
THEOREM 2.1 (Spira 1971). For any f, Depth(f) <14 3.5log, L(f).

Proof. We will prove a slightly more general claim: any DeMorgan formula of
leafsize m can be transformed into an equivalent formula of depth 1+2-log;, m; two
formulas are equivalent if they compute the same boolean function.

We argue by induction on m. The basis case m = 1 it trivial. So, assume that the
claim holds for all formulas of leafsize at most m — 1, and take an arbitrary formula F
of leafsize m. Recall that the underlying graph of this formula is a binary tree with m
leaves.

CLaiM 2.2. In every binary tree with m leaves, there is a subtree with at least m/3
and at most 2m/3 leaves.

ProoF. Define the weight of a node in a tree as the number of leaves of the subtree
rooted in this node. Start from the root, and each time see whether some of two
successors has weight at most 2m/3. If not, then take any one of them and continue
the walk. Since the weight of a node is at most the sum of the weights of its two
successors, we will eventually find a desired subtree. t

By this claim, there must be a subformula G of F whose leafsize lies between m/3
and 2m/3. Let F, (resp., F;) be F with the distinguished subformula G replaced by
constant O (resp., 1). It is not difficult to verify (do this!) that F is equivalent to

(FoAG)V (FLAG).

By the choice of G, the formulas G and =G have at most 2m/3 leaves, and formulas
F, and F,; also have at most m — m/3 = 2m/3 leaves. By the induction hypothesis,
Fy,F1,G,~G are equivalent to formulas Fy,F;,G’,(=G)" all of depth 1 plus two times
the logarithm base 3/2 of their respective leafsizes. Hence, if d(F) denotes the depth
of a formula F, then the formula

(FgA(=G)) Vv (F{ AG)

20
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is equivalent to F and has depth

d(F) < 2+ max{d(Fy),d(F;),d(G"),d(~G)")}
<2+1+2-logy), (Z_m)
3

=1+2-logy/, (Z?mg)

=1+2-logg,m<1+3.5log,m. O

A DeMorgan formula is monotone if it has no negated variables as inputs. Let
L,(f) and Depth(f) denote, respectively, the minimal leafsize and the minimal depth
of a monotone DeMorgan formula computing a monotone boolean function f.

THEOREM 2.3. For any monotone f, Depth, (f) <1+ 3.5log, L (f).

ProOE. The proof is almost the same. Just take a formula F, V (F; A G) instead of
(Fy A—G) V (F; A G) and use the monotonicity of F(x). O

2.2. The effect of random restrictions

Already in 1961, Subbotovskaya has found an argument to show that some boolean
functions require DeMorgan formulas of super-linear size. Her idea was, given a for-
mula F computing some function f, to set randomly some of the variables to constants
and show that this restriction reduces the size of F considerably whereas the resulting
subfunction of f is not much easier.

Let us recall some notation. Let f be a boolean function, and X = {x4,...,x,} the
set of its variables. A partial assignment (or restriction) is a function p : X — {0, 1, %},
where we understand * to mean that the corresponding variable is unassigned. The
function from f by applying the partial assignment p is denoted by f[,.

Let %, be the set of all partial assignments which leave exactly k variables unas-
signed. What we will be interested in is the random restrictions f [, that results from
choosing a random partial assignment from 2.

The probability distribution of restrictions in %, we will use is the following: ran-
domly assign k variables to be *, and assign all other variables to be 0 or 1 randomly
and independently.

The following lemma shows that a random restriction may substantially reduce
the size of a formula.

LEMMA 2.4 (Subbotovskaya 1961). Let f be a boolean function of n variables, and
let p be a random restriction from %. Then, with probability at least 3/4,

k 3/2
L <4 (1) L.

PrOOE Let F be an optimal DeMorgan formula for the function f of size s = L(f).
Construct the restriction p in n — k stages as follows: At any stage, choose a variable
randomly from the remaining ones, and assign it 0 or 1 randomly. We analyse the
effect of this restriction to the formula F, stage-by-stage.

Suppose the first stage chooses the variable x;. When this variable is set to a
constant, then all the input gates e € F, labeled by the literals x; and Xx; will disappear
from the formula F. By averaging, the expected number of such literals is s/n.

In fact, the formula is likely to be reduced even further. For each of the input gates
e, labeled by x; or X;, consider the gate which e feeds into. For example, suppose the
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gate is e A G for some subformula G. We may assume w.l.0.g. that G does not contain
the literals x; or x; (show this!).

Now, if the variable x; is assigned 0, then the subformula G will disappear from
the formula F, thereby erasing at least one more input gate. Since x; is assigned 0 or
1 randomly (with probability 1/2), we expect at least % . i input gates to disappear

because of these secondary effects. In total, we thus expect at least
s s 3s
n 2n  2n

input gates e € F to disappear in the first stage, yielding a new formula with expected

size at most
3s 3 1) °%/2
s——=s-|1—-— | <s-(1—-=- .
2n 2n n

The succeeding stages of the restriction can be analyzed in the same way. After
each stage the number of variables decrements by one. Hence, after n — k stages, the
expected size E [L( f [g)] of the final formula is at most

11\3/2 1 \32 1 \3/2 I\ 3/2
s-{1-=] -(1- e 1-——) =s-(=) .
n n—1 k+1 n

By Markov’s inequality, the probability that the random variable L(f[,) is more than 4

times its expected value is less than %, which completes the proof. t

CoROLLARY 2.5. Let f be a boolean function of n variables, and 1 < k < n be an
integer. Then there exists a restriction p € &, such that

k 3/2
L <4 (5) 1.

EXAMPLE 2.6. Let f = x; ® X, ® -+ ® x,,. Applying Corollary 2.5 with k = 1 we
have

1 3/2
1< L(fl,) <4 (;) 1(1),
which gives the lower bound L(f) = Q(n*/?).

2.3. An n*° lower bound

Andreev (1987) used Subbotovskaya’s argument to prove the first super-quadratic
lower bound for formula size.

Let X be a set of n boolean variables, where n is a power of 2. Take b := log,n
and m = n/b, and arrange the variables in X into a b X m matrix

X711 X120 ot X

x x “ e x
x = |*2 22 2m

Xp1 Xp2 7 Xpm

Given a boolean function ¢ : {0,1}* — {0,1} on b variables, let f,(X) denote the
following boolean function on n = bm variables X

m m m
fo(X)= go(@xlj,@xzj,...,@xbj) .
j=1 j=1 i=j
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That is, we compute the parity of bits in each row of X and apply ¢ to these parities.

LEMMA 2.7. Let p be a random restriction from %) where k = [bIn(4b)]. Then with
probability at least 3/4, the restriction o assigns at least one * to each of the b rows of X.

Proor. Observe that the restriction p assigns a * to each single variable with prob-
ability (Z:i) [G) = % By the union bound, the probability that some of b rows will
get no * is at most

k m m
b-(l——) Sb.e—%Sb-e_ln(4b)=1/4=3/4. U
n

Let now A, be a boolean function in 2n variables defined as follows. The first
n = 2P variables, b = log, n, specify the truth table of a boolean function ¢ of b
variables. Then, the value of A, is defined to be the value of f,(X), where X is the set
of remaining n = bm variables.

THEOREM 2.8. L(A,) = (HS/Z—O(I)).

Proor Let f = A, and let ¢ be an arbitrary boolean function in b variables. By
Lemma 2.7, we have that with probability at least 3/4, the function ¢ is a subfunction
of f,[,, and hence,

W

PriL(f,lo) = L(p)] =
On the other hand, by Lemma 2.4,
k 3/2
COARERH ey R

Thus, there must be a restriction p € %, for which both these events happen, implying
that

1 bm 32 1 bmY 32
M@»Z(IJ leBZ(IJ L), @1

We already known (Theorem 1.3) that, for almost all boolean functions ¢ in b vari-

ables,
b
L =Q(—.
(v) (logb)

Taking any of these “most complicated” functions ¢ we get from (2.1) that L(f,) is at
least about

bm\3/2 ob n5/2
- e = . 2.2
( k ) logb (logn-loglogn) 2.2)
That is, the function A, has a subfunction whose leafsize is at least this number and,
in particular, is at least Q2 (ns/z_"(l)). t

2.4. Nechiporuk’s theorem

The arguments above only work for DeMorgan formulas, that is, formulas over
the basis {A, v, ~}. Nechiporuk (1966) has found another argument which works for
binary formulas (or formulas over universal basis) where all 2% = 16 boolean functions
in two variables as gates are allowed as gates. Actually, his argument works for circuits
using any c-variable boolean functions as gates, as long as ¢ is an absolute constant,
independent of the number n of variables of the boolean function we want to compute.
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Nechiporuk’s idea is a refinement of that used by Shannon: if a function f has
many different subfunctions, then any formula computing f must also have many dif-
ferent sub-formulas, implying that the original formula for f must be large. To realize
this idea, we have only relate the number of different subfunctions with the formula
size.

A subfunction of a boolean function f(X) on Y C X is a function obtained from
f by setting all the variables of X — Y to constants. A subfunction of a formula F is
the subfunction of the boolean function it computes. Note that the number of different
subfunctions is at most 2/¥! and at most 2X~Y!. Intuitively, if f has many subfunctions,
then it is complicated and hence should require large formulas. This intuition was
made precise by Nechiporuk (1966). We will derive his theorem from the following
more general result.

For a boolean function (or a formula) F, let Sy, (F) be the collection of functions g
on a variable set Y for which either g or —g is a subfunction of F. That is, we include
a function g is Sy (F) is at least one of g and —g is a subfunction of F. Let sizey, (F) be
the number of occurrences of variables of Y in a boolean formula F. A binary formula
is a formula where all boolean functions in at most 2 variables are allowed as gates.

LEMMA 2.9. For every binary formula F and every variable set Y, we have
2|8y (F)|+ 1 < 5szer(F) | (2.3)

ProOE. The lemma is proved by the induction on the leafsize of F. The base case
F = x; of F = —x; divides into two sub-cases (i € Y or i ¢ Y). Both sub-cases satisfy
the claim, because in both of them we have that |S, (F)| < 2.

Assume now by induction that F = F; * F,, where F; and F, satisfy the claim, and
* is a binary operation. For brevity, let S; = Sy (F;) and S, = Sy(F,). Consider the
following two collections of boolean functions on Y:

T={g,*%g,: 9, €S,and g, €S,} and T ' ={~g :g€T}.
Since S; (i = 1,2) contains every subfunction of F together with its negation, we have
that
Sy(F)STU T'US;US,.
Since sizey (F;) + sizey (F,) = sizey (F), we obtain
21Sy(AI+1=2-(ITI+IT'| +1S:]+S.D +1

< 48,11So| + 2|81 +2[S, | + 1

= (2S:]+1)- (2ISy| +1)

< Ssizey(Fl) . Ssizey(Fz) — Ssizey(F)‘ 0

We can now give a general lower bound for formula size.

Let f be a boolean function in n variables, and let L;(f) denote the smallest
leafsize of a binary formula computing f. Fix a partition of the variable set [n] into
m disjoint subsets Y3,...,Y,,. For every i € [m] let ¢;(f) be the number of distinct
subfunctions of f on the variables Y; obtained by fixing the remaining variables to
constants in all possible ways.

THEOREM 2.10 (Nechiporuk 1966).

Ly(f) 2 ) logs (26:(f)+1).

i=1
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Proor. Take an arbitrary binary formula F for f. Since the Y;’s are disjoint, the
leafsize of F is equal to Zznzl sizey (F). Since clearly |Sy. (F)| = c;(f), the desired lower
bound on this sum follows directly from (2.3). O

A standard example of a function with many subfunctions is the element dis-
tinctness function. This function takes a string s;,...,s,, of m elements of the set
[m?] = {1,...,m?} and outputs 1 iff all the s; are distinct. If we encode the elements
of [m?] by binary strings of length 2logm, then we obtain a boolean version of this
function in n = 2mlogm variables. Consider the input vector x € {0, 1}" to represent
m strings s;,...,s, each of length 2logm where n = 2mlogm. Define the function
ED, so that it is 1 iff all the s; are distinct.

TueoreEM 2.11 (Element Distinctness Function).

n2
Ly(ED)=9(—).
U( n) log n
Proor. Let f = ED, and take a partition Y7, ...,Y,, of the variables of f according
to the blocks sy, ...,s,,. We claim that for each of these m blocks we have

2 2 m—1
N > m > m — ze(mlogm)
“\m-1) 7 \m-1

different subfunctions of our function f. Indeed, (mm_zl) is the number of ways to chose
a string a = (a,, ..., a,) with all the q; distinct. If b = (b,,..., b,,) is another such
string, then there must be an q; such that a; & {b,,..., b, }. But for such an q;, the
subfunction defined by a outputs 0 on input a;, whereas that defined by b outputs 1
on the same input a;. Hence, all the subfunctions are distinct.

Since logs N = Q(mlog, m) = Q(n) and m = Q(n/logn), Nechiporuk’s theorem
yields the desired lower bound on the leafsize. O

2.5. Khrapchenko’s theorem

For DeMorgan formulas, we have yet another lower bounds argument, due to
Khrapchenko (1971). He used this argument to prove a lower bound n? for the par-
ity function f(xq,...,x,) = x; ® X, ® --- ® x,. Later, Rychkov (1984) observed that
the essence of Khrapchenko’s argument is more general: it reduces the lower bounds
problem for DeMorgan formulas to a combinatorial problem about the covering of the
rectangle

S =F71 ) x F7()

by pairwise disjoint monochromatic rectangles (see Lemma 1.8):

L(f) = D(sp),

where D(S) is the smallest number t such that S can be decomposed into t disjoint
monochromatic rectangles. We can use Rychkov’s lemma to derive the well-known
lower bound due to Khrapchenko (1971).

The Hamming distance dist(x, y) between two vectors x and y is the number of
positions in which these two vectors differ. Intuitively, if S; contains many edges (x, y)
of distance 1, then every formula separating these edges must be large, since the for-
mula must distinguish many pairs of “very similar” inputs (they differ in just one bit).
The following theorem of Khrapchenko makes this intuition precise.
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TueorEM 2.12 (Khrapchenko 1971). For every boolean function f we have that
Y 2
L(f)=D(Sf) = % where Y = {(x,y) €S | dist(x,y) =1}.
f
Proor. The main property of the set Y is accumulated in the following
CramM 2.13. If M = M° x M! is a monochromatic subrectangle of S 7, then
[MNY]* < |M°-|M!].

PrOOE. Since the rectangle M = M° x M! is monochromatic, each element of M°
differs from each element in M! in one particular position j, whereas (x,y) is in Y
only if x and y differ in exactly one position. Hence, for any given x € M, the only
possible y € M! for which (x,y) € Y is one which differs from x exactly in position j.
As a result, we have [M NY| < |M°| and |[M NnY| < |M!|, and the desired upper bound
on [M NY|? follows. O

Consider now a partition My, ..., My of S into d = D(Sy) disjoint monochromatic
rectangles, as in Rychkov’s lemma. Since the rectangles are disjoint and cover the
whole rectangle S;, we have that |Y| = Z?:] |[M; NY| and hence,

d 2 d
Y2 = (Z'Mi mYl) <d Y IMnYP?
=1

i=1
d d
<d- > MO M} =d- > M| =d-IS;],
i=1 i=1

where the first inequality follows from the Cauchy-Schwarz inequality

(iai b)? < (iaf) : (i b2). O
i=1 i=1 i=1

Khrapchenko’s theorem can be used to show that some explicit boolean functions
require formulas of quadratic size. Consider, for example, the parity function f =
X, @ -+ @ x,, where n is a power of 2. Then S| = 2n~1.on=1 whereas |Y| = n2" L.

Hence,
n292(n-1)

L(X1®"'®Xn)2 W =Tl2.
2.6. Complexity is not convex

Khrapchenko’s measure is of the form

(R):= R ('Y”R') 2.4)
A T ‘

where Y = {(x,y) € R | dist(x,y) = 1} and p(x) = x2. Exercise 2.2 shows that
this measure cannot yield larger than Q(n?) lower bounds. All subsequent attempts to
modify his measure with the goal to brake the "n? barrier" failed (so far). So, what is
bad with this measure? Perhaps larger lower bounds can be obtained by taking other
subsets Y of special entries and/or using some other functions ¢ (x) instead of x2?
The answer is somewhat disappointing. Namely, it turns out that the reason for the
failure of Khrapchenko-type measures is much deeper than expected: for any choice
of Y € S and for every convex function ¢(x), the resulting measure is convex, and
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convex measures cannot yield super-quadratic lower bounds. To show this, we first
define what is meant under a “convex” rectangle measure.

Let R be a rectangle, and M,,..., M, be all monochromatic subrectangles of R. A
fractional partition of R is just a sequence ry,...,r, € [0,1] of real numbers such that

Z r;=1 forall eeR.
i:eeM;

If y¢ is the characteristic function of a rectange S, that is, ys(e) = 1 iff e € S, then this

condition can be written as
t

XRZZri'XMi'

i=1
We will shorten this last condition as
t
R - Z rl' . Mi .
i=1
Note that every fractional partition with all r; in {0, 1} is just a partition of R in a usual

sense.

DerINITION 2.14 (Convex measures). A rectangle function is a mapping u that as-
signs to each rectangle R a real number u(R). Such a function is convex if, for every

sequence ry,...,r, of real numbers in [0, 1],
t t
R= Z r;-M; implies w(R) < Z i w(M;). (2.5)
i=1 i=1

A rectangle function u is a rectangle measure if it is normalized, that is, if u(M) <1 for
any monochromatic rectangle M.

Hence, if u(R) is a rectangle measure, then its convexity just means that

u(R) < n(R),

where 7(R) is the fractional partition number of a rectangle R defined by:
t
n(R) = minZ i,
i=1

where the minimum is over all fractional partitions rq,...,r, of R.
The following is an analogon of Khrapchenko’s theorem for fractional partition
number.

THEOREM 2.15. For every rectangle R we have that

2
(R) > % , where Y ={(x,y)€R]|dist(x,y)=1}.
Proor. Applying the duality for linear programs, one can write the fractional par-
tition number as
n(R) = maxZ w(e),
v e€s
where the maximum is over all functions w : R — R satisfying the constraint

Zw(e) <1

eeM
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for all monochromatic rectangles M € R. Hence, in order to prove a lower bound
m(R) > t it is enough to find at least one weight function w : R — R such that
ZeES w(e) > t, and the weight of each monochromatic rectangle does not exceed 1.
We define the weight w(e) of each edge e € R by:
-1 .
_ p ifeey,
w(e) _{ —p~2  otherwise,

where p > 0 is a parameter to be specified soon. Since only entries of Y have positive
weights, the heaviest rectangles M are the square ones with exactly one entry from Y
in each row and column. For a k x k such square we have

kK k(k—-1) k k—1
;MW(E)ZE—p—ZSE(l—T)Sl.

Indeed, if k > p + 1 then the expression in the parenthesis is at most 0, and if k < p
then both terms are at most 1. Hence, w is a legal weight function, and we obtain

Yl IRI-Y] Y] IR| — Y]
TC(R)ZZW(e):——iz z_( _E )
= p p p plY|
For p = 2|R|/|Y|, the expression in the parenthesis is at least 1/2, and we obtain
lY[?
m(R) > —. O
4IR|

Hence, one can obtain quadratic lower bounds using the fractional partition num-
ber, as well. We now show that this is actually all what we can get using any convex
rectangle measure.

THEOREM 2.16. If a rectangle measure u is convex, then w(R) = O(n?) for every
n-dimensional rectangle R.

ProOFE. Associate with each subset I C [n] = {1,...,n} the following two parity
rectangles.
S;={x | ®iex; =0} X {y [ ®ie1y; = 1}
and
T; = {x [ ®ie;x; = 1} X {y | ®;¢;y; = 0}.
Hence, monochromatic rectangles correspond to the case when |I| = 1. There are
exactly 2" parity rectangles.

Cramv 2.17. Every edge (x,y) € {0,1}" x {0,1}" such that x # y belongs to 2"
parity rectangles.

Proor. For I C [n], let v; € {0,1}" be its incidence vector. If x # y, then x ® y
is not a zero vector. Since each nonzero vector is orthogonal over GF(2) to exactly
half of the vectors in {0, 1}", this implies that precisely 2"~! of the vectors v; are non-
orthogonal to x @ y. This means that (x, y) belongs to precisely 2" ! of the sets S; UTj.
Since S; N T; =0, we are done. O

Let now R be an n-dimensional rectangle. Let %, be the set of all parity rectangles
S;NRand T; NR restricted to R. For counting reasons, we shall understand %,,,, as a
multi-set, elements of %,,,, corresponding to different parity rectangles are considered
different. Under this provision, %, has size 21 and by Claim 2.17 every edge in S
is contained in exactly 2""! elements of Rpar-
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It can be shown that, for every I C [n], each of two I-parity rectangles can be cov-
ered by at most 4|I|? disjoint monochromatic subrectangles (see, for example, Propo-
sition 8.2 in Section 8). Let .#, be the set of all these (at most 8|I|2) monochromatic
rectangles, and ./ be the union of all .#,’s. Since u is a rectangle measure, we have
that u(M) <1forallM e ..

Since the rectangles in each .#; are disjoint, we have that each e € R belongs to
precisely 2" ! rectangles in .#. Hence, we can obtain a fractional partition of R by
setting ry; = 2~(""Y for all rectangles M € ., and r,, = 0 for all other rectangles.
Since |.#;| < 8|I|> < 8n? for each I, the convexity of our measure u implies that

u(R) < Z o (M) < Z rM:Z Z 9—(n-1)

Me Me# I Me,

< 2-(n=1) § (n) 8n? =8n22 - (""Dan = 16n2. 0
n 1
i=0

Call a rectangle function y additive if u(R) = Y, , u(e). It can be shown (Exer-
cise 2.3) that for such functions we have equality in (2.5). A rectangle function y is
positive if u(R) > 0 for every non-empty rectangle R.

Consider now Khrapchenko-type rectangle functions, that is, functions u of the

form
R =s(R)- ¢ (L2 (2.6)
=3 . , .
where ¢ : R — R is convex function, w(R) is some “weight” function of rectangles, and
s(R) is some additive and positive rectangle function, the “size” of rectangles.

THEOREM 2.18. A rectangle function u defined by (2.6) is convex if either w(R) is
additive, or w(R) is convex and  is nondecreasing.

Proor. To prove the first claim, assume that both w(R) and s(R) are additive, and
letR4,...,R,,,1;...,T, be a fractional partition of R. Sets; = s(R;) and w; = w(R;). By
Exercise 2.3, we have that w(R) =) . r;-w; and s(R) =D, 1 - s;.

For a real convex function ¢, numbers x; in its domain, and positive weights a;,
Jensen’s inequality states that

() B

Applying this we obtain (where the sums are over all i with r; > 0):

2.7

w(R)
puR)=s(R)- ¢ (@)
= (Z rl-sl-) < (ZZ:’:I:/[) Exercise 2.3
< Z 1S (%) (2.7) with a; = r;s; and x; = w;/s;

= Z ri(R;) .

If w(R) is convex and ¢ is nondecreasing, then we can replace the second equality by
inequality, and the desired inequality u(R) <Y, r; - u(R;) still holds. O



30 2. BOOLEAN FORMULAS: THE CLASSICS

Note that Khrapchenko’s measure (2.4) has the form (2.6), where p(x) = x?isa
nondecreasing convex function, and both s(R) = |R| and w(R) = |Y NR| are positive
additive functions. Hence, this measure is convex.

By Theorem 2.16, neither taking another sets Y of “special” edges nor taking an-
other convex function ¢ can lead to a better rectangle measure than Khrapchenko’s
one: none of them can yield super-quadratic lower bounds on the formula size.

Call rectangle measures of the form (2.6) polynomial measures of degree k if ¢ (x) =
x¥ k > 1. That is, each such measure has the form

where w(R) is some additive rectangle function, and s(R) is some additive and positive
rectangle function.

We have seen that no polynomial measure of degree k > 2 can yield a super-
quadratic lower bound. But what about measures of smaller degree—can we then
obtain larger lower bounds?

If the weight function w(R) is additive positive, then the answer is negative.

PropOSITION 2.19. Let R be an n-dimensional rectangle. If a polynomial measure
of degree k uses positive weight function w(R), then

u(R) < (2n)*.
Note that for k < 2 this is o(n?).

ProOE. The normalization condition u(M) < 1, for a monochromatic rectangle M
implies that
w(M) <s(M)' 7k,
Since every n-dimensional rectangle can be (non-disjointly) covered by at most 2n
monochromatic rectangles M; ., we have

w(R) < Y w(M;,) <D s(M; )R < 2n - sR)VE

Dividing by s(R)' /% and raising to the power k we get the inequality. t

In Proposition 2.19 we have two requirements on the weight function w(R): it
must be additive and positive. Let us look at what happens, if we relax any of these
two conditions.

First, let us require that w(R) is positive but not necessarily additive. Namely, say
that a rectangle function u is subadditive if uw(R) < u(R;) + w(R,), as long as R is a
union of two disjoint rectangles R; and R,.

If we define w(R) = L(R) to be the smallest size of a formula separating R, then
w(R) is subadditive (show this!) and positive. Take s(R) := |R|. The resulting rectangle
function w(R) = w(R)*/|R|*"! is normalized since L(R) is normalized. Most boolean
functions in n variables, and hence, most n-dimensional rectangles R require L(R) >
2m(1-o()  For such rectangles R, measure u(R) gets asymptotically close to the values

2kn

_ on(2—k)
22n(k—1) =2 :

Hence, polynomial measured of degree k < 2, based on positive and subadditive
weight measures w(R) can yield even exponential lower bounds!
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But what is we would require the weight function w(R) be additive and allow
to take also negative values? That such measures, even for k = 1, can yield quadratic
lower bounds, was show in the proof of Theorem 2.15. The measure w(R) = ZeeR w(e)
constructed there is additive, but takes positive as well as negative values.

RESEARCH PROBLEM 2.20. Can rectangle measures u(R) = w(R)*/|R[*"* with 1 <
k < 2 yield super-quadratic lower bounds when the weight function w(R) is an additive,
but not necessarily nonnegative rectangle function?

Most of the known rectangle measures are defined by associating with a boolean
function f in question, a matrix A: Sy — I over some field F. Given a matrix parameter
p(A) (rank, norm, etc.) one obtains a rectangle function R — p(Ag), where Ay denotes
the restriction of A to the rectangle R obtained by setting to O all entries outside R. To
have a rectangle measure we need to normalize this function. This is usually made by
taking

ua(R) =

and the maximum is over all monochromatic subrectangles M of the “ambient” rectan-
gle S¢; C is the normalization constant.

In matrix terms, the convexity condition turns to: for every sequence ry,...,r, of
real numbers in [0, 1],

p(Ag)
c where szﬂ?xp(AM)

t t
Ag = Z ri-Ay, implies p(Ag) < Z ri - p(Awm,)- (2.8)
i=1 i=1
Interesting measures can be obtained from matrix norms. A mapping A — ||A]| is a
matrix norm if it satisfies all the properties of vector norms: (i) ||A|| > 0 with equality
if and only if A = 0; (ii)||rAl| = |r| - ||A]| for all numbers r and all matrices A, and (iii)
l|A+ BJ| < ||A]| + ||B]| for all matrices A and B.
In particular, any rectangle function of the form u(R) := ||Ag|| is convex. Moreover,
by Theorem 2.18, if ¢ is a non-decreasing convex real function and s is an additive
rectangle function, then the rectangle function

(R) =5 - 1] 29)
u 2 sR) )’ .
is also convex, and hence cannot give better than O(n?) lower bounds.

The spectral norm of A is defined by

|x"Ay|
IAll = max ————-,
xy#0 [[x|lo |y Il
where [|x[l, = (3, xl.z)l/ 2 is the Euclidean norm of x. Associate with every matrix A the
following rectangle measure

[1ARlI3

SREr—— (2.10)
maxyy [[Ayl;

ua(R) =

where the maximum is over all monochromatic subrectangles M of R. It can be shown
that this measure is convex (Exercise 2.7).

Another important parameter of matrices is their rank. Given an n X n matrix A

(over some field), we can associate with it the following measure for n-dimensional
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rectangles:
rk(Ag)

max,, rk(4,,)’ @10

ea(R) =
where the maximum is over all monochromatic subrectangles of R. If rk(Az) = 0 then
we set p4(R) =0.
Subadditivity of rank implies that these measures are subadditive. But it turns out
that rank-based measures are not convex.

ProprosITION 2.21. For any even integer n there is an n x n (0, 1) matrix A such that
the measure p, is not convex.

Note that the rank parameter itself is not convex by a simple reason: if A=r-B
for some 0 < r < 1, then rk(A) = rk(B), not rk(A) < r - rk(B). For rank based rectangle
measures this is no more so obvious: the matrix A on both sides of the first equality in
(2.8) is the same.

PROOE. Let n be even. Take a rectangle R = R® x R! with R® = {x;,...,x,} and
R'={y,...,y,} where x; = ¢;, y; = e; + ¢;;; and ¢; € {0,1}"*! is the ith unit vector.
Let A be the complement of the n X n unit matrix. We define the fractional partition of
the rectangle R into monochromatic subrectangles as follows.

For every i € [n] we take the size-1 rectangle M; = {(x;,y;)} and give it weight
r; = 1. To cover the rest of the rectangle R, we use rectangles

My ={(xpy)iel,j¢l}

for all I C [n] of size |I| =n/2, and give them weight

SR

With such a choice of the numbers r; and r;, the left-hand side equality in (2.8) holds,
because rectangle M; contains n?/4 of the n> — n ones in A and there are (n72) such
rectangles.

For every i € [n] we have that u,(M;) = 0 since we have only 0’s on the diagonal
of A. For every subset I of [n] we have that u,(M;) = 1 since there are no 0’s outside
the diagonal, implying that A, is an all-1 matrix. Hence, on the right hand side of
the corresponding inequality in (2.8) for convexity we have the sum of n zeros (the
ranks of the size one matrices on the diagonal) and (nr/'z) terms each being at most

4(n'/’2)_1, implying that the right hand sums to at most 4. On the other hand, since
rk(A) is n or n — 1 (which depends on n and the field), on the left hand side we have
pa(R) = (n—1)/2: by the construction of R, no monochromatic subrectangle M of R
can hit the diagonal in more than one entry, implying that rk(4,,) < 2. t

We have shown that, for some measures u,, the convexity inequality (2.8) fails
badly: the right hand side is constant whereas the left had side is Q(n). Since the
measures u, based on the rank are not convex, Theorem 2.16 does not apply for them.
Still, Razborov (1992b) proved that these measures belong to the class of so-called
submodular measures, and none of them can yield larger than O(n) lower bound.
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2.7. Complexity is not submodular

In order to prove that some boolean function f requires large formulas, one tries
to find some clever “combinatorial” measure y on the set of all boolean functions
satisfying two conditions: u(f) is a lower bound on the size of any circuit computing
f,and u(f) can be non-trivially bounded from below at some explicit boolean functions
f. One class of such measures, proposed by Mike Paterson, is the following.

Let 9, be the set of all boolean function in n variables. A formal complexity mea-
sure of boolean functions is a mapping u : %, — R which assigns positive values to
each boolean function. The requirements are that u is normalized, that is, assigns each
literal a value < 1, and satisfies the following two simple rules for all f, g € 93,,:

u(f vg) <ulf)+ulg); (2.12)
u(f Ag) < u(f)+u(g). (2.13)

Note that the minimal formula size L(f) itself is a formal measure with both inequali-
ties being equalities.

In order to understand what measures are “good” (can lead to large lower bounds)
it is important to understand what measures are “bad”. We have already seen that
convex measures are bad. There is another class of bad measures—submodular ones.

A formal complexity measure u : 9B, — R is submodular if it is normalized and for
all f,g € 8,,

plf Ag)+plf v g) < ulf)+ ulg). (2.14)
Note that this condition is stronger than both (2.12) and (2.12).

THEOREM 2.22. If u is a submodular measure on A, then u(f) < O(n) for each
f € A,

ProoE Let g, be a random boolean function in d variables x, ..., x4. That is, we
choose g ; randomly and uniformly from 98,;. We are going to prove by induction on d
that

E[u(g,)] <d+1. (2.15)

Given a variable x;, set xi1 = x; and x? =X;.

Base. d = 1. Here we have u(g(x;)) < 2 for any g(x;). This follows from the
normalization condition if g is a variable x,; or its negation Xx;. By the subadditivity
we also have

p(0) + p(1) = plxy Axy) + plx Vxg) < plxq) +p(x;) <2

which proves p(g(x;)) < 2 in the remaining case when g is a constant.
Inductive step. Assume that (2.15) is already proved for d. Let the symbol ~ mean
that two random functions have the same distribution. Note that

~ (00 A 40 1, 1
8a+1 ™ (gd/\xd+1)v (gd/\xd+1), (2.16)
where gg and gcli are two independent copies of g ;. By duality,

o™ (84 Vxg) A (85 Vxi)- (2.17)

By the linearity of expectation, we obtain from (2.16) and (2.12) (remember that the
latter is a consequence of the submodularity condition) that

E[ugy)] <E[u(8inx%,)] +E[u(ginx,)] (2.18)
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and similarly from (2.17) and (2.13),

E [u(gd+1)] <E [,u (g‘d) Vx2+1)] +E [,u (gé VX;H)] . (2.19)

Summing (2.18), (2.19) and applying consecutively (2.14), normalization of u and
the inductive assumption (2.15), we obtain

2B [p(g,y,)] Eu(ggnxd,,)] +E[u(8gqvxg,)]+
Eu(giAxia)] +E[1(8aVxin)]

< E[uE)]+uGd, ) +E [uEgh] +ulxi,)
< Z'E[M(gd):|+2
< 2d+4.

This completes the proof of (2.15). But this inequality only says that the expected value
of u(g,) does not exceed n + 1 for a random function g, , whereas our goal is to give
an upper bound on u(f,) for each function f,. So, we must somehow “de-randomize”
this result. To achieve this goal, observe that every function f, € F, can be expressed
in the form

fa=, N, 0f, 1) Vg, ®@1)N(g,Sf) (2.20)
Butg, ~g, ®f,®l~g ®1l~g, @ f,. So,applying to (2.20) the inequalities (2.12)
and (2.13), averaging the result over g and applying (2.15) with d = n, we obtain
u(f) =E[u(f,)] <4-E [u(gn)] < 4n +4, as desired. O

2.8. The drag-along principle

Suppose we want to prove that a boolean function f has high complexity, say,
requires large DeMorgan formulas over A, V, . If the function is indeed hard, then it
should have some specific properties forcing its formulas be large, that is, fooling every
small formula to make an error.

It turns out that formal complexity measures cannot capture any specific proper-
ties of boolean functions. When using such measures, every lower bound for a given
function f must also prove that many other unrelated functions have large complexity.
Thus, we cannot use any special properties of our function!

THEOREM 2.23 (The Drag-Along Principle). Suppose u is a formal complexity mea-
sure and there exists a function f € 9B, such that u(f) > s. Then, for at least 1/4 of all
g in B, u(g) >s/4

PrOOE. Let g be any function in 43,. Define f =h@® g where h = f @ g. Then,
p(f) < u(g) + u(~g) + u(h) + u(=h). (2.21)
This follows from (2.12) and (2.13) and the definition of parity,
f=Ueg)eg=h®g=(hAg)V(“hA~g).

By way of contradiction assume that the set ¥ = {g € %, | u(g) < s/4} contains
more than 3/4 of all function in 43,,. If we pick the above function g randomly in %,
with probability |4,|™!, then —g, h,—h are also random elements of %, (though not
independent) each with the same probability. Using the trivial union bound we have

1
Pr[some of h,—h,g,—g isnotin ¥] < 4- y =1.
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Thus, there must be at least one choice for g such that all four functions h,—h, g, g
belong to ¥, that is, have measure < s/4. By (2.21), this implies that u(f) < s, which
is a contradiction. |

Thus, if one uses a formal complex measure to prove that f is complex, then one
proves much more! That is, any lower bounds proof for formulas, based on some
formal complexity measure u(f ), automatically fulfills the “largeness” condition of so-
called “natural proofs” (we sketch this important concept in Appendix): if u(f) is large
for some specific function f, then u(f) must be also large for a random function f. So,
for such a proof to be “unnatural,” the predicate “u(f) > t” must be not constructive,
that is, must be not computable in exponential(!) time 2°(™,

Exercises

Ex. 2.1. Let n =2m+1, and consider the majority function MAJ,,, which outputs 1
iff x;+...4+x, = m+1. Use Khrapchenko’s theorem to show that this function requires
DeMorgan formulas of size Q(n?). Hint: Consider the subrectangle A x B C Sy of f = MAJ, with
A={a:|a|=m+1} and B={b : |b| = m}.

Ex. 2.2. Show that Khrapchenko’s theorem cannot yield larger than quadratic
lower bounds. Hint: Each vector in {0, 1}" has only n neighbors, that is, vectors y with dist(x,y) = 1.

Ex. 2.3. Show that, if u is an additive rectangle function then, for every fractional
partition R = Y, ; - R;, we have that u(R) = >, r; - u(Ry).

Ex. 2.4. Show that any linear combination of convex rectangle functions is a
convex rectangle function.

Ex. 2.5. Let a(R) and b(R) be arbitrary additive nonnegative rectangle functions,
and consider the rectangle function
_ fa(R)
g(b(R))’
where f,g : R — R are non-decreasing, and f is sub-multiplicative in that f(x - y) <

f)-f(y).
Show that, if u is normalized then, for every n-dimensional rectangle R, we have
that u(R) < ¢(2n).

Hint: Consider a covering of R by 2n (overlapping) monochromatic rectangles.

u(R)

Ex. 2.6. Consider rectangle measures of the form u(R) = w(R)X/|R[*"!, where
w(R) is an arbitrary subadditive rectangle function: if R=R; U---UR, is a partition of
R, then w(R) < w(R;) + - -+ + w(R,). Recall that Khrapchenko’s measure has this form
with k = 2 and w(R) being the number of pairs (x,y) € R with dist(x,y) = 1. The
goal of this exercise is to show that, for k > 2, such measures fail badly: they cannot
yield even non-constant lower bounds!

Namey, let S, be the rectangle of the parity function in n variables. Show that, for
every constant k > 2 there is a constant ¢ = ¢, (depending only on k, not on n) such
that u(S,) <c.

Hint: Consider the following “first difference” decomposition of S,. For 1 <i < n, ¢ € {0,1} and a
string u € {0,1}, let Rije be the rectangle consisting of all pairs (x,y) such that x;.; = ¢, y;;1 =1—¢
and x; = y; = u; for all j =1,...,i. Use the normalization condition u(RL’S) <1 to show that the sum of
u-measures of these rectangles is constant.
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Ex. 2.7. Prove that the spectral norm measure u,(R), defined by (2.10), is convex.
Hint: Show that the rectangle function s(R) = ||x RII% . ||yR||§ is additive, and use Theorem 2.18.

Ex. 2.8. Let A and B be two disjoint subsets of {0,1}". Define the set A® B to
contain all pairs (a, b) of vectors a € A and b € B such that a and b differ in exactly
one bit. Define now the measure

|IA® B|?
p(f)= ;
|A[ - |B|

where A= f~1(0) and B = f ~!(1). Observe that this is the measure used in Khrapchenko’s

theorem (Theorem 2.12). Prove that u(f) is a formal complexity measure.
Hint: Argue by induction as in the proof of Rychkov’s lemma (Lemma 1.8). In the induction step use
the inequality

9, %, (ata?
ay-b  ay-b” (a;+ay)-b
which can be checked by a cross-multiplication.
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CHAPTER 3

Monotone Formulas

We now consider monotone formulas, that is, formulas with fanin-2 AND and OR
gates. Such formulas can only compute monotone boolean functions, that is, functions
f such that f(x) < f(y) as long as x; < y; for all positions i. Let L (f) denote the
smallest leafsize of (=the smallest number of leaves in) a monotone formula comput-
ing f. Just like for DeMorgan formulas (with AND, OR and NOT gates) it is possible
to lower bound L. (f) by a monotone decomposition number D (Sy) of the rectangle
Sy =F71(0)x £ (D).

Recall that an n-dimensional rectangle is just a Cartesian product R = S x T of
subsets S, T C {0,1}", SNT = 0. A rectangle R is monochromatic if all its edges
(a,b) € R are separated by some literal’ in that x{(a) = 0 and x7(b) = 1. If this
separation is done by a monotone literal, that is, by a variable x; (and not by its
negation —x;) then we call R monotone. rectangle!monotone That is, a monochromatic
rectangle is monotone if there is a position i such that a; = 0 and b; = 1 for all
(a,b) e M.

The monotone partition number D_(S) of a rectangle S is the smallest number ¢
such that S can be decomposed into t disjoint monotone monochromatic rectangles.
Note that this measure is defined not for all rectangles. A simplest counterexample is
a rectangle S = {(1,0)}, consisting of just one pair of vectors. If, however, S C S; :=
F710) x f71(1) for a monotone boolean function f then, for every (a,b) € S, there
must be a position i for which a; = 0 and b; = 1. Hence, in this case D_(S) is well
defined.

LEmMMA 3.1. For every monotone boolean function f and for every rectangle S < S
we have that

L (f)=D.(S).

ProOE. The proof is the same as that of Rychkov’s lemma (Lemma 1.8). The only
difference is the basis case L (f) = 1. Since in this case we have no negated variables
at all, the function f must be just a single variable x;, implying that S; itself is a
monotone monochromatic rectangle. The induction step is the same. O

3.1. The rank lower bound

To bound D, (S ) from bellow, Razborov (1990) suggested to use rank arguments,
where the rank is over some (fixed in advance) field F. Given a rectangle R, we denote
by Ay the matrix which is obtained from the matrix A by changing to 0 all its entries
(u,v) €R. Let also rk(A) denote the rank of A over F.

1_

1 As before, x; =x; and x? = X;.
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LEMMA 3.2. Let f be a monotone boolean function, I € f~(0) and J € f~'(1).
Then for every |I| X |J| matrix A # 0,
rk(A)

L+(f)2m,

here the maximum is over all monotone monochromatic subrectangles of I X J.

3.1

Prook Let t = L, (f). By Lemma 3.1 we know that there must exists a set
of |#| < t monotone monochromatic rectangles such that all the rectangles in # are
pairwise disjoint, and their union covers the whole rectangle I X J. So A = ZRG% Ag,
and hence, by the subadditivity of rank,

tk(A) < ) rk(Ap) <22 maxrk(Ag)
ReZz
implying the desired lower bound on || and hence, on t = L(f). O

It is clear that the same lower bound (3.1) also holds for non-monotone formulas,
if we do not require monochromatic rectangles be monotone. However, Razborov
(1992b) has proved that in this (non-monotone) case the result is useless: for any
boolean function f in n variables, the fraction on the right-hand side of (3.1) is then a
submodular measure, and hence, cannot exceed O(n) (see Theorem 2.22). Fortunately,
in the monotone case, Lemma 3.2 can give large lower bounds, and we are going to
show this in the next two sections. But before, let us make a note on notation.

Boolean functions f : {0,1}" — {0, 1} are predicates on the n-cube. It is however
often more convenient to identify each vector a € {0, 1}" with the set {i | a; = 1} of its
1-positions, and look at boolean functions as predicates on the family of all subsets of
[n] ={1,...,n}. In these terms, (a, b) is separated by a variable x; iff i € a and i € b.

3.2. Lower bounds for quadratic functions

A monotone quadratic function of a graph G = ([n],E) is a monotone boolean
function
fo(xq, .o, x,) = \/ X AX;.
{i,j}eE
Note that fz(a) = 0 iff I = {i | q; = 1} is an independent set in G. It is clear that
L,(fg) < |E| for any graph G, but for some graphs this trivial upper bound is very far
from the truth.

ExampLE 3.3. Let G = ([n],E) be a complete bipartite graph with E = S X T,
SNT =0 and |S| = |T| = n/2. Then |E| = n?/4, but f; can be computed by a

monotone formula
F(xy,...,x,) = (\/xi) A (\/xj)

€S JeT
of leafsize |S|+ |T| = n.
So, a natural question is: what quadratic functions require monotone formulas
of super-linear size? We will use the rank argument to show that such are boolean

functions defined by dense graphs without 4-cycles. A 4-cycle in G is a set vq, vy, V3, V4
of four distinct vertices such that v, v,, v,v4,v3v, and v,v; are edges of G.

THEOREM 3.4. If G = (V, E) is a triangle-free graph without 4-cycles, then
Li(fe) Z |E|/2.
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FiGUurE 1. The cases when x € V and when x € E.

Proor. We look at vertices as one-element and edges as two-element sets. For a
vertex x € V, let I, be the set of its neighbors. For an edge x € E, let I, be the set of
all its proper neighbors; that is, v € I, precisely when v & x and v is adjacent with an
endpoint of x. Since G has no triangles and no 4-cycles, the sets I, are independent
sets, and must be rejected by f. We will concentrate on only these independent sets.

Let A be a (0,1) matrix whose rows correspond to independent sets I, with x €
V UE, and columns to edges y € E. The entries are defined by

1 ifxNny#0,
A =
b y] {O ifxny=40.

Cramm 3.5. If M is a monotone monochromatic rectangle, then rk(4,,) < 2.

Proor Since M = M° x M! is monotone and monochromatic, there must be a
vertex v € V such that

vgl, andveyforallx e M°and y € M.

Hence, for each x € M°, we have two possible cases.

Case 1: v € x. Since v € y for all y € M?, in this case we have that xNy 2 {v} # 0,
implying that A,;[x,y] = 1 for all y € M. That is, in this case the x-th row of A;; is
the all-1 row.

Case 2: v & x. We claim that in this case the x-th row of A,; must be the all-0 row.
To show this, assume that A,;[x,y] = 1 for some y € M*. Then x Ny # @, implying
that x and y must share a common vertex u € x Ny (see Fig. 1). Moreover, u # v
since v & x. Together with v € y, this implies that y = {u,v}. Butthenv €1, a
contradiction. O

By Lemma 3.2, it remains to show that the entire matrix A has full column-rank
|E| over GF(2).

Take an arbitrary subset ) # F C E of edges. We have to show that the columns
of the submatrix A’ of A corresponding to the edges in F cannot sum up to the all-O
column over GF(2). If F is not an even factor, that is, if the number of edges in F
containing some vertex v is odd, then the row of v in A" has an odd number of 1’s, and
we are done.

Hence, we may assume that F is an even factor. Take an arbitrary edge x =uv € F,
and let H C F be the set of edges in F incident to at least one endpoint of x. Since
both vertices u and v have even degree (in F), the edge x has a nonempty intersection
with an odd number of edges in F: one intersection with itself and an even number
of intersections with the edges in H — {x}. Hence, the row of x in A’ contains an odd
number of 1’s, as desired. t

Explicit constructions of dense triangle-free graphs without 4-cycles are known.
Such is, for example, the point-line incidence n x n graph H of a projective plane
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PG(2,q) for a prime power q. Such a plane has n = g% + q + 1 points and n subsets
of points (called lines). Every point lies in g + 1 lines, every line has q 4+ 1 points, any
two points lie on a unique line, and any two lines meet is a unique point. Now, if we
put points on the left side and lines on the right, and joint a point x with a line L by
an edge iff x € L, then the resulting bipartite n x n graph will have (q + 1)n = ©(n®/?)
edges and contain no 4-cycles. For this graph Theorem 3.4 yields

COROLLARY 3.6. L, (fy)=0(n%?).

3.3. A super-polynomial lower bound

Let G = (U, V,E) be a bipartite graph with V. ={1,...,n} and U = {n+1,...,2n}.
For a subset S C U of vertices on the left part, let
r(8):=4{jeVv|(i,j)<€EforalieS}

denote the set of its common neighbors of S on the right part. Associate with G a
monotone boolean function f; in 2n variables defined by:

fo(x1,..., X0) = \/ /\ X -
SCU,IS|<k i€SuTy(S)
That is, fz(x) = 1 iff there is a subset S € U of size |S| < k such that x; = 1 for all
ieSuUT(S).
By its definition, the function f; can be computed by a trivial monotone formula
of leafsize at most Zlel(r:) < n°®. We will show that, for some explicit graphs G,

this trivial upper bound is almost optimal. The proof will be based on the (quite often
used in circuit complexity) fact that so-called “disjointness matrices” have large rank.

3.3.1. Disjointness matrices. The k-disjointness matrix D, ; is a (0,1) matrix
whose rows as well as columns are labeled by all Zf:o (1) subsets a of [n] of size at
most k; the entry in the a-th row and b-th column is defined by:

0 ifanb#40,
1 ifanb=0.

This matrix plays an important role in computational complexity.

Dn,k [a; b] = {

LEMMA 3.7. The k-disjointness matrix D = D(n, k) has full rank over GF(2), that is,

k
k(D)= (';) :

i=0

PROOE. Let N = Z?:o (7). We must show that the rows of D are linearly indepen-
dent over GF(2), i.e., that for any non-zero vector A = (4;,4,,,...,4; ) in GF(2)N we
have A - D # 0. For this, consider the following polynomial:

flxq,..,xy) = Zkll_[xi.

i<k  iel

Since A # 0, at least one of the coefficients A; is nonzero, and we can find some I,
such that A; # 0 and I, is maximal in that A; = O for all I O I,. Assume w.l.0.g. that
I, = {1,...,t}, and make in the polynomial f the substitution x; = 1 for all i & I,,.
After this substitution has been made, a non-zero polynomial over the first t variables
X1,...,X, remains such that the term x;x,---x, is left untouched (here we use the
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maximality of I)). Hence, after the substitution we obtain a polynomial which is 1 for
some assignment (ay,...,a,) to its variables. But this means that the polynomial f
itself takes the value 1 on the assignment b = (a4,...,q,,1,...,1). Hence,

1=f(b)= > A ] [b:-
|I|<k i€l

LetJ, := {i : a; = 0}. Then |Jy| < k and, moreover, [ |
which is equivalent to D; ; = 1. Thus,

D> AD, =1,

[Il<k

b; = 1if and only if INJ, =0,

i€l

meaning that the J,-th coordinate of the vector A - D is non-zero. u

3.3.2. A lower bound for Paley graphs. A bipartite graph G = (U,V,E) is k-
separated if, for every two nonempty subsets S, T C U of size at most k, we have that

SAT =0 iff T,(S)NT,(T)#0, (3.2)

where T'y(S) :={j € V | (i,j) € E for no i € S} is the set of all common non-neighbors
of S. That is, for every two disjoint subsets S and T of size at most k on the left
part there is a vertex v € V on the right part such that v is joined by an edge to all
vertices in S and to none of the vertices in T. Explicit bipartite n x n graphs, which are
k-separated for k = ©(logn), are known. Such are, for example, Paley graphs.

THEOREM 3.8. If G is k-separated then L_(fz) > n0).

ProOE For a constant o € {0, 1}, define X to be the set of all vectors x € {0, 1}?"
such that, for some subset S C U of size |S| < k,

x;=0 iff ieSuUT,(S).

That is, x € X, iff there is a subset S of at most k vertices on the left side of G such that
x has 0’s exactly in positions i € SUT((S), and x € X iff there is a subset S of at most
k vertices on the left side of G such that x has 1’s exactly in positions i € S UT{(S).
Since no vector can have 0 and 1 in the same position, (3.2) implies that X, N X; = 0.
Hence, X, X X; is a rectangle.

By the definition of f = f;, we have that f(y) = 1 for all y € X; and, by (3.2),
we also have that f(x) = O for all x € X,. Hence, X, x X; is a subrectangle of
fH0)x f7H(D).

Let # be a decomposition of X, XX, into monotone monochromatic subrectangles.
For each R € & there is a separating position i =iy € UUV = {1,...,2n} such that
x; =0 and y; = 1 for all pairs (x,y) € R. Hence, we can assign to each pair (x,y)
in X, x X, its position i(, ,y: this is the separating position i of the unique rectangle
R € # such that (x, y) € R. Define now the |X,| x |X;| matrix A by

0 ifi, €U,
A[x,y]={ ()

1 if i(x,y) eV.

That is, to determine the value of the (x, y)-entry of A we take the unique rectangle R
containing (x, y) and set the value to 1 iff the separating position i of this rectangle
belongs to the right part V of the bipartition.

Associate with each vector x € X, the set S, = {i € U | x; = 0}, and with each
vector y € X, theset T, = {i € U | y; = 1}. By (3.2), we have that then

Alx,y]=1 iff iy, €V iff S,NnT, =0.
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Hence, A is the disjointness matrix D, ;, and Lemma 3.7 implies that A has full rank
over GF(2), that is, rk(A) = Zi'(:o (':)

On the other hand, since for each rectangle R € 2, its separating position iy
belongs either to U or to V (but not to both), we have that rk(Ag) <1 for allR € &,
and Lemma 3.2 yields the desired lower bound on L, (f). O

As mentioned above, explicit k-separated bipartite graphs with k = Q(logn) are
known. Such are, for example, Paley graphs.

Let n be a n odd prime congruent to 1 modulo 4. A Paley graph is a bipartite
graph G = (V;, V,, E) with parts V; =V, = GF(n) where two nodes, x € V; and y € V,,
are joined by an edge if and only if x — y is a non-zero square in GF(n), that is, if
x —y = 22> mod n for some z € GF(n), z # 0. The condition n = 1 mod 4 is only to
ensure that —1 is a square in the field, so that the resulting graph is undirected.

It is known that Paley nxn graphs over GF(n) are k-separated as long as k2% < /n,
and in particular, are k-separated for k = Q(logn). This is a well known result, and is
proved using some deep results regarding sums of quadratic characters y(x) = x("~1/2
over GF(n).

CorOLLARY 3.9. If G is a bipartite n X n Paley graph, then

L+(fG) > nQ(logn) .
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CHAPTER 4

Monotone Circuits

We now consider monotone circuits, that is, circuits with fanin-2 AND and OR
gates. Like monotone formulas, such circuits can only compute monotone boolean
functions. The difference from monotone formulas is that now the fan-outs of gates
may be arbitrary, not just 1 as in the case of formulas. That is, a result computed at
some gate can be used many times with no need to recompute it again and again, as
in the case of formulas. This additional future makes the lower bounds problem more
difficult.

In this chapter, all considered boolean functions are assumed to be monotone.

4.1. Switching lemma for monotone forms

Recall that a monotone k-CNF (conjunctive normal form) is an And of an arbitrary
number of monotone clauses, each being an Or of at most k variables. Dually, a mono-
tone k-DNF is an Or of an arbitrary number of monomials, each being an And of at
most k variables. Note that in k-CNFs we allow clauses shorter than k.

In an exact k-CNF we require that all clauses have exactly k distinct variables; exact
k-DNF is defined similarly. For two boolean functions f and g in n variables, we write
f < gif f(x) < g(x) for all input vectors x. For a CNF/DNF C we will denote by |C]|
the number of clauses/monomials in it.

Our goal is to show that complex monotone function, that is, monotone functions
requiring large monotone circuits cannot be “simple” in a sense that they cannot be
approximated by small CNFs and DNFs. The proof of this will be based on the following
“switching lemma” allowing us to switch between CNFs and DNFs, and vice versa.

LEmMaA 4.1 (Switching Lemma). For every s-CNF f, there is an r-DNF f; and an
exact (r + 1)-DNF D such that

fi<fo<AivD and |D|<s™H. 4.1
Dually, for every r-DNF f; there is an s-CNF f,, and an exact (s + 1)-CNF C such that
foNC<fi<fy and |Cl <. (4.2)

PrOOE. We prove the first claim (the second is dual). Let fy = C; A--- A C; be
an s-CNF; hence, each clause C; has |C;| < s variables. It will be convenient to iden-
tify clauses and monomials with the sets of indices of their variables. We say that a
monomial M pierces a clause C; if M N C; # 0.

We associate with the CNF f; the following tree T of fan-out at most s. This is a
DNE-tree for f, we already defined in Section 1.5; the only difference is that now we
have no negated variables.

The first node of T corresponds to the first clause C;, and the outgoing |C; | edges
are labeled by the variables from C;. Suppose we have reached a node v, and let M be
the monomial consisting of the labels of edges from the root to v. If M pierces all the
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clauses of f;, then v is a leaf. Otherwise, let C; be the first clause such that M N C; = 0.
Then the node v has |C;| outgoing edges labeled by the variables in C;.

Note that each path from the root to a leaf of T corresponds to a monomial of f,
(since each such path intersects all clauses). More important is that also the converse
holds: each monomial of f, must appear as a path from the root to a leaf. Thus, we
have just represented the DNF of f, as a tree, implying that T (x) = f,(x) for all input
vectors x € {0,1}". But some paths (monomials) may be longer than r + 1. So, we
now cut-off these long paths.

Namely, let f; be the OR of all paths of length at most r ending in leafs, and D be
the set of all paths of length exactly r + 1. Observe that:

(i) every monomial of f; is also a monomial of f,, and
(ii) every monomial of f;, which is not a monomial of f;, must contain (is an
extension of) at least one monomial of D.
For every input x € {0,1}", we have f;(x) < fo(x) by (i), and fy(x) < f1(x) vV D(x)
by (ii). Finally, we also have that |D| < s"™!, because every node of T has fan-out at
most s. (]

Most important in the Switching Lemma is that the DNF D, correcting possible
errors, contains only s monomials instead of all (rj_l) possible monomials.

4.2. Lower bounds criterion
We now give a general lower bounds criterium for monotone circuits.

DEFINITION 4.2. Let f(x4,...,Xx,) be a monotone boolean function. We say that f
is t-simple if for every pair of integers 1 < r,s < n — 1 there exists an exact (s + 1)-CNF
C, an exact (r + 1)-DNF D, and a subset I C {1,...,n} of |I| <s such that

(@ |Cc]<t-r*land |D|<t-s""!, and

(b) either C < f or f <DV \/,_,; x; (or both) hold.

THEOREM 4.3 (Criterion). If a monotone boolean function can be computed by a
monotone circuit of size t, then it is t-simple.

PrOOFE. Given a monotone circuit, the idea is to approximate every intermediate
gate (more exactly — the function computed at the gate) by an s-CNF and an r-DNE
and to show that when doing so we do not introduce too many errors. If the function
computed by the whole circuit is not t-simple, then it cannot be approximated well by
such a CNF/DNF pair meaning that every such pair must make many errors. Since the
number of errors introduced at each separate gate is small, the total number of gates
must be large. To make as few errors at each gate as possible we will use the Switching
Lemma (Lemma 4.1) which allows us to approximate an s-CNF by small r-DNFs and
vice versa.

Let F(xq,...,Xx,) be a monotone boolean function, and suppose that F can be
computed by a monotone circuit of size t. Our goal is to show that then the function
F is t-simple. To do this, fix an arbitrary pair of integers 1 <s,r <n—1.

Let f = g*h be a gate in our circuit. By an approximator of this gate we will mean
a pair f,, f1, where f, is an s-CNF (a left approximator of f) and f; is an r-DNF (a right
approximator of f) such that f; < f,.

We say that such an approximator f,, f; of f introduces a new error on input
x € {0,1}" if the approximators of g and of h did not make an error on x, but the



4.3. EXPLICIT LOWER BOUNDS 45

approximator of f does. That is, g,(x) = g;(x) = g(x) and hy(x) = h;(x) = h(x), but
either fo(x) # f (x) or f,(x) # f (x).

We define approximators inductively as follows.

Case 1: f is an input variable, say, f = x;. In this case we take f, = f; := x;. It is
clear that this approximator introduces no errors.

Case 2: f is an And gate, f = g A h. In this case we take f, := g, A hy as
the left approximator of f; hence, f, introduces no new errors. To define the right
approximator of f we use Lemma 4.1 to convert f, into an r-DNF f;; hence, f; < f,.
Let E; be the set of inputs on which f; introduces a new error, i.e.,

Ep:={x|f(x)=fo(x) =1 but f;(x)=0}.

By Lemma 4.1, all these errors can be “corrected” by adding a relatively small exact
(r + 1)-DNF: there is an exact (r + 1)-DNF D such that |[D| < s"! and D(x) =1 for all
X € Ef.

Case 3: f is an Or gate, f = gVh. This case is dual to Case 2. We take f; := g, Vh,
as the right approximator of f; hence, f; introduces no new errors. To define the left
approximator of f we use Lemma 4.1 to convert f; into an s-CNF f;,; hence, f; < f,.
Let E; be the set of inputs on which f; introduces a new error, i.e.,

Ep:={x|f(x)=fi(x) =0 but fo(x)=1}.

By Lemma 4.1, all these errors can be “corrected” by adding a relatively small exact
(s + 1)-CNF: there is an exact (s + 1)-CNF C such that |C| < ! and C(x) = 0 for all
x € Ey.

Proceeding in this way we will reach the last gate of our circuit computing the
given function F. Let Fy, F; be its approximator, and let E be the set of all inputs x €
{0, 1}" on which F differs from at least of one of the functions F, or F;. Since at input
gates (= variables) no error was made, for every such input x € E, the corresponding
error should be introduced at some intermediate gate. That is, for every x € E there
is a gate f such that x € E; (approximator of f introduces an error on x for the first
time). But we have shown that, for each gate, all these errors can be corrected by
adding an exact (s+ 1)-CNF of size at most 71 or an exact (r +1)-DNF of size at most
s"t1. Since we have only t gates, all such errors x € E can be corrected by adding an
exact (s + 1)-CNF C of size at most t - *™! and an exact (r + 1)-DNF D of size at most
t-s"*1 that is, for all inputs x € {0, 1}", we have

C(x)ANFy(x) < F(x) <F;(x)VvD(x).

This already implies that the function F is t-simple. Indeed, if the CNF F; is empty
(i.e., if Fy = 1) then C < F, and we are done. Otherwise, F, must contain some clause
S of length at most s, say, S = \/,_, x; for some I of size |I| <s. Since F, < S, the
condition F; < F;, implies F < F; VD < F,V D < SV D, as desired. This completes the
proof of Theorem 4.3. U

4.3. Explicit lower bounds

In order to show that a given boolean function cannot be computed by a monotone
circuit of size at most t, it is enough, by Theorem 4.3, to show that the function is
not t-simple for at least one(!) choice of parameters s and r. In this section we
demonstrate how this can be used to derive exponential lower bounds for concrete
boolean functions.
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In applications, boolean functions f are usually defined as set-theoretic predicates.
In this case we say that f accepts a set S € {1,...,n} if and only if f accepts its
incidence vector.

A set S is a positive input for f if f(S) = 1, and a negative input if f(S) = 0,
where S is the complement of S. Put otherwise, a positive (negative) input is a set
of variables which, if assigned the value 1 (0), forces the function to take the value
1 (0) regardless of the values assigned to the remaining variables. Note that one set
S can be both positive and negative input! For example, if f(xq,x,,x3) outputs 1 iff
X, + x9+ x5 > 2, then S = {1,2} is both positive and negative input for f, because
f(1,1,x3)=1and f(0,0,x5)=0.

To translate the definition of t-simplicity of f (Definition 4.2) in terms of posi-
tive/negative inputs, note that if C is a CNE, then C < f means that every negative
input of f must contain at least one clause of C (looked at as set of indices of its vari-
ables). Similarly, f < DV \/,_, x; means that every positive input must either intersect
the set I or contain at least one monomial of D.

4.3.1. Detecting triangles. We begin with the simplest example. We will also
present a more respectable applications—a 290" Jower bound—but this special case
already demonstrates the common way of reasoning pretty well.

Let us consider a monotone boolean function A,,, whose input is an undirected
graph on m vertices, represented by n = ('7) variables, one for each possible edge. The
value of the function is 1 if and only if the graph contains a triangle (three incident
vertices). Clearly, there is a monotone circuit of size O(m®) computing this function:
just test whether any of (':7;) triangles is present in the graph. Thus, the following
theorem is tight, up to a poly-logarithmic factor.

THEOREM 4.4. Any monotone circuit, detecting whether a given m-vertex graph is
triangle-free, must have (m3 /log? m) gates.

PrOOE. Let t be the minimal number for which A, is t-simple. By Theorem 4.3, it
is enough to show that t > Q (m3 /log* m). For this proof we take

s:=|5log?m| and r:=1.

According to the definition of t-simplicity, we have only two possibilities.

Case 1: Every positive input for A,, either intersects a fixed set I of s edges, or
contains at least one of L < ts"*! = ts? 2-element sets of edges Ry, ...,R;.

As positive inputs for A,, we take all triangles, i.e., graphs on m vertices with
exactly one triangle; we have (r;) such graphs. At most s(m — 2) of them will have an

edge in I. Each of the remaining triangles must contain one of ts? given pairs of edges
R;. Since two edges can lie in at most one triangle, we conclude that, in this case,

t> w =Q(m3/log4m) .

STl = t sets of

Case 2: Every negative input for A,, contains at least one of tr
edges S4,...,S,, each of size |S;| =s + 1.

In this case we consider the graphs E = E; U E, consisting of two disjoint non-
empty cliques E; and E, (we look at graphs as sets of their edges). Each such graph
E is a negative input for A ,, because its complement is a bipartite graph, and hence,
has no triangles. The number of such graphs is a half of the number 2™ of all binary

strings of length m excluding 0 and 1. Hence, We have 2™~ — 1 such graphs, and each
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of them must contain at least one of the sets Sy, ...,S,. Every of these sets of edges S;
is incident to at least v/ 2s vertices, and if E 2 S; then all these vertices must belong

to one of the cliques E; or E,. Thus, at most 2mV2 _ 1 of our negative inputs E can
contain one fixed set S;, implying that, in this case,

2m-1 1

tZTZZ‘/Z_l ZZBIOngmB.
2m—vas — ]

Thus, in both cases, t > Q (m3/log4 m), and we are done. O

4.3.2. Graphs of polynomials. Our next example is the following monotone boolean
function introduced by Andreev (1985). Let q¢ > 2 be a prime power, and set d :=
|(g/1nq)"/?/2]. Consider q x q (0,1) matrices A = (a; ;). Given such a matrix A, we
are interested in whether it contains a graph of a polynomial h : GF(q) — GF(q), that
is, whether a; ;) = 1 for all rows i € GF(q).

Let f, be a monotone boolean function in n = g2 variables such that f,(A) = 1 iff
A contains a graph of at least one polynomial over GF(q) of degree at most d — 1. That

is,
X)) = \/ /\ Xi,h(i) »
h  i€GF(q)
where h ranges over all polynomials over GF(q) of degree at most d — 1. Since we
have at most q¢ such polynomials, the function f, can be computed by a monotone

d+1 o(d) — Zo(n““m

boolean circuit of size at most ¢“, which is at most n ). We will now

show that this trivial upper bound is almost optimal.

THEOREM 4.5. Any monotone circuit computing the function f, has size at least
/4y/1Inn)
28 Vinm),

ProOE. Take a minimal t for which the function f, is t-simple. Since n = q* and
(by our choice) d = ©(n'/*vInn), it is enough by Theorem 4.3 to show that t > q?*@®,
For this proof we take
s:=[dlnq] and r:=d,
and look at input matrices as bipartite g X q graphs. In the proof we will essentially
use the well-known fact that no two distinct polynomials of degree at most d — 1 can
coincide on d points. According to the definition of t-simplicity, we have only two

possibilities.
Case 1: Every positive input for f, either intersects a fixed set I of at most s edges,
or contains at least one of L < ts"*! (r 4+ 1)-element sets of edges Ry,...,R;.

Graphs of polynomials of degree at most d — 1 are positive inputs for f,,. Each set
of I (1 <1< d) edges is contained in either 0 or precisely q¢~' of such graphs. Hence,
at most sq?~! of these graphs can contain an edge in I, and at most ¢+ of them
can contain any of the given graphs R;. Therefore, in this case we again have

t> 1_£ L> g Q(r)> Q(d)
- q L. qd—(r+1) — s =q :

Case 2: Every negative input for f, contains at least one of K < tr**! (s + 1)-
element sets of edges S,...,Sk.

Let E be a random bipartite graph, with each edge appearing in E independently
with probability y := (2d Inq)/q. Since there are only q¢ polynomials of degree at most
d — 1, the probability that the complement of E will contain the graph of at least one
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of them does not exceed q?(1 — y)? < g9, by our choice of y. Hence, with probability
at least 1 — g9, the graph E is a negative input for f. On the other hand, each of the
sets S; is contained in E with probability y!Sil = y**1. Thus, in this case,

_gd Q(s)
- rs+1,},s+l - 2d21nq - - 2

where the third inequality holds for all d < (q/Inq)"/?/2.
We have proved that the function f can be t-simple only if t > ¢®%). By Theo-
rem 4.3, this function cannot be computed by monotone circuits of size smaller than
Qd)
g U

4.4. Extension to circuits with real-valued gates

We now consider monotone circuits where, besides boolean AND and OR gates,
one may use arbitrary monotone real-valued functions ¢ : R? — R as gates. Such a
function ¢ is monotone if ¢(x1,x5) < ¢(y1,Y5) whenever x; < y; and x5 < y,. The
corresponding circuits are called monotone real circuit.

As in boolean circuits, inputs for such circuits also are binary strings x € {0,1}";
the output must be also a binary bit 0 or 1. But at each intermediate gate any monotone
function g : {0,1}" — R may be computed. Hence, unlike in boolean case, here we
have uncountable number of possible gates ¢ : R> — R, and one may expect that at
least some monotone boolean functions can be computed much more efficiently by
such circuits. Exercise 4.6 at the end of this chapter shows that this intuition is correct:
so-called “slice functions” can be computed by a very small monotone circuit with real-
valued gates, but easy counting shows most of slice functions cannot be computed by
boolean circuits of polynomial size, even if NOT gates are allowed!

It is therefore somewhat surprising that the criterion for boolean circuits (The-
orem 4.3) remains true also for circuits with real-valued gates. The only difference
from the boolean case is that now in the definition of t-simplicity we take slightly
larger CNFs and DNFs, which does not greatly change the asymptotic values of result-
ing lower bounds.

We say that a monotone boolean function f is weakly t-simple if the conditions in
Definition 4.2 hold with (a) replaced by

@) |C|<t-(2r)*and |D| <t-(25) !

That is, the only difference from the definition of t-simplicity are a slightly larger
upper bounds on the number of clauses in C and monomials in D.

THEOREM 4.6 (The Criterion for Real Circuits). Let f be a monotone boolean func-
tion. If f can be computed by a monotone real circuit of size t then f is weakly t-simple.

Proor. The proof is similar to the boolean case (Theorem 4.6). We only have to
show how to construct the approximators for real-valued gates. The idea is to consider
thresholds of real gates and approximate the thresholded values. For a real-valued
function f : {0,1}" — R and a real number a, let f©) denote the boolean function that
outputs 1 if f(x) > a, and outputs 0 otherwise.

Let now ¢ : R? — R be a gate at which the function f(x) is computed, and let
g(x) and h(x) are functions g,h : {0,1}" — R computed at the inputs of this gate. A
simple (but crucial) observation is that then

v(g(x),h(x))>a <= 3Fb,c: g(x)=b, h(x)>c and ¢(b,c)>a.
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The (=) direction is trivial: just take b = g(x) and ¢ = h(x). The other direction (<)
follows from the monotonicity of ¢: ¢(g(x),h(x)) > ¢(b,c) > a.

Together with f(@(x) = 1 iff ¢(g(x),h(x)) > a, this allows us to determine each
threshold function @ of a gate f = (g, h) from the thresholds of its input gates as:

f@="\/ " An) (4.3)
@(b,c)=a
as well as
FO= N\ P vr). (4.4)
¢(b,c)<a

It is convenient to think these expressions as an infinite AND and an infinite OR,
respectively. However, since the number of settings x € {0,1}" for input variables is
finite, the real gates take only finite number of possible values, and therefore, we only
need finite expressions.

As before, every threshold f@ is approximated by two functions: an s-CNF fo(a)

and an r-DNF fl(a). The approximators for the thresholds of the input variables are
0, 1, or the variable itself, depending on the value of the threshold; they can always
represented by at most one literal and thus newer fail.

Let now f = @(g,h) be an intermediate gate with two input gates g and h, and
suppose that, for all (finitely many!) reals b,c, the left and right approximators for
threshold functions g®) and h® of its input gates are already constructed.

To construct the left approximator from the approximators of its two input gates g
and h, we first consider the representation

fO="\ (& an).

¢(b,c)=a
Since the monomials in the r-DNFs ggb) and h(lc) have length at most r, all the subex-

pressions ggb) A h(lc) can be turned into a single 2r-DNF D, such that

D,(x)=1 iff fOx)=1 iff f(x)>a. (4.5)

After that we use the same procedure as before (that is, Lemma 4.1) to convert this
DNF into an s-CNF fo(a). This can be done for each (of the finitely many) threshold
values a, and we only need to ensure that the number of errors introduced when
approximating the whole gate f does not depend on this number of thresholds.

When forming the s-CNF fo(a), we introduce errors as we throw away clauses that
become longer than s. We want to count the number of inputs x € {0,1}" such that
F@(x) = 0while fo(a)(x) =1 for some a, i.e., the union over a of the errors introduced
in a gate by fo(a). To do this, let us list in the increasing order a; < a, < ... < ay all
the N < 2" possible values f(x) the gate f can output when the input vector x ranges
over {0, 1}". Hence,

D:=D, VD, V- VD,
is a 2r-DNE and this DNF makes no error on x, i.e., D(x) = f(x). By (4.5), we have
that
D

That is, every monomial of D, contains at least one monomial of D, . Hence, if (D)
denotes the family of all transversals of D, that is, the family of all subsets of variables,

alzDazzhnzDGN'
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each of which intersects all the monomials of D, then
t(Dal) - t(Daz) c---C t(DaN);

implying that t(D) = t(D,, ). This means that all the clauses (=transversals), which
we throw away (because they are longer than s) when forming an s-CNF f, from the
DNF D, are precisely those clauses, which we would throw away when converting the
2r-DNF D, into an s-CNE Thus, by Lemma 4.1, all the errors that may appear during
the construction of the left approximator f;, can be corrected by an exact (s + 1)-CNF
C of size |C| < (2r)**l. That is, for every input x such that f(x) = 0 but fo(x) = 1, we
have that C(x) = 0.

A dual argument can be used to bound the number of errors introduced when
constructing the right approximator f;. Note that we cannot use the DNF (4.5) for this
purpose since D is a 2r-DNE not an r-DNE But we can argue as above by using the
expression (4.4) instead of (4.3). Then all the introduced errors can be corrected by
an exact (r + 1)-DNF D of size |D| < (2s)" . The rest of the proof is the same as that
of Theorem 4.3. (]

Since the definitions of t-simple functions and of weakly t-simple function are al-
most the same, Theorem 4.6 allows to extend lower bounds for the monotone boolean
circuits (we proved above) to the monotone real circuits. For example, the same argu-
ment as in the proof of Theorem 4.5 yields

THEOREM 4.7. Any monotone real circuit computing the polynomial function f, has
size at least 29" Vinn),

REMARK 4.8. Lower bounds for monotone real circuits have found intriguing ap-
plications in proof complexity. In particular, Pudldk (1997) used such bounds to prove
the first exponential lower bound on the length of so-called “cutting plane proofs,” a
proof system for solving integer programming problems. We will describe this result in
Section 18.5.

The extension of the lower bounds criterium from monotone boolean circuits to
monotone real circuits shows the power of the criterion. On the other hand, it gives us
an explanation of why the method requires monotonicity.

PRrROPOSITION 4.9. Any boolean function in n variables can be computed using n — 1
real monotone fanin-2 gates and one non-monotone unary gate.

Proor. For an input vector x € {0,1}", let bin(x) = Zi;l x;217! be the number
whose binary code is x. It is easy to see that bin(x) can be computed by a circuit C(x)
using n — 1 real fanin-2 gates of the form g(u,v) = u+ 2v. This can be done via the
recurrence:

bin(x) = x; + 2 - bin(x") = g(x;,bin(x")),

where x’ = (x,,...,x,). These gates are monotone.
Now, every boolean function f defines a unique set of numbers

Ly ={bin(x) | f(x) = 1}.

Hence, in order to compute f, it is enough to attach the (non-monotone) output gate
testing whether C(x) € L; or not. O
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4.5. Criterion for graph properties

When dealing with decision problems defined on graphs, variables x, usually cor-
respond to edges, not to vertices. Each set S of edges defines a graph, and graphs
(unlike just unstructured sets) have many interesting parameters. It is therefore many
possibilities to define the “length” u(C) of a clause C = \/,_g x,:

- as the number |S| of edges in S;
- as the number |V (S)| of vertices touched by the edges in S;
- as the number k(S) of connected components in the graph S,

and so on. Depending on what concrete graph property we are dealing with, one
measure may be more suitable than another. It makes therefore sense to extend the
lower bounds criterion so that it allows different measures of “length.”

To do this we only need one additional concept. Namely, say that an input vector
x respects a length measure u if we cannot add an edge from outside the set S = {e |
x, = 1} to any of its subsets without increasing the weight of the u-length of S, that is,
if

u(S U {e}) > u(S)+1 for any subset S’ C S and any e £ S.

We additionally require that u(S)/2 < |S| < u(S)?. In particular, if u(S) := |V(S)| then
these inequalities hold, but in this case only cliques (complete graphs) will respect this
measure.

Let v and p be any length measures. We only require that both they are at most
v(8S), the number of vertices touched by the edges in S. The following lemma and its
proof look more “complicated” than our initial Switching Lemma (Lemma 4.1), but
this is only “notational complexity” (we work in more general measure spaces)—the
proof idea is the same as in the case of trivial measures u(S) =v(S) :=|S|.

LEmMMA 4.10. Let f, be a CNF whose clauses have v-length at most s. Then there
exist DNFs f; and D such that: D contains at most s* monomials, all monomials in f,
have p-length < r, all monomials in D have u-length > r, and for all inputs x € {0,1}"
respecting the norm u, we have that

f1(0) < fo(x) < f1(x) v D(x). (4.6)

ProOE Let fy = C; A-+- A C,,. We identify each clause C = \/,_; x, with the set S
of edges indexing its variables. Hence, each clause C; has |C;| < s? variables. Arguing
as in the proof of Lemma 4.1 we can associate with f, a tree T of fan-out at most s2
by slightly modifying the condition of when we declare a node to be a leaf. Namely,
we now say that a monomial M pierces a clause C; if u(M U {e}) > u(M) for all edges
e € C;. (This in particular implies that M N C; = @, but the converse needs not hold if
u is a non-trivial length measure, not u(S) =1S|.)

As in the proof of Lemma 4.1, the first node of T corresponds to the first clause
C,, and the outgoing |C; | edges are labeled by the variables from C;. Suppose we have
reached a node v, and let M be the monomial consisting of the labels of edges from
the root to v. If M pierces all the clauses of f,, then v is a leaf. Otherwise, let C; be the
first clause not pierced by M. Then the node v has |C;| outgoing edges labeled by the
variables in C;.

We now let f; consist of all paths (monomials) ending in a leaf of T and whose
u-length is smaller than r. Let also D contain all paths M to nodes v such that the
path to its father has u-length < r, but the path M to the node v itself has u-length
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> r. That is, D consists of all paths whose u-length reached the threshold r for the
first time. In particular, the u-length of each monomial in D is at least r.

First observe that each monomial M of D has length (not just u-length!) |[M| < 2r.
Indeed, when going from the father to its child in T, the length of a path increases
by exactly 1, whereas the u-length increases by at least 1 and by at most 2 (only one
edge is added). Hence, monomials in D correspond to paths in T of length at most
2r. Since every node of T has fan-out at most s2, this gives the desired upper bound
|D| < (s2)?" =s* on the total number of monomials in D.

It remains to prove (4.6). Since, by the construction, each path of T is either a
monomial of f; or is an extension of at least one monomial in D, we immediately have
that f(x) < f1(x) Vv D(x) holds for all inputs x € {0, 1}".

However, this time the inequality f;(x) < fy(x) needs not to hold for all inputs
x. The reason, why this could happen, is that the fact that a monomial M pierces all
clauses of f,, alone does not imply that M must also intersect all the clauses of f;: in
general, u(M U {e}) = u(M) does not necessarily imply that e € M. Note however,
that this cannot happen if the set S, = {e | x, = 1} respects the norm wu: this would
mean that we can add to M an edge e lying outside S, (and hence, outside M) without
increasing the u-length of M. O

This lemma motivates the following modification of the notion of t-simplicity for
graph properties. Let v be some length measure for negative inputs, and u be some
length measure for positive inputs.

DEFINITION 4.11. A graph property f is weakly t-simple with respect to (v, u), if for
all integers 1 < r,s < n — 1 there exists a set I of edges of v-length at most s, a system
of sets Sq,...,Sk of edges each of v-length at least s, and a system of sets Ry, ...,R; of
edges each of p-length at least r such that! K < t(2r)*, L < t(2s)* and at least one
of the following two conditions hold:

a. Every positive input of u-length at least r, which respects the norm u, either
intersects the set I or contains at least one of the sets Ry, ...,R;.

b. Every negative input of v-length at least s, which respects the norm v, contains

at least one of the sets Sy, ..., Sk.

We have the following extension of Theorem 4.6 to more general length measures
for inputs.

THEOREM 4.12. If a monotone boolean function can be computed by a monotone real
circuit of size t, then it is t-simple with respect to any pair v, u of length measures.

The proof of this theorem is the same as that of Theorem 4.6: just use Lemma 4.10
(and its dual version) instead of Lemma 4.1. We leave a detailed proof as an exercise.

4.6. Clique-like problems

We consider graphs on a fixed set of m vertices. We have n = (') boolean vari-
ables, one for each potential edge. Then each boolean function f : {0,1}" — {0,1}
described some graph property. A prominent NP-complete graph property if a mono-
tone boolean function CLIQUE(m, k) which accepts a given graph iff it contains a
k-clique, that is, a a subgraph on k vertices whose all vertices are pairwise adjacent.

IWe take (2r)* instead of just r*, as suggested by Lemma 4.10, in order to cover also the real-valued
case.
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Instead of proving a lower bound on this function we will do this for a much larger
class of “clique-like” functions.

A complete k-partite graph is a disjoint union of k cliques, some of which may
consist of just one isolated vertex. Each such graph is defined by a coloring of vertices
in k colors, and two vertices are adjacent iff they recieve different colors. Note that
none of such graphs can contain a k-clique, but adding any one edge already yields a
k-clique.

Let 2 < a < b < m be integers. An (a, b)-clique function is a monotone boolean
function f such that, for every graph G on m vertices,

0 if G is complete (a — 1)-partite graph;
flG)=+11 if G is a b-clique;
any value otherwise.

THEOREM 4.13. Let 32 < a < b <m/32, and let f be an (a, b)-clique function. Then
the minimal number of gates in a monotone real circuit computing f is exponential in
min{a, m/b}"4.

In particular, for k = | v/m], CLIQUE(m, k) requires 20m'/%) gates.

Proor. Let f be an (a, b)-clique function. We are going to apply the refined ver-
sion of the lower bounds criterion (Theorem 4.6). To do this, we must first choose
appropriate length measure u for positive inputs an a length measure v for negative
inputs.

What to take as positive and how to measure their length is clear. All b-cliques are
positive inputs for f. A natural measure for a clique S is to take

w(8) := the number of vertices touched by the edges in S.

It is clear that every clique S respects this measure: we cannot add a new edge e to S
without increasing the number of vertices.

What to take as negative inputs is also clear: such are all complements of complete
(a—1)-partite graphs. Each such complement G, is defined by a coloring h of vertices in
a—1 colors: two vertices u and v are adjacent in Gy, iff h(u) = h(v). But what should we
take as a length v(Gy,) of such graphs? We cannot take the same length measure u(Gy)
(as for positive inputs) because the graphs G, do not respect this measure: if S C G,
and if the ends of the edge e belong to different parts of Gy, then u(S U {e}) = u(S).
Observe however that, in this case, the graph S U {e} has one connected component
fewer! This suggests the following length measure for negative inputs: take

v(8) := u(S) — x(S),

where x(S) is the number of connected components in S. We claim that this measure is
already respected by all graphs G, = (V, E). To show this, let S C E and e € E. Let also
V(S) be the set of all vertices touched by the edges of S; hence, |V (S)| = u(S). Since
each connected component of E is either an isolated vertex or a clique, the edge e must
lie between two distinct components of E. Since each connected component of S lies
entirely in some of the components of E, we have that

a. either e C V(S), and hence, u(S U {e}) = u(S) and k(S U {e}) = x(S) — 1;

b. or [eNnV(S)| =1, and hence, u(SU {e}) = u(S)+1 and (S U {e}) = k(S);

c. orenV(S)=0, and hence, u(SU {e}) =u(S)+ 2 and x(SU {e}) = x(S) + 1.
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&

FiGure 1. A complement of a complete 4-partite graph. Any new
edge e can only join its distinct connected components.

In all three case we have that
v(Sufe) =u(Sufe}) —k(Sufe) =u(S) —x(S)+1=v(S)+1,

as desired.
Suppose now that the function f is t-simple. By Theorem 4.12, it is enough to
show that then t > 20 ", Set

ri= [ ()] = [ (555) -

According to Definition 4.11 we have only two possibilities, depending on what of the
two of its items holds.

Case 1: Every positive input of u-length at least r, which respects the norm u,
either intersects the set I or contains at least one of the sets Ry,...,R;, each of u-
length at least r.

Positive inputs are b-cliques. At least () —s

2 m—2

b—2
avoid a fixed set I of |I| < s? edges. Each of these b-cliques must contain at least one
of L < t-(2s)* r-cliques Ry,...,R;. Since each R; is contained in (}"") of k-cliques,
we conclude that in this case

1/m
1m >( m )Q(r)_zn(am)

t= m—-ry — -
(Zs)‘”(b_r) 16s*b

Case 2: Every negative input of v-length at least s, which respects the norm v,
contains at least one of the sets Sy, ..., Sk, each of v-length at least s.

Each negative input G, consists of m; isolated vertices and m, mutually disjoint
cliques, where 1 < m; +m, < a —1. Thus,

) = 5(’;) of such cliques must

v(Gy) =u(G) —k(G)=(m—-—my)—my>m—a+1>s.

Since the graphs G;, respect the norm v, we have that each of these graphs must contain
at least one of the sets of edges S, ..., Sk, where v(S;) >s and K < t - (2r)*. We have
(a —1)™ colorings h, and it remains to estimate for how many of them, the induced
graph G;, can contain a fixed set of edges S, with v(S) > s.

If Vi,...,V, are the sets of vertices of the connected components of S, then by the
definition of the norm v, |V;|+...+|V;| = s+d. If G, 2 S, then all the vertices in each
of the classes V; must get the same color. Hence, the number of colorings h, for which
G, 2 S, does not exceed

(a _ 1)d(a _ 1)m—(s+d) — (a _ 1)m—s .
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Thus, in this case,

> (a—1)m _ a—1 Szz(m/b)l/4. 0
T 2r®a-1)m 16r4

As mentioned above, the class of clique-like functions includes some NP-complete
problems, like CLIQUE(m, k). But the class of (a, b)-clique functions is much larger.
So large that it also includes some graph properties computable by non-monotone
circuits of polynomial size!

A graph function is a function ¢ assigning each graph G a real number ¢(G). Such
a function ¢ is clique-like if

w(G) < ¢(G) < x(G),

where w(G) is the clique number, i.e. the maximum number of vertices in a complete
subgraph of G, and y(G) is the chromatic number, i.e. the smallest number of colors
which is enough to color the vertices of G so that no adjacent vertices receive the same
color.

Fix k to be the square root of the number m of vertices, and let f, denote the
monotone boolean function of n = ("21) boolean variables encoding the edges of a
graph on m vertices, whose values are defined by

f,(G)=1 iff ¢(G)=k.

Note that
1 ifw(G)>k,

fo(@)= {o if y(G)<k—1.

OBSERVATION 4.14. For every clique-like graph function ¢, the boolean function f,,
is a (k, k)-clique function.

Proor. If G contains a k-clique, then ¢(G) > w(G) = k, and hence, the function
f,, accepts G. On the other hand, if G is a complete (k — 1)-partite graph, then ¢(G) <
%(G) <k —1, and f, rejects G. O

Although we always have that w(G) < y(G), the gap between these two quantities
can be quite large: results of Erdos (1967) imply that the maximum of y (G)/w(G) over
all m-vertex graphs G has the order © (m /log? m). So, at least potentially, the class
of clique-like functions is large enough. And indeed, Tardos (1987) observed that this
class includes not only NP-complete problems (like the clique function) but also some
problems from P.

LEMMA 4.15. There exists an explicit monotone clique-like graph function ¢ which is
computable in polynomial time.

Proor. In his seminal paper on Shannon-capacity of graphs Lovdsz (1979a) intro-
duced the capacity #(G). The function ¢’(G) := #(G), where G denotes the comple-
ment of G, is a monotone clique-like function. Grotschel, Lovasz and Schrijver (1981)
gave a polynomial time approximation algorithm for #. That is, given a graph G and a
rational number & > 0 the algorithm computes, in polynomial time, a function g(G, ¢)
such that

H(G) < g(G,e) <HG)+¢.
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Now, for any 0 < ¢ < 1/2 the function | g(G,¢)] is a polynomial time computable
clique-like function. This function might not be monotone. Let us therefore consider
the monotone function

¢(G)=1g(G,n"*)+e(G)-n?],

where n is the number of vertices and e(G) the number of edges in G. This is the
desired monotone clique-like function computable in polynomial time. O

Together with Theorem 4.13, Observation 4.14 and Lemma 4.15 immediately yield
an exponential trade-off between monotone and non-monotone circuits.

THEOREM 4.16. For every clique-like graph function ¢, the boolean function f, can
be computed by a non-monotone boolean circuit of polynomial size, but any monotone
. . . /
real circuit requires 20(m'/) gates.

We will use this theorem later in Section 18.5 to prove exponential lower bounds
for widely used proof systems—resolution refutation and cutting plane proofs.

4.7. What about circuits with NOT gates?

As we mentioned at the very beginning, no non-linear lower bounds are known
for circuits using NOT gates. So, what is “bad” with the arguments we described in
this and the previous chapters? Why they do not work for non-monotone circuits?

A possible answer is that the arguments are just too general! In order to show that
no circuit with t gates can compute a given boolean function f, we have to show that
no such circuit C can separate the set f ~*(0) from f!(1), that is, reject all vectors
in £71(0) and accept all vectors in f~!(1). Current arguments for monotone circuits
(and formulas) do much more: there are relatively small subsets A € f~!(0) and
B C f~1(1) (sets of particular negative and positive inputs) such that every monotone
circuit separating A from B must be large.

To be more specific, let A be the set of all complete (k — 1)-partite graphs on m
vertices, and B be the set of all k-cliques. Hence, for any k-clique function f, members
of A are negative inputs and members of B are positive inputs for f. We have shown
that any monotone circuit separating A from B must have exponential size.

On the other hand, A can be separated from B by a small circuit if we allow just
one NOT gate be used at the top of the circuit! Indeed, each graph in A has at least
K = (mz/k) edges, whereas each graph in B (a k-clique) has only (;) edges, which
is smaller than K for for every k < y/m. Hence, if g = —Thy is the negation of the
threshold-K function, then g(a) = 0 for all a € A, and g(b) = 1 for all b € B. Since
threshold functions have small monotone circuits (at most n? in the number n of input
variables), the resulting circuit is also small, separates A from B, and has only one NOT
gate.

That is, it is not hard to separate the pair A,B by a monotone circuit — it is only
hard to do this separation in a “right” direction: reject all vectors a € A, and accept all
vectors b € B. This motivates the following definition.

Let f be a monotone boolean function. Say that a pair A,B with A € f~1(0) and
B C f~1(1) is r-hard if every monotone circuit separating A and B (either in a “right”
or in a “wrong” direction) must have super-polynomial size.

Exercise 4.7 shows that any r-hard pair A, B requires a super-polynomial number
of gates in any circuit that separates A from B and uses up to r NOT gates. In the next
chapter we will show that r = [log(n + 1)] is a critical number of allowed NOT gates:
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having an r-hard pair for such an r we would have proved a super-polynomial lower
bound for non-monotone circuits! What we know so far is that the clique function
produces an r-hard pair for r about loglogn; this was shown by Amano and Maruoka
(2005).

RESEARCH PrROBLEM 4.17. Exhibit an explicit r-hard pair A, B for r > loglogn.

Exercises

Ex. 4.1. Apartial b—(n, k, 1) design is a family & of k-element subsets of {1,...,n}
such that any b-element set is contained in at most A of its members. We can associate
with each such design & a monotone boolean function f4 such that f(S) =1 if and
only if S D F for at least one F € &. Assume that In|Z| < k — 1 and that each element
belongs to at most N members of % . Use Theorem 4.3 to show that for every integer
a > 2, every monotone circuit computing f, has size at least

¢ = mi 1 k ¢ |Z|-a-N
e DA ST A A

Hint: Take r = a—1, s = b — 1 and show that under this choice of parameters, the function f5 can be

t-simple only if t > ¢. When doing this, note that the members of Z are positive inputs for f. To handle
the case of negative inputs, take a random subset T in which each element appears independently with
probability p = (1 + In|Z|)/k, and show that T is not a negative input for fg with probability at most
IZI(1-p)f <et.

Ex. 4.2. Derive Theorem 4.5 from the previous exercise.
Hint: Observe that the family of all ¢¢ graphs of polynomials of degree at most d — 1 over GF(q) forms

a partial b—(n, k, A) design with parameters n = g2, k = q and A = q~?.

Ex. 4.3. Andreev (1987) has shown how, for any prime power ¢ > 2 and d < q,
to construct an explicit family & of subsets of {1,...,n} which, for every b < d + 1,
forms a partial b—(n,k,A) design with parameters n = ¢°, k = q%, A = ¢?¢*'=b and
|Z| = q?I*1. Use Exercise 4.1 to show that the corresponding boolean function f,,
requires monotone circuits of size exponential in (nl/ 3_"(1)).

Ex. 4.4. A boolean function f(xy,...,x,) is a k-slice function if f(x) = 0 for all
x with |x| < k, and f(x) = 1 for all x with |x| > k. Show that some slice functions
require DeMorgan circuits of size 2%V,

Hint: Take k = n/2 and argue as in the proof of Theorem 1.2.

Ex. 4.5. Given a vector x = (x1,...,X,) in {0,1}", associate with it the following
two integers h, (x) := |x|-2"+b(x) and h_(x) := |x|-2" —b(x), where |x| = x;+: - - +x,
and b(x) =Y.', x;2""1. Prove that for any two vectors x # y,

a. if |x| < |y|, then h (x) <h, (y)and h_(x) < h_(y);
b. if |x| =|y|, then h, (x) < h,(y)if and only if h_(x) > h_(y).

Ex. 4.6. Let f(xy,...,x,) be a k-slice function, 0 < k < n. Use the previous exer-
cise to show that f can be computed by a circuit with O(n) monotone real-valued
functions as gates. Hint: As the last gate take a monotone function ¢ : R? — {0,1} such that
@(hy(x),h_(x)) = f(x) for all inputs x of weight |x| = k.

Ex. 4.7. Let f be a boolean function and suppose that it can be computed by a
circuit of size t with at most r negations. Show that then, for any A € f~1(0) and
B C f71(1), there is a monotone boolean function g such that g can be computed by a
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monotone circuit of size at most t and either g or its negation —g rejects a 27" fraction
of inputs from A and accepts a 27" fraction of inputs from B.

Hint: Argue by induction on r. If r > 1, then consider the first negation gate and the function g that is
computed at the gate immediately before this negation gate. Let ¢ € {0, 1} be such that g(a) = ¢ for at least
one half of the inputs a € A. If also one half of the inputs b € B have g(b) = ¢ & 1, then either g or ~g has
the property stated in the lemma. If this is not the case, try to apply the induction hypothesis.
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CHAPTER 5

Mystery of Negations

The main difficulty in proving non-trivial lower bounds on the size of circuits over
{A, V,} is the presence of NOT gates — we already know how to prove even exponen-
tial lower bounds if no NOT gates are allowed. The effect of such gates on circuit size
remains to a large extent a mystery. It is, therefore, worth to recall what we actually
know about this “ghost.” Among the basic questions concerning the role of NOT gates
are the following:

1. For what monotone boolean functions NOT gates are useless, that is, cannot
lead to much more efficient circuits?

2. Given a function f, what is the minimum number M(f) of NOT gates in a
circuit computing f?

3. Given a circuit, to what extend can we decrease the number of NOT gates in it
without a substantial increase in circuits size? In particular, how much can the size of
a circuit increase when trying to compute f using the smallest number M(f) of NOT
gates?

4. Suppose that a function f in n variables can be computed by a circuit of size
polynomial in n, but every circuit with M(f) negations computing f requires super-
polynomial size. What is then the minimal number of negations sufficient to compute
f in polynomial size? In other words, how many NOT gates do we need in oder to
achieve superpolynomial savings in circuit size?

In this chapter we answer these questions.

5.1. When NOT gates are useless?

Let us consider circuits with gates A, v, 7. Recall that such a circuit is a DeMorgan
circuit if its inputs are variables and their negations, and gates are fanin-2 AND and
OR gates. A circuit is monotone if it has no negated inputs.

For a boolean function f, let C(f) denote the smallest number of gates in a circuit
over {A,V,—} computing f. Let also C'(f) denote the number of A and V gates in a
DeMorgan circuit computing f. It can be shown (do this!) that C'(f) < 2-C(f). For
a monotone boolean function f, let C,(f) denote the smallest number of gates in a
monotone DeMorgan circuit computing f .

As we already mentioned above, current methods are not able to prove larger
than C(f) > 5n lower bounds, where n is the number of variables. On the other hand,
we already know how to prove even exponential lower bounds for monotone circuits
where we have no NOT gates at all. Even better, there is a large class of monotone
boolean functions f for which NOT gates are almost useless, that is, C,.(f) is not
much larger than C(f). These are so-called “slice functions”. Unfortunately, known
lower bounds arguments for monotone circuits do not work for these functions.

59
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FIGURE 1. A k-slice function.

5.1.1. Slice functions. A boolean function f(x) is a k-slice function if f(x) =0
when |x| < k, and f(x) =1 when |x| > k; here |x| = x; +...+ x,, is the number of 1’s
in x. Note that slice functions are monotone! They are, however, nontrivial only on
the k-th slice of the binary n-cube {0, 1}". Note also that, for every boolean function f,
the function f® defined by

k) __ n n
f® =fAThIA=Th

ka1 V Thy

k+1
is a k-slice function. Here, as before, Thj is the threshold-k function in n variables
which accepts a given vector iff it has at least k 1’s.

Important property of slice functions is that NOT gates are almost useless when
computing them. This is because we can replace each negated input in a circuit for
a k-slice function f by a small monotone circuit computing a threshold function. The
idea, due to Berkowitz is to consider threshold functions

— -1
T]Zl.(xl,...,xn) = Th (X, X415 X150 005 X))
A simple (but crucial) observation is that, for all input vectors x € {0, 1}" with exactly
k ones, Tj ;(x) is the negation of the ith bit x;:
Tk’i(x) = X;. (5.1)

It is known that all these n threshold functions (i = 1,...,n) can be computed by a
monotone circuit of size O(nlog?n). Hence, if we replace all n negated inputs in a
(non-monotone) circuit
flxr, X)) =F(Xq,.0, X0, X, .00, TX,)
for a k-slice function f by outputs of this circuit, we obtain a monotone circuit
Fi(xy, oo, x) =F(xq,.0 0, %0, Tip (), .00, T n ().

It is not difficult to verify that F, also computes f. That F,(x) = F(x) for all inputs x
with |x| = k follows from (5.1). To show that the same holds for all remaining input
vectors, observe that

F(xq,.00,%0,0,...,0) S F(Xq,eee, X, X, 00, X,) S F(Xq,..0,X,,1,...,1).

This holds because the circuit F itself is monotone, i.e., has only AND and OR gates
(negations are only on inputs). Thus, if |x| < k, then f (x) = 0 independent of whether
x; = 0 or x; = 1. Hence, on such input vectors,

F (xq,...,x,)=F(x1,...,%4,0,...,0) < f(xq,...,x,) =0.

The case of input vectors with more than k ones is dual.
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What we have just proved is the following

THEOREM 5.1. For any slice function f in n variables,
C'(f) = C.(f) — O(nlog®n).

Thus, any lower bound C,(f) > nlog®n on the monotone(!) complexity of a
slice function would yield superlinear lower bound on their non-monotone complexity.
Unfortunately, existing methods for monotone circuits (and formulas) do not work for
slice functions.

The obstacle for this, roughly, is that either the set of positive or the set of negative
inputs of a slice function are not “scattered” enough. For the lower bounds criterium
(Theorem 4.3) to work, we need that the number of positive (as well as negative)
inputs of f containing a fixed r-element set is relatively small. Now, if f is a k-slice
function with, say, k < n/2, then the only interesting negative inputs are (n — k)-
element sets, corresponding to the vectors on the k-th slice of the n-cube on which
the function takes value 0. But then up to 2"~0=" > 2/2=7 sych inputs may share r
common elements.

When trying to understand the monotone complexity of k-slice functions, it is im-
portant to first understand the case k = 2. This leads to so-called “graph complexity”,
a notion we already described in the first chapter.

5.1.2. Negated inputs as new variables. There is also another bridge between
monotone and non-monotone complexities. Namely, with any boolean function f in n
variables, it is possible to associate a monotone boolean function g if 2n variables so
that

C'(f) = C.(gp) —4n.

Let f(x) be any boolean function in n variables. Take a set y of new n variables

and define a boolean function g (x,y) by

gf(X,}’):a(X,}’)/\f(X)V/?’(X,}’),

where
n n

alx,y)=/\(x;vy) and B(x,y)=\/(x;A ).
i=1 i=1
That is, a(x,y)=1iff x Vy =1 and f(x,y) = 1iff x A y # 0 (a component-wise OR
and AND).
LEmMA 5.2. For any boolean function f, g, is a monotone function.

Proor. If g(x,y) = gf(x,y) is not monotone, there must be vectors a, b so that
g(a,b) = 1 and changing some bit from 0 to 1 makes g = 0. Clearly, $(a,b) = 0;
otherwise, after the change 8 would still output 1. Since g(a, b) = 1 it must be the case
that a(a, b) = 1. But then after the change 8 must be equal to 1, a contradiction. [

LEMMA 5.3. For any boolean function f,
gf(xl:'";xn’ﬁxl;"':_'xn):f(xl:"';xn)'

PrOOE. Let y be the vector y = (—xy,...,x,). Then, by definition, a(x,y) =1
and B(x,y)=0. O

THEOREM 5.4. For any boolean function f in n variables,
C(f)=Ci(g) =C(f)+4n.
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PrOOF. The first inequality C'(f) < C,.(gy) follows from Lemma 5.3. Now suppose
that f has a circuit F(x4, ..., Xx,, 7X1,..., 7X,) of size £. This is a monotone circuit with
fanin-2 AND and OR gates; inputs are variables and their negations. Replace now the
negated inputs —xy,..., X, by new variables y = (y;,...,¥,), extend the circuit by
adding an AND with a circuit monotone computing a(x,y) and adding an OR with a
circuit monotone computing 3(x,y). Let F'(x, y) the resulting monotone circuit. It is
clear that F’ has size at most £ +4n. We claim that F’ is the desired monotone circuit:

gr(x,y)=F'(x,y).
Suppose that F’ is different from gy for some values of the inputs x and y. Then,
clearly, B(x,y) = 0; otherwise, they would agree. Also a(x,y) must equal 1; again,
if not, the two values could not disagree. We now claim that for each k, x; = —y,.
Suppose that this was false. Then, let x; = y; for some k. Clearly, the common value

cannot be 1 since 3 = 0. Also the common value cannot be 0 since @ = 1. This proves
that for each k, x; = —y;. But then

F(x)=F(x1,. ., Xp,X1,...,7x,) = F'(x,y).
Since, by Lemma 5.3,

f(x) = gf(xl:'--:xn:_‘xly'--;_'Xn) = gf(x:y);
we have that g;(x,y) = F'(x, y). This is a contradiction with our assumption that g,
and F’ differ on input (x,y). O

5.2. The Markov theorem

More than 50 years ago, Markov (1957) has made an intriguing observation that
every boolean (and even multi-output) function on n variables can be computed by
a circuit with only about logn negations. To state and prove his result, we need a
concept of a “decrease” of functions.

For two binary vectors x = (xy,...,x,) and y = (yy,...,Y,) we write, as before,
x <y if x; < y; for all i. We also write x < y if x < y and x; < y; for at least one
i. A boolean function f : {0,1}" — {0, 1} is monotone if x < y implies f(x) < f(¥).
A chain in the binary n-cube is an increasing sequence ¥ = {y! < y? < ... < y*} of
vectors in {0, 1}".

Given such a chain, we look at how many times our boolean function f changes
its value from 1 to 0 along this chain, and call this number the decrease of f on this
chain. Namely, say that i is a jump position (or a jump down position) of f along Y, if

f(yD=1 and f(y"™=o0.
The number of all jump positions is the decrease dy(f) of f on the chain Y. The
decrease d(f) of f is the maximum of dy(f) over all chains Y.

Note that we only count the “jumps” from 1 to 0: positions j for which f(y’) =0
and f(y’*1) = 1 do not contribute to dy(f). In particular, we have that d(f) < n/2
for every boolean function f in n variables, and d(f) = 0 for all monotone functions.

The inversion complexity, I(f), of a boolean function f is the minimum number of
NOT gates contained in a circuit over {A, vV, =} computing f.

We have the following surprisingly tight result.

IHere and in what follows, all logarithms are base two; hence, [log(n + 1)] is the number of bits in the
binary representation of n.
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THEOREM 5.5 (Markov 1957). For every boolean function f,
I(f) = [log(d(f)+1)].

The same result holds also for multi-output functions f : {0,1}" — {0,1}". In
this case, the decrease of f along a chain is the number of times at least one of m
components of f changes its value from 1 to 0.

We prove the lower and upper bounds on I(f) separately.

LEMMA 5.6 (Lower bound).
I(f) = og(d(f)+D]I. (5.2)

Proor. We can assume that I(f) > 0, for otherwise the function f would be mono-
tone, and in this case d(f) = 0.

Fix a chain Y = {y! < y? < ... < y*} for which dy(f) = d(f). Take an arbitrary
circuit C computing f, and let g be the function computed on the output of the first
NOT gate of C. Hence, the function computed at the input of g is monotone.

Our goal is to prove the following claim.

CrAIM 5.7. It is possible to replace g by a constant 0 or 1 so that the function f’
computed by the resulting circuit satisfies

42 5 dy(F).

Having this, the desired lower bound (5.2) can be shown as follows. If the original
circuit C would have r < [log(d(f)+ 1)] = [log(dy(f)+ 1)] NOT gates, then repeat-
ing Claim 5.7 r times we would obtain a circuit without any negations computing a
function f, for which dy(f,) > 27" -dy(f) > 1 But the function f, is monotone (no
NOT gates are used to compute it), a contradiction.

So, it remains to prove Claim 5.7.

Let g be the function computed on the output of the first NOT gate of C. Since the
function computed at the input of this gate is monotone, we have that dy(g) < 1, that
is, g can make at most one jump down on Y.

Case 1: dy(g) = 0 (no jumps at all). In this case, we have that g(Y) = 0 or
g(Y) =1, and we can replace this negation gate by the corresponding constant O or 1.
For the function f’ computed by the resulting circuit we then have that f'(y) = f(y)
for all y € Y, implying that dy(f’) = dy(f) in this case.

Case 2: dy(g) = 1. In this case there is a 1 < t < k such that g(y) = 1 for all
yev,:={yl...,y'},and g(y)=0forall y e Y, = {y'™,..., y*}. Let

YO =1y [ fOD>FOD}

be the set of jumps made by function f on the entire chain Y; hence, |Y(f)| = dy(f).
Depending on whether |Y; NY(f)| > |Y(f)|/2 or not, replace the gate g by constant 1
or by constant 0. In both cases the resulting circuit has one negation gate fewer, and
computes a function f’ for which dy (f') > |Y (f)|/2 = dy(f)/2.
This completes the proof of Claim 5.7, and hence, the proof of the lower bound (5.2).
([

LEMMA 5.8 (Upper bound).
I(f) < [log(d(f) + 1)]. (5.3)
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FiGure 2. Chain Y, ends in x, and chain Y; starts with x.

PrOOE. We will prove the lemma by induction on M(f) := [log(d(f)+ 1)].

Base: M(f)=0. Then d(f) =0, so f is monotone and I(f) = 0.

Induction Step: Suppose I(f") < M(f’) for all boolean functions f’ such that
M(f’) < M(f)—1. Let S be the set of all vectors x € {0, 1}" such that dy (f) < 211
for every chain Y starting with x:

S ={x|dy(f) < 2"~ for any chain Y starting in x}.

Note that the set S is upwards closed: if x € S and x < y, then y € S. This holds
because each chain starting in y can be extended to a chain starting in x.

Cramm 5.9. for every chain Y ending in a vector outside the set S we also have
dy(f) < 2™

Prook Assume that there is a chain Y, ending in a vector x ¢ S and such that
dy,(f) = 2M)=1 (see Fig. 2). The fact that x does not belong to S means that there
must be a chain Y; starting in x for which dy, (f) > 2M()=1 But then the decrease
dy,uy, (f) of f on the combined chain Y, UY; is

dyuy, (F) = dy,(F) + dy, (f) 2 2V = oM@ DT > d (f),
a contradiction with the definition of d(f). O

Consider now two functions f, and f; defined as follows:

[ fl) ifxes,
fo(")_{ 0 ifx &S

and
1 if x €8,

A= { fGx)  ifx¢s.
CLAM 5.10. Both d(f,) and d(f,) are strictly smaller than 2¥()~1,

ProoE. We show this for f,, (the argument for f; is similar). Let Y be a chain for
which dy(fy) = d(f,). Let x be a vector which Y starts in and y be a vector which Y
ends in. If x €S or y &S, then d(f,) < 2MP)~1 — 1 by Claim 5.9 and definition of S.
So, assume that x ¢ S and y € S. Since the set S is upwards closed, some initial part
Y, of the chain Y lies outside S and the remaining part Y; lies in S. By the definition
of the function fj, it is constant 0 on Y;, and coincides with f on Y;. By the definition
of the set S, we have that the decrease of f, on Y; is smaller than 2Y()=1 — 1. Since
fo(2) = 0 for all z € Y, there cannot be any additional jump down of f, along the
entire chain Y =Y, UY;. O
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Hence,
M(f) = [log(d(f;) + 1)] < [log 2M)~1] = M(f) — 1.

By the induction hypothesis, I(f;) < M(f;) < M(f) — 1 for both i = 0, 1. It therefore
remains to show that

I(f) <1+4+max{I(fy), I(f)}. (5.4)

For this we need one auxiliary result. A connector of two boolean functions f,(x) and
f1(x) in n variables is a boolean function g in n+2 variables such that g(0, 1, x) = f,(x)
and g(1,0,x) = f1(x).

Cramm 5.11. Every pair of functions fy(x), f;(x) has a connector g such that

I(g) < max {I(fy), I(f)}-

Let us first complete the proof of Lemma 5.8 using this claim. Let ys(x) be the
characteristic function of S, and let g be a connector of f, and f; guaranteed by
Claim 5.11. By the definition of the functions f; and f;, we then have that our original
function f (x) can be computed as

() =g(~xs(x), xs(x),x).

Indeed, if x € S then f(x) = fy(x) = g(0,1,x) = g(—yxs(x), xs(x),x), and similarly
for all vectors x & S. Since the set S is upwards closed, its characteristic function yg(x)
is monotone, and hence, requires no NOT gates. Thus, Claim 5.11 implies

I(f)<1+1(g) <1+max{I(f),I(f)}.

This completes the proof of (5.3), and thus, the proof of Lemma 5.8.

It remains therefore to prove Claim 5.11.

We argue by induction on r := max {I(fy),I(f;)}. If r = 0 then both functions f;
are monotone, and we can take g(u,v,x) =W A f1) V(v A fo).

For the induction step, let C;(x) be a circuit with I(f;) negations computing f;(x).
Replacing the first NOT gate in C; by a new variable & we obtain a circuit C;(&,x)
on n + 1 variables which contains one NOT gate fewer. Let f/(&,x) be the function
computed by this circuit; hence, I(f/) < r — 1. Moreover, if h;(x) is the monotone
function computed immediately before the first NOT gate in C;, then

fo(x) = fo(=ho(x),x) and f1(x) = f](=hy(x), x). (5.5)

By the induction hypothesis, there is a boolean function g’(u, v, &, x) (the connector of
the pair f;, f,) such that I(g") < max {I(f;),I(f))} <r—1,

§'(0,1,&,x) = fg(&,x) and g'(1,0,&,x) = f{(&,x).
Replace now the variable & in g’(u, v, &, x) by the function
Z(w,v,x) :==([wAhy(x)) V(v Ahy(x))).

Since Z(0,1,x) = —hy(x) and Z(1,0,x) = —h;(x), (5.5) implies that the obtained
function g(u, v, x) is a connector of f; and f;. Since the functions h, and h; are mono-
tone, we have I(g) <1+1(g’) <r, as desired. O
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Ficure 3. If, when going from input x to input y > x, g; changes
from “down” state to “up” state, then the subformula F; must contain
at least one NOT gate changing its state form “up” to “down” state.

5.3. Formulas require exponentially more NOT gates

We now consider formulas, that is, circuits with AND, OR and NOT gates whose
fanout in a circuit is 1. The only difference from the general circuits (over the same
basis) considered in the previous section is that now the underlying graph of a circuit is
a tree, not an arbitrary directed acyclic graph. It is “clear” that this (requiring fanin 1)
should restrict the power of circuits. And indeed, we will now show that the minimal
number of NOT gates in formulas must be exponentially larger than in circuits.

Define the inversion complexity, I(f), of a boolean function f in the class of for-
mulas as the minimum number of NOT gates contained in a formula computing f .

By Markov’s theorem, the minimum number of NOT gates in a circuit for f is about
log, d(f), where d(f) is the decrease of f. In the case of formulas we have:

THEOREM 5.12. For every boolean function f, I(f)=d(f).
We again prove the lower and upper bounds on I;(f) separately.
LEMMA 5.13 (Lower bound). Iz(f) > d(f).

PrOOF. Let C be a formula computing f. Our goal is to show that then C must
have at least d(f) NOT gates.

If the input to a NOT gate g is 0 and the output is 1, then we call the state of g up.
The state of g is down if the input of g is 1 and the output is 0. We denote by down(x)
the number of NOT gates in the formula C whose states are down when the input for
C is vector x.

Cramm 5.14. If x < y, then down(y) — down(x) > 0. If moreover, f(x) =1 and
f(y)=0, then down(y) — down(x) > 1.

Proor. We change the input of C from x to y. Let g,...,g, be all NOT gates
in C that change from down state to up state, when going from input x to input y.
If a subformula C; entering a NOT gate g;, changing from down state to up state
when going from input x to input y > x, would have no NOT gates, then C; would
be monotone, implying that C;(x) < C;(y) (see Fig. 3). But since g; changes from
down state to up state, this means that C; changes from up state to down state, that
is, C;(x) =1 and C;(y) = 0, a contradiction. Hence, C; must contain at least one NOT
gate changing its state from up to down state. Let g/ be any of these NOT gates such
that there are no other NOT gates between it and g;. Now, none of the gates g/ can
be among g,..., &, because their behavior when going from x to y is different. Also,
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since C is a formula, we have that all gates gi, e, g,’n must be distinct, for otherwise
same gate in C would be forced to have fanout at least 2. This shows down(y) is at
least down(x).

Now, if f(x) = 1 and f(y) = 0, then the output of C must be connected, by a
path without NOT gates, with a NOT gate g; which changes from up state to down
state, when going from x to y. This gate is not among the gates g,..., g/, because
the (unique) path from each g/ to the output contains a NOT gate g; of a different
type, namely, changing its state form down to up state. Thus, in this case, down(y) —
down(x) > 1. O

Take now a chain Y = {y! < y? < ... < y*} for which dy(f) = d(f). Hence, the
number of indices i such that f(y') = 1 and f(y'*!) = 0 is d(f), and for each such
index i we have that down(y!) — down(y'*!) > 1. Since for the remaining indices j
we still have down(y/) — down(y/*!) > 0, this implies that

down(y*) — down(y') > d(f).
Thus, the number of NOT gates in C must be at least down(y*) > d(f). O
LEMMA 5.15 (Upper bound). I;(f) < d(f).

Proor. Induction on d(f). The base case d(f) = 0 is trivial, since then f is mono-
tone and I;(f) =0.

For the induction step, suppose that d(f) > 1, and Iz(f’) < d(f’) for all boolean
functions f’ such that d(f") < d(f)— 1. Let S be the set of all vectors x € {0,1}" such
that dy (f) = 0O for every chain Y starting with x:

S ={x|dy(f)=0 for any chain Y starting in x}.

Note that the set S is upwards closed: if x € S and x < y then y € S. This holds
because each chain starting in y can be extended to a chain starting in x.
As in the proof of Markov’s theorem, consider two functions f, and f; defined by:

[ fl) ifxes,
fo(")_{ 0 ifx &S

and
1 ifxes,

hx)= { Fx)  ifxgs.
Let also yg be the characteristic function of the set S itself, that is,

! ifxes,
50)=1 0 ifxgs.
It is easy to see that
f=fovUfirxs).
Indeed, if x € S, then f,(x) = f(x) and —ys(x) = 0, and if x € S, then f,(x) = O,
filx) = f(x) and =xs(x) = 1.
Cramm 5.16. d(fy) =d(xs)=0and d(f;) <d(f)-1.

ProoE Since the set S is upwards closed, its characteristic function yg is mono-
tone, implying that d(ys) = 0. That d(f,) = O follows from the fact f, cannot take
value 1 on a chain Y until Y enters the set S.

To show that d(f;) < d(f) — 1, assume that d(f;) > d(f). Since we only count
the number of changes of values of f on a chain from 1 to O (not from O to 1), the
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maximum d(f;) = maxy dx(f;) is achieved on a chain X ending in a vector y such that
f1(y)=0. Since dy (f) = 0 for all chains Y starting with some vector in S, there must
be a chain X which ends in some vector y ¢ S and for which dy(f;) > d(f) holds.
On the other hand, the fact that y is not in S implies that there must be a chain Y
starting in y such that dy (f) > 1. But then for the combined chain X UY we have that
dyoy(f)=dx(f)+dy(f)=>d(f)+1, a contradiction with the definition of d(f). [

By Claim 5.16 and the induction hypothesis, we have that Iz(f,) =0, Iz(¥s) =0
and I(f;) <d(f)— 1. Hence, the desired upper bound follows:

Ip(f) < Ip(fo) + Ie(f1) + Ip(xs) + 1 < d(f). U

5.4. The Fischer theorem

According to Markov’s theorem, every boolean function in n variables can be com-
puted by a circuit with at most

M(n) :=[log(n+1)]
NOT gates. The next important step was made by Fischer (1974): restricting the

number of negations to M (n) entails only a polynomial blowup in circuit size!

TueoreM 5.17 (Fischer 1974). If a function on n variables can be computed by
a circuit over {A,V,—} of size t, then it can be computed by a circuit of size at most
2t + 0(n?log? n) using at most M(n) NOT gates.

Proor. It is easy to show (do this!) that every circuit of size t can be transformed
to a circuit of size at most 2t such that all negations are placed only on the input
variables. Hence, it is enough to show how to compute the (multi-output) function

NEG(xq,...,x,) =("X1,...,7X,,)

by a circuit of size O(n?log? n) using M (n) negations; the function NEG is also known
as an invertor.

We already know (see Eq. (5.1)) that, on inputs x € {0, 1}" with exactly k 1’s, the
negation —x; of its ith bit can be computed as —x; = T ;(x), where

— -1
T (g, x,) = ThY (X, e, X1, X1 Xp) -
Using this observation, we can also simulate the behavior of =x; on all inputs.

Crav 5.18. For any x € {0,1}" and any 1 < i < n, we have that -x; = f;(x),

where
n

£iG) = N\ (FTH) VT () -

k=1
ProOE. Take an arbitrary vector a € {0,1}". If -x;(a) = 1 then a; = 0, implying
that in this case Thj(a) = T]zl.(a) forall k =1,...,n, and hence, f;(a) = 1. If ~x;(a) =
0 then a; = 1. So, for k = |a|, we then have Th}(a) =1 and T}';(a) = 0, implying that
fi(a) - 0 |:|
It can be shown (we will not do this) that all the functions Thz and TI?, ; (0<k<

n,1 < i < n) can be computed by a monotone circuit of size O(n?log®n). Hence, it
remains to compute the function

T (x):= (=Th}(x),"Th(x),...,~Th}(x))
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using at most M(n) = [log(n + 1)] negations. To do this, we first take a monotone
circuit C;(x) computing the function

T(x) := (Th(x), THi(x), .., Th(x)).

Observe that the outputs of this circuit belong to the set A,,,, of all inputs y € {0,1}"
whose bits are sorted in decreasing oder y; > y, > ... > y,,. Using only M (n) negations
it is possible to construct a circuit C,(y) of size O(n) which computes NEG(y) correctly
on all inputs in A,,,, (Exercise 5.19). The resulting circuit C(x) = C,(C;(x)) computes
—|T(X). [

EXERCISE 5.19. Let n = 2" — 1, and consider the set A,,,, of all vectors x € {0, 1}"
whose bits are sorted in decreasing oder x; > x, > ... > x,. Construct a circuit C, of
size O(n) which has at most r NOT gates and computes

NEG(xy,...,x,) =(7xq,...,7x,) forall inputs x €A,,,, -

Hint: Let x = (x1,...,X,) €Ayyr;. Take the middle bit x,,, (m = n/2) and show that the output of C, can be
obtained from the output of C,, and the output of =x,,. For this observe that —x,, = 1 implies =x; = =X,
for all j > m, whereas —x,,, = 0 implies —x; = -x,, for all j <m.

5.5. How many negations are enough to prove P # NP?

In order to prove the well known conjecture that P # NP, it would be enough to
prove that some functions f : {0,1}" — {0,1}" in NP cannot be computed by circuits
of polynomial (in n) size. By the results of Markov and Fischer, it would be enough to
prove a “weaker” result. Namely, let

P(") = class of all functions computable by polynomial-size circuits with at most r
NOT gates.

Then, by Markov-Fischer results, we have that:
If cLiQuE & P for r = [log,(n+ 1)], then P # NP.
The breakthrough result of Razborov (1985a) states that
CLIQUE & P") for r =0.

Amano and Maruoka (2005) have shown that essentially the same argument yields a
stronger result:

cLIQUE ¢ P even for r = (1/6)loglogn.
At the first glance, this development looks like a promising way to prove that P # NP:
just extend the bound to circuits with a larger and larger number r of allowed NOT
gates. But how large this number r of allowed NOT gates must be in order to have the
conclusion P # NP? This question motivates the following parameter for functions f :

R(f)=min{r | f ¢P") implies f & P}.
By the results of Markov and Fischer, for any f, we have that
0 <R(f) < [logy(n+1)]

holds for every function f in n variables. This parameter is most interesting for mono-
tone functions since they need no NOT gates at all, if we don’t care about the circuit
size. We already know that R(f) = O for a large class of monotone boolean functions
f, namely—for slice functions. But no specific slice function f with f & P is known.
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On the other hand, would R(f) < (1/6)loglogn hold for every monotone function
f, then we would already have that cLIQUE ¢ P, and hence, that P # NP. Unfortunately,
there are monotone functions f for which R(f) is near to Markov’s log n-border.

THEOREM 5.20. There are explicit monotone functions f : {0,1}" — {0, 1}" such that
f €Pbut
f &P unless r>logn—0O(loglogn).

Proor. The proof idea is to take a feasible monotone boolean function g : {0,1}" —
{0,1}, and consider a monotone multi-output function f : {0,1}" — {0, 1}* comput-
ing k = 2" copies of g on disjoint sets of variables. We call such a function f a k-fold
extension of g. We then show that, if g requires monotone circuits of exponential size,
then f requires circuits of super-polynomial size, even if up to r NOT gates are allowed.

Craim 5.21. Let f be a monotone boolean function, and k be a power of 2. If the
k-fold extension of f can be computed by a circuit with log, k NOT gates, then f can
be computed by a monotone circuit of the same size.

PrOOE It is enough to prove the lemma for k = 2 (we can then iterate the argu-
ment). Thus, take a circuit with one NOT gate computing two copies f, = f(Y,) and
f1 = f(¥;) of the monotone function f(X) on disjoint sets of variables. Let g be the
monotone(!) boolean function computed at the input to the (unique) NOT gate.

We have only two possibilities: either some minterm of g lies entirely in Y;, or not.
In the first case we assign constant 1 to all the variables in Y;, whereas in the second
case we assign constant O to all the variables in Y. As the function g is monotone, in
both cases it turns into a constant function (constant 1 in the first case, and constant
0 in the second), and the subsequent NOT gate can be eliminated. But since Y, NY; =
@, the setting Y, — ¢ does not affect the function f;_,. Hence, we obtain a circuit
which contains no NOT gates and computes either f, or f;, and hence, also f(X) after
renaming the input variables. O

To finish the proof of Theorem 5.20, we will make use of an explicit monotone
boolean clique-like function T,, in m variables considered by Tardos (1987). In Sec-
tion 4.6 we have shown (see Theorem 4.16) that this function is feasible—can be com-
puted by a non-monotone circuit of size m°")—but every monotone circuit computing
it requires size is exponential® in Q(m'/1°).

Let n = km where k = 2" and r = |log,n — 32log, log, n|; hence, k is about
n/(log,n)*2. Consider the k-fold extension f, of T,,. Then f, can be computed by a
(non-monotone) circuit of size at most k - m°Y), which is, of course, polynomial in n.
Hence, f, € P. On the other hand, by Claim 5.21, every circuit with at most r NOT
gates computing f,, must have size exponential in

1/16 ny /e 32/16 2
m/ (E) = (logn) = (log, n)*.

Thus, f, ¢ P unless r > log, n — 32log, log, n. O

The message of Theorem 5.20 is that, in the context of the P vs. NP problem, it
is important to understand the role of NOT gates when their number r is indeed very
close to the Markov-Fisher upper bound of logn.

2Another explicit feasible monotone boolean function—logical permanent—requiring monotone circuits
of size n?1°8™ was earlier given by Razborov (1985b). For the k-fold extensions f, of this function the same
argument yields R(f,,) = Q(logn).
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The function f,, in Theorem 5.20 has many output bits. It would be interesting to
prove a similar result for a boolean (i.e., single output) function.

RESEARCH PROBLEM 5.22. Find an explicit monotone boolean function f, for which
R(f,) = Q2(logn).
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CHAPTER 6

Span Programs

In 1993 Karchmer and Wigderson introduced an interesting linear algebraic
model for computing boolean functions — the span program. A span program for a
function f(x,,...,x,) is presented as a matrix over some field', with rows labeled by
literals, that is, variables x; or their negations —x; (one literal can label many rows).
The span program accepts an input assignment if and only if the all-1 vector can be
obtained as a linear combination of the rows whose labels are satisfied by the input.
The size of the span program is the number of rows in the matrix. A span program is
monotone if only positive literals are used as labels of the rows, i.e. negated variables
are not allowed.

The model turns out to be quite strong: classical models for computing boolean
functions — like switching networks or DeMorgan formulas — can be simulated by span
programs without any increase in size. Moreover, and this was one of the motivations
to introduce this model, the size of span programs lower bounds the size of parity
branching programs—a model where no larger than n? lower bounds are known even
in the simplest, read-once case (along each s-t path, each variable can be tested at
most once). It is therefore not surprising that proving lower bounds on the size of span
programs is a hard task, even in monotone case.

In this chapter we will show how this task can be solved using linear algebra
arguments.

6.1. The model

We first describe the model more precisely.

Let IF be a field. A span program over F is given by a matrix M over F with its rows
labeled by literals x,...,x,, 7X1,...,X,; one literal may label several rows. If only
positive literals x4, ..., x, are used, then the program is called monotone. The size of a
span program M is the number of rows in it. For an input a = (ay,...,a,) € {0,1}",
let M, denote the submatrix of M obtained by keeping those rows whose labels are
satisfied by a. That is, M, contains rows labeled by those x; for which a¢; = 1 and
by those —x; for which a; = 0. The program M accepts the input a if the all-1 vector
1 (or any other, fixed in advance, vector) belongs to the span of the rows of M,. A
span program computes a boolean function f if it accepts exactly those inputs a where
f(a)=1. That is,

fla)=1 iff 1eSpan(M,). (6.1)
It is useful to keep in mind the following equivalent definition of the acceptance con-
dition (6.1):

f(a) =0 iff there exists a vector r such that (r,1) =1 and M, -r = 0. (6.2)

'In this chapter we will only work over the field GF(2), but the results hold for any field.

72



6.2. POWER OF SPAN PROGRAMS 73

labels  matrix M edges

i x 1100 (si)
y 0101 @it
y 1 010 (si)
z 0011 G.0)
y 0110 (M)
Vo 1001

FiGure 1. A switching network for the threshold-2 function
Thg(x, ¥,2z) in three variables (which outputs 1 iff x + y +2 > 2)
and the corresponding span program.

That is, a vector a is rejected iff some odd vector r (vector with an odd number of 1’s) is
orthogonal to all rows of M. This follows from a simple observation that 1 € Span(M,,)
iff all vectors in Span(M,)* are even; here, as customary, V* is the orthogonal com-
plement of V, and is defined as the set of vectors orthogonal to every vector in V.
Finally, note that the number of columns is not counted as a part of the size. It is
always possible to restrict the matrix of a span program to a set of linearly independent
columns without changing the function computed by the program, therefore it is not
necessary to use more columns than rows. However, it is usually easier to design a span
program with a large number of columns, many of which may be linearly dependent.

6.2. Power of span programs

One of the oldest models for computing boolean functions is that of switching net-
works or nondeterministic branching programs. This model includes that of DeMorgan
formulas and was intensively studied after C. E. Shannon introduced this model about
60 years ago.

THEOREM 6.1. If a boolean function can be computed by a switching network of size
s then it can also be computed by a span program of size at most s. The same holds for
their monotone versions.

Proor. Let G = (V,E) be a switching network for a function f, with s,t € V its
special vertices. Take the standard basis {e; | i € V} of the |V|-dimensional space over
GF(2), i.e., e; is a binary vector of length |V | with exactly one 1 in the ith coordinate.

The span program M is constructed as follows. For every edge {i, j} in E add the
rowe; @e; =e; +e; to M and label this row by the label of this edge (see Fig. 1). It is
easy to see that there is an s-t path in G, all whose labeled edges are switched on by
an input vector a, if and only if the rows of M, span the vector v, = e, ®e,. Therefore,
M computes f, and its size is |E|. O

The program, we just constructed, is not quite that what we called a span program:
in the acceptance condition we use not 1 but some other vector v,. This, however, is
only a technical matter: just add one more row v, @ 1 labeled by constant 1.

Theorem 6.1 shows that span programs are not weaker than switching networks,
and hence, than DeMorgan formulas and deterministic branching programs. What
span programs capture is the size of parity branching programs. These are switching
networks with the “parity-mode”: an input a is accepted iff the number of s-t paths
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consistent with a is odd (see Section 16.1.2). Namely, if SP(f) denotes the complexity
of a boolean function in the class of span programs, and @BP(f) in the class of parity
branching programs, then SP(f) < 2-®BP(f) and ®BP(f) < SP(f)°(; see Karchmer—
Wigderson (1993) for details.

6.3. Power of monotone span programs

We will exhibit a monotone boolean function f in n variables such that SP(f) <n
but any monotone circuit for f requires n*1°™ gates.

A spanning subgraph of a graph G = (V, E) is a graph G’ = (V,F) where F C E; the
set of vertices remains the same. A (connected) component of a graph is a maximal set
of its vertices such that there is a path between any two of them. A graph is connected
if it consists of just one component. The degree d(i) of a vertex i is the number of
edges of F which are incident to i.

An odd factor in a graph is a spanning subgraph with all degrees odd.

LEMMA 6.2. If a graph is connected then it has an odd factor if and only if the number
of its vertices is even.

ProOOE. Suppose that G has an odd factor G’ = (V, F). Hence, all degrees dg(i) are
odd. By Euler’s theorem , the sum Ziev dp(i) equals 2|F|, and hence, is even. Thus,
the number |V| of summands must be even, as claimed.

For the other direction, suppose that the graph G = (V, E) is connected and has
an even number of vertices, say V = {xy,...,Xy,,}. Foreveryi =1,...,m, fix any one
path P; = (V, E;) connecting x; to x;,,. Let F be the set of those edges from E which
appear in an odd number of the sets E, ..., E,,.

We claim that the subgraph (V, F) is the desired odd factor. Indeed, observe that if
a vertex x appears in a path P; then either degy (x) is even or degg (x) = 1, and this
last event happens iff x is a leaf of this path, i.e., if x = x; or x = x;,,,. Since each
vertex x € V is a leaf of exactly one of the paths P, ..., P,, we have that the sum of
degrees D(x) := Z:”:l degEi(x) is odd. It remains to observe that, by the definition
of F, this sum D(x) is congruent modulo 2 to the degree degy(x) of x in the graph
(V,F). O

We now consider the following function ODDFACTOR, on n = m? variables: the
input is an m x m (0, 1) matrix representing a bipartite graph with m vertices in each
part; the graph is accepted if it has an odd factor.

LEMMA 6.3. Every monotone circuit computing ODDFACTOR,, requires n*1°8™ gates.

PrOOE One of celebrated results of Razborov (1985b) is an n®(°¢™ lower bound
on the size of any monotone circuit for the perfect matching problem. In fact, he
proved that such number of gates is necessary in any monotone circuit which: (i)
accepts every perfect matching, and (ii) rejects a constant fraction of all unbalanced 2-
colorings of vertices; each 2-coloring is identified with the graph of all monochromatic
edges.

Every perfect matching is an odd factor, and should be accepted. On the other
hand, an odd 2-coloring (in which each color occupies an odd number of vertices) has
two odd components, and thus must be rejected: by Lemma 6.2, none of them can
have an odd factor. As odd 2-colorings constitute half of all 2-colorings, Razborov’s
argument yields the result. O
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It is therefore somewhat surprising that opDFACTOR,, can be computed by a very
small monotone span program.

THEOREM 6.4. ODDFACTOR,, can be computed by a monotone span program of size n.

ProOE. We construct the desired span program for opDFACTOR,, as follows. Let
V =V, UV, be the vertex set (|V;| = [V,| =m), and let X = {x; ;} withi € V; and j € V,
be the corresponding set of boolean variables (one for each potential edge). Take the
standard basis {e; | i € V} of the 2m-dimensional space over GF(2), i.e., e; is a binary
vector of length 2m with exactly one 1 in the ith coordinate. Let M be the m? by 2m
matrix whose rows are vectors e; + e; labeled by the corresponding variables x; ;. We
claim that this span program computes ODDFACTOR,. To verify this we have to show
that the all-1 vector 1= (1,...,1) is a sum (over GF(2)) of vectors of the form e; + e;
precisely when the corresponding edges (i, j) form an odd factor.

Take an arbitrary graph E € V; x V,. Suppose that E has an odd factor F C E.
Since the degree dy(i) of each vertex i € V in the subgraph F is odd, we have

Z (e;te;)=1

(i.j)eF

because for each i € V, the vector e; occurs exactly dp(i) times in this sum. Thus, our
span program M accepts the graph E, as desired.

Suppose now that E has no odd factors. By Lemma 6.2, the graph E must have
a connected component with an odd number of vertices. Take such a component
G' = (A,B,F) where A C V; and B C V,; hence, |JAUB| is odd. The program M
must reject the graph E. Assume the opposite, i.e., that some subset of rows, labeled
by edges in E, sum up to the all-1 vector 1. Since our subgraph G’ is a connected
component, no vertex from the set AU B is incident to a vertex from outside. This
means that the 1’s in the positions, corresponding to vertices in AU B, can be obtained
only by summing along the edges in that component. Hence, there must be a subset of
edges H € E N (A x B) such that the vector

w= Z (e; tej)

(i,j)eH

has 1’s in all the coordinates from AUB. For each i € AUB, the number of terms e; +e;
in this sum is exactly the degree dy(i) of i in the subgraph H. By Euler’s theorem,
the sum ZiGAUB dy (i) equals 2|H|, and hence, is even. Since |AU B| is odd, there must
be at least one i, € AU B for which dy(i;) = 0 mod 2 (the sum of an odd number of
odd numbers would be odd). But this means that the vector w has a 0 in the i,-th
coordinate, a contradiction.

Thus, the designed span program M correctly computes ODDFACTOR,,. Since it has
only m? = n rows, we are done. U

Thus, for some monotone boolean functions their monotone span program size
is exponentially smaller than their monotone circuits size. The converse direction re-
mains open.

RESEARCH PROBLEM 6.5. Do there exist functions admitting polynomial size monotone
circuits which require superpolynomial size monotone span programs?
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6.4. Weakness of monotone span programs

We will now present a rank argument to show that some monotone boolean func-
tions require large monotone span programs.

Let f(xq,...,X,) be a monotone boolean function. It will be convenient to look at
f as accepting/rejecting subsets a € [n] = {1,...,n}: f(a) = 1iff f(y,) = 1 for the
characteristic vector y, of a. Let also @ = [n] — a denote the complement of a set a.

Let A,B be some pair of families of subsets of [n]. A boolean function f in n
variables separates this pair if f(a) =1 for all a €A, and f(b) = 0 for all b € B. A pair
A, B of sets is cross intersecting if anb # 0 for alla € Aand b € B.

Every family A of subsets of [n] defines a monotone boolean function in a natural

way:
£ =\ N\x.

a€Aica

That is, we just take a DNF whose monomials correspond to the members of A. This
shows that every cross-intersecting pair A, B can be separated by at least one monotone
boolean function, namely—by f,. Indeed, this function must accept all members of A,
by its definition. Take now a set b € B. In the vector yz, all positions i with i € b are
set to 0. Since b intersects all a € A, all monomials (and hence, the function f, itself)
will be evaluated to 0 on input vector y3, implying that f (b)=0.

DEFINITION 6.6. Let A, B be some pair of families of subsets of [n]. The pair (A, B)
is locally intersecting if every set b € B can be divided in to two parts b = by U b; so
that every a € A has a nonempty intersection with exactly one of these parts.

Given a locally intersecting pair (A, B), define its disjointness matrix D, p to be an
|A] by |B| matrix, with its rows indexed by sets a € A and its columns indexed by sets
b € B, such that the entries of D = D,  are defined by

0 ifanby#0,

Dla,b] =
[a, ] {1 ifanb; =0.

THEOREM 6.7. If a pair A, B is locally intersecting, then any monotone span program
over GF(2) separating this pair must have size at least tk(Dyp).

PrOOE. Let M be a monotone span program separating (A, B). Let r be the number
of rows and ¢ the number of columns in M. The idea is to show that the disjointness
matrix D = D, 5 of A, B is a matrix of scalar products of vectors of dimension at most
r; this yields rk(D) <r.

For every a € A, let v, € GF(2)" be a vector witnessing the fact that a must be
accepted, which means that

vi-M=1,

a
where 1 is the all-1 vector and v, is a vector which is nonzero only in coordinates
corresponding to elements of a.
Let b = by U b, € B. Since the complement b of b cannot be accepted, no linear
combination of the rows of My can give 1. Hence, by the dual acceptance condition
(6.2), for each b € B there is a vector u, in GF(2) such that

(1,up) =1and Mz -u;, =0.
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b
b o Mp
.
bo | a*0 %0
b, /

FIGURE 2. The two cases a N by # 0 and an by # 0.

Let w,, be the vector in GF(2)" obtained from the vector M - u, by replacing to 0 all
its elements, corresponding to the rows labeled by elements of b,; note that

wy(i) #0 only if i € b;.

Indeed, the elements w, (i) with i € b are zero because My - uy, = 0, and the elements
w (i) with i € b, are zero by the definition of w;. We claim that

Dla,b] = (v, wy).

To show this, recall that the set b is splitted into two disjoint parts b = by U b; such
that each member of A has a nonempty intersection with exactly one of these parts.
If anby # 0 then an b; = 0, and hence, the vectors v, and w have no element on
which they both are nonzero; so, in this case (v,,w;) = 0 (see Fig 2). If anb; #0
then a N by, =0, and hence, in this case, we have (v, w;) = (v,, Mu,), implying that

(Vo wy) = (vo,Muy,) = (v) M,u,) = (1u) = 1.

This shows that D is a matrix of scalar products of vectors of dimension r, implying
that k(D) <r. O

Since, by Theorem 6.1, monotone span programs are not weaker than mono-
tone switching networks (and hence, are not weaker than monotone formulas), Theo-
rem 6.7 directly yields the following

COROLLARY 6.8. If the pair A, B is locally intersecting, then any monotone DeMorgan
formula separating this pair has size at least rk(Dy p).

We now show how Theorem 6.1 can be used to prove a lower bound n®(°¢™ for
an explicit monotone function in n variables. Then we show that this is the best what
can be proved using rank arguments.

6.4.1. Super-polynomial lower bound. The general disjointness matrix D, is a
2™ x 2™ (0,1) matrix whose rows and columns are labeled by the subsets a of an n-
element set, and the (a, b)-th entry is 1 if and only if an b = 0.

LEmmA 6.9. rk(D,) = 2"

Proor. Follows easily by the induction on n together with the following recursive

construction of D,;:
_ 11 _ Dn—l Dn—l
Dl_[l o}’ D"_[D,,_l 0 |
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Since the lower right submatrix of D,, is an all-0 matrix, and since (by the induction
hypothesis) the rows of D,_; are linearly independent, the rows of the entire matrix
D,, must be linearly independent as well. t

The disjointness matrix of a (single) family A of sets is a (0,1) matrix D, whose
rows are labeled by members of A and columns are labeled by all subsets of each
member of A. That is, for every a € A and for every b C a there is a column labeled by
b. Like in the case of matrices D,,, the entry in the a-th row and b-th column is defined
by: Dsla,b] =1iffanb =0.

LEMMA 6.10. Let A be a family of subsets that are incomparable by inclusion. Then
k(D) = |A].

Proor. Fix an a € A and let M be the submatrix of D, consisting of all 2!?! columns
indexed by subsets of a. Since, by our assumption, every subset of a appears as a
column of M, the rows of M are rows of the full disjointness matrix D ,, some of them
repeated (just relabel each row ¢ € Aby c N a). By Lemma 6.9, we know that D, has
full row rank. On the other hand, since a is not contained in any other member of A,
the row indexed by a occurs in M only once.? This implies that this row cannot be
a linear combination of other rows in M. Thus, the corresponding row of the entire
matrix D, cannot be a linear combination of others, as well. t

We will consider boolean functions defined by bipartite graphs as in Section 3.3.
Let G = (U,V,E) be a bipartite graph with V = {1,...,n} and U = {n+1,...,2n}.
Recall that such a graph is k-separated if for every disjoint subsets X,Y of U of size at
most k there exists a vertex v € V such that every vertex u € X is connected with v and
no vertex u € Y is connected with v.

For a bipartite graph satisfying this condition we define A to be the family of sets
a C UUV such that |[anU| = k and a NV is the set of all vertices that are joined to
every vertex of a N U, i.e., maximal complete bipartite graph with the part in U of size
k. Consider the monotone boolean function

Fac)=\/ N\ x:.

acAica
We are now able to extend the lower bound on the formula size of such functions,
given in Theorem 3.8, to a more general model of monotone span programs.

THEOREM 6.11. If the graph G is k-separated, then every monotone span program
computing fy g requires size (}).

PrOOE. Define B to be the family of sets b = b, U b; such that b, C U, |by| < k and
b, consists of all vertices of V that have no neighbor in b,.

Since each a € A induces a complete bipartite graph and b = b, U b; an empty
graph, a cannot intersect both b, and b;. Moreover, the condition that the underlying
graph is k-separated guarantees that a N b, = 0 iff an b; # 0. That is, the pair of
families A, B is locally intersecting. Theorem 6.7 implies that every monotone span
program separating the pair A, B, and hence, any such program computing f, ; must
have size at least rk(D, ).

Relabel now each row a € A of D, by a’ == anU (a k-element subset of U),
and column b € B of Dyp by b’ := b, (an at most k-element subset of U), and let

2Would the row of some other a’ € A be the same, this would in particular mean that a’ would intersect
(that is, contain) each single element of a, since a does this.
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M be the resulting matrix; this matrix differs from D, only in labelings of rows and
columns—the entries remain the same.
Since b, ranges over all at most k-element subsets of U, and since we have:

Dugla,bl=1iffanb, #0iffanb, =0 iffa’ N b’ =0,

the matrix M is the disjointness matrix D, of the family A = {anU | a € A}. By
Lemma 6.10,

th(Dyp) = th(Dy) = 4] = (D ,

and we are done. (|

There are several constructions of k-separated graphs that achieve k = Q(logn),
the most popular is the Paley graph (see Section 3.3). For these graphs we obtain
lower bounds of the form n2(og™,

We shall now show that this is already the limit: the approach, based on locally
intersecting set families, cannot yield larger lower bound than nf¥(°s™.

LEMMA 6.12. Let A and B be families of subsets of [n]. If the pair A,B is locally
intersecting, then

rk(D, 5) < nOUo8™

PROOE. Let D = D, 3, and let Dec(D) be the minimum number of mutually dis-
joint monochromatic submatrices of D whose union covers all entries of D. Hence,
rk(D) < Dec(D). On the other hand, we will show later (see Theorem 7.17 in Sec-
tion 7.2) that, for every (0,1) matrix M, log,Dec(M) is at most a constant times
(log, Cov(M))?, where Cov(M) is the minimum number of monochromatic (but not
necessarily disjoint!) submatrices whose union covers all entries of M.

Each entry D[a, b] of our matrix D is either O or 1 depending on whether a in-
tersects b in its first block b, or in the second one b;. Hence, all entries of D can be
covered by 2n submatrices

M? ={(a,b):i€anb,}, i=1,...,n; 0=0,1.

It is clear that these submatrices cover all entries of D. Moreover, since the pair A, B
is locally intersecting, we have that all the entries of M7 are equal to o. Hence,
we have found a covering of D by 2n monochromatic submatrices M, implying that
Cov(D) < 2n. By the above mentioned result,

log, tk(D) < log, Dec(D) < O((log Cov(D)*) < O((logn)?). O

We already know (see, for example, Section 4.6) that some explicit monotone
boolean functions (clique-like functions) require monotone circuits of exponential size
whereas their non-monotone circuit size is polynomial. The existence of such a gap
between monotone and non-monotone span programs remains open.

RESEARCH PROBLEM 6.13. Do there exist monotone functions admitting polynomial
size span programs which require superpolynomial size monotone span programs?
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Exercises

Ex. 6.1. (Karchmer-Wigderson 1993). Let M be a span program computing f over
[F,. Such a program is canonical if the columns of M are in one-to-one correspondence
with the vectors in f~1(0), and for every b € f~1(0), the column corresponding to
b in M, is an all-0 column. Show that every span program can be converted to a
canonical span program of the same size (= the number of rows) and computing the
same function.

Hint: Take a vector b € f ~1(0). By (6.2), there is an odd vector r = r, for which M, -}, = 0. Define
the column corresponding to b in a new span program M’ to be M - ;. Do this for all b € f~1(0). Show
that, for every vector a € F3, the rows of M, span the all-1 vector 1 if and only if f(a) = 1.

Ex. 6.2. Research problem. Let k be the minimal number for which the following
holds: there exist n colorings cy,...,c, of the n-cube {0,1}" in k colors {1,...,k}
such that, for every triple of vectors x,y,z there exists a coordinate i on which not
all three vectors agree and the three colors c¢;(x),c;(y),c;(z) are distinct. Bound the
smallest number k of colors for which such a good collection of colorings c,...,c,
exists. Comment: This problem is connected with proving lower bounds on the size of
non-monotone span programs, see Wigderson (1993).

Ex. 6.3. (Wigderson 1993). Consider the version of the problem above where
we additionally require that the colorings ¢; are monotone, i.e., x < y implies ¢;(x) <
¢;(¥). Prove that in this case k = Q(n).

The goal of the next exercises is to show that we cannot replace the acceptance
condition “accept vector a iff the rows of M, span vector 1” of span programs by
“accept vector a iff the rows of M, are linearly dependent” because then very simple
boolean functions require programs of exponential size.

A monotone dependency program over a field F is given by a matrix M over F
with its rows labeled by variables xi,...,x,. For an input a = (a4,...,a,) € {0,1}",
let (as before) M, denote the submatrix of M obtained by keeping those rows whose
labels are satisfied by a. The program M accepts the input a if and only if the rows of
M, are linearly dependent (over F). A program computes a boolean function f if it
accepts exactly those inputs a where f(a) = 1. The sige of a dependency program is
the number of rows in it.

Ex. 6.4. Suppose that a boolean function f # 1 is computed by a monotone
dependency program M of size smaller than the number of minterms of f. Prove that
then there exists a set of minterms A, |A| > 2, such that for any non-trivial partition

A=AyUA, the set
S(Ag,A) = ( U a) N ( U b)
beA,

a€h,

contains at least one minterm of f.

Hint: For every minterm a of f choose some linear dependence v, of the rows of M, i.e., v, is a vector
such that v, - M = 0, and v, has a nonzero coordinates only at rows labeled by variables in a. The vectors
v, are linearly dependent (why?). Let A be a minimal set of minterms such that {v, | a € A} are linearly
dependent. Thus, Y} ., .V, = 0 for some coefficients a, # 0. Observe that for any non-trivial partition

A:AO UAl,
vi= Z AgVg = — Z AgVe #0.

a€hy a€A;
Let b be the set of variables labeling the rows of M corresponding to nonzero coordinates of v. This set lies
in S(Ag,A1) and contains at least one minterm of f.
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Ex. 6.5. Use the previous fact to show that the function
F=0 VX)) Alxg V) Aee- Alxgn 1 V Xo,)

cannot be computed by a monotone dependency program of size smaller than 2".
Show that this function has a small monotone span program.

Hint: Each minterm a of f has precisely one variable from each of the sets {xy;_1,x5;}, i =1,...,n;
hence, there are 2" minterms. Suppose that f has a program of size smaller than 2", and let A be the
set of minterms guaranteed by (i). Pick i such that both sets of minterms Ay = {a € A | xy;_; & a} and
A1 = {a € A| xy; & a} are non-empty (why this is possible?). By (i), the set S(Ap,A;) must contain at least
one minterm b of f. But, by the definition of Ay and A, this minterm can contain neither x,; ; nor x,;, a
contradiction.
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also proved that the size of such programs is polynomialy related to SP(f), but for
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Communication Complexity



CHAPTER 7

Two Players

In this and the next chapter we will consider games between two players, Alice
and Bob, where communication between players is allowed. However, we will assume
that the players are far away from each other, so that each communicated bit costs
money. The goal is to pay, and hence, to communicate as few as possible. The players
are not adversaries—they help and trust each other.

The goal of players is to compute the values of a given boolean function f :
{0,1}>™ — {0,1} on all input vectors. The restriction is that each player has only
partial access to the input. In the fixed-partition communication game, the players are
given a functions as well some partition of the input variables into two disjoint blocks
of size m. Hence, inputs have the form (x, y) with x, y € {0,1}™, and the players must
compute f (x, y) for all inputs. The restriction is that Alice can only see x and Bob can
only see y.

There is also another, best-partition model of communication where, given a func-
tion f, the players are allowed to choose a most suitable for this function partition
(x,y) of its inputs. Yet more trickier is the communication model where we have more
than two players, each seeing all but a small piece of the input vector. We will consider
this model later in Chapter 9.

7.1. Fixed partition games

In this case we actually consider communication games for matrices, rather than
for boolean functions. If a partition of the 2m variables of f into equal sized parts
is fixed, then we can look at f as an n X n (0,1) matrix A with n = 2™ such that
Alx,y] = f(x,y). Such a matrix A is usually referred to as the communication matrix
of f.

Thus, in a fixed-partition game, the players are given a boolean n x n matrix A. The
goal of players is to evaluate the matrix, that is, for every its entry (x, y), to compute
the value A[x,y] of this entry. The matrix A itself is known to both players! The
restriction, however, is that the players only have a partial access to the input: Alice
can only see x and Bob can only see y. Hence, Alice only knows which row it is, Bob
only knows which column it is, and they must determine the value in their intersection.

7.1.1. Deterministic communication. Before the game starts, the players agree
on a “protocol” for exchanging messages. After that, given an input pair (x,y), the
protocol dictates to each player what messages to send at each point, based on her/his
input and the messages received so far. It also dictates when to stop, and how to deter-
mine the answer from the information received. There is no limit on the computational
complexity of these decisions, which are free of charge. The cost of the protocol is the
number of bits they have to exchange on the worst case choice of input pair (x, y). The

84
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/\ Alice (split by rows)
11
01 111

Bob (split by columns)

G o)
O
(S

Alice (split by rows)

Bob (split by columns)
@

FiGURE 1. An example of a communication tree. Shaded rectangles
are monochromatic. Dashed lines indicate the resulting decomposi-
tion of the original matrix into monochromatic rectangles. The com-
munication complexity of this protocol is 4.

communication complexity C(A) of the matrix A is the cost of the best protocol for this
game.

More formally, this measure can be defined as follows.

By sending bits 0 and 1, the players actually split the rows (if this bit is send by
Alice) or columns (if this bit is send by Bob) into two disjoint parts. A communication
protocol (or a communication tree) of a game is a binary tree, each inner node of which
correspond to a decision made by one of the players at this node. Each node of the
tree is labeled by a submatrix of A so that the following holds (see Fig. 1).

a. The root is labeled by the whole matrix A.

b. If a node u is labeled by a matrix M, then the sons of u are labeled by the
corresponding submatrices M, and M; of M. Moreover, these submatrices are
obtained from M by splitting the rows of M (if u is Alice’s node) or by splitting
the columns of M (if u is Bob’s node).

c. If w is a leaf and R is its label, then R is monochromatic, i.e., is either all-O
matrix or all-1 matrix.

Since at each node, the rows (or columns) of the corresponding submatrix are
splitted into disjoint parts, the protocol is deterministic: each pair (x,y) will reach
precisely one leaf. The depth of a tree is the maximum number of edges from the root
to a leaf. In these terms, the communication complexity C(A) of a matrix A is just the
minimum depth of a communication tree for this matrix.

It is clear that for any n x n (0, 1) matrix A (n being a power of two) we have that

C(A) <logyn

since Alice can just tell Bob the binary code of her row x.

Lower bounds on C(A) can be shown using the rank rk(A) as well as the decompo-
sition number of A. The decomposition number, Dec(A), of a boolean matrix A is defined
as the smallest number of mutually disjoint' monochromatic submatrices of A covering
all entries of A.

ITwo submatrices are disjoint if they do not share a common entry.
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FIGURE 2. A decomposition that does not correspond to any protocol.
Show this!

REMARK 7.1. Unlike arbitrary decompositions of a given matrix A into monochro-
matic submatrices, decompositions arising from communication protocols have special
form: they are produced inductively by splitting the resulting submatrices only row-
wise or column-wise. And indeed, there are decompositions that cannot be produced
by any communication protocol, like one depicted in Fig. 2.

Since the submatrices occurring on the leaves of any communication tree for A
must be disjoint, we immediately have that C(A) > log, Dec(A). On the other hand, the
subadditivity of rank implies that rk(A) < Dec(A). So, we have the following estimates:

C(A) > log, Dec(A) > log, rk(A). (7.1)

Hence, already simplest matrices, like the identity matrix I,,, have maximal com-
munication complexity. The goal however is (as in the case of other complexity mea-
sures) to understand what properties of a given matrix A force its communication com-
plexity be large. Having 1’s on the diagonal and 0’s elsewhere is just one of these
properties.

Using the rank one can show that a lot of matrices have large deterministic com-
munication complexity. For a matrix A, let |A| denote the number of its nonzero entries.

PrOPOSITION 7.2. If A is a symmetric n x n (0, 1) matrix with 1’s on the diagonal,

then
2

n
Dec(A) > —.
Al

ProoR Let A44,...,A, be the eigenvalues of A, then their sum t = Z?zl A; is the
trace of A (sum of diagonal entries of A), and at most r = rk(A) of them are nonzero.
Thus, the Cauchy-Schwarz inequality yields tr(A%) = lel 7Ll.2 > r(t/r)?=t?/r. Since
Ais a (0,1) matrix, we also have that tr(A%) = |A|: the ith diagonal entry of A? is the
number of 1s in the ith row of A. This implies tk(A) = r > tr(A)?/|A|, where tr(A) = n
since A has 1’s on the diagonal. O

7.1.2. Rank Conjecture. We already know that C(A) > log, rk(A) holds for any
matrix A. But how tight this lower bound is?

CoNJECTURE 7.3. There is a constant c such that, for every n x n (0,1) matrix A,
C(A) < (log, rk(A))°.

If mono(A) denotes the maximum number of entries in a monochromatic subma-
trix of A, then
2

C(A) 2 10g2 DEC(A) Z log2 m .
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Hence, Rank Conjecture implies the following (seemingly “easier” to tackle) conjecture
stating that every (0,1) matrix of small rank must contain a large monochromatic
submatrix.

CONJECTURE 7.4. For every n x n (0,1) matrix A of rank r,
2
mono(A) > W .

In fact, Nisan and Wigderson (1995) have shown that this last conjecture is equiv-
alent to the Rank Conjecture! Moreover, they showed that Rank Conjecture does not
hold for ¢ =1/log; 2 ~ 1.6. They also gave a support for Conjecture 7.4: every matrix
of small rank must contain a submatrix of large “discrepancy.”

Let A be an n x n £1 matrix. The discrepancy, disc(A), of A is the maximum,
over all its submatrices B, of the absolute value of the sum of entries in B. Hence,
small discrepancy means that the matrix is very balanced: every submatrix has almost
the same number of positive and negative entries. If A is a (0,1) matrix, then its
discrepancy is the discrepancy of its £1 version A’ with A'[x,y] =1—2-A[x, y].

Since monochromatic submatrices have maximal discrepancy, we have that disc(A) >
mono(A). Interestingly, if we replace mono(A) by disc(A), then Conjecture 7.4 is true
in a very strong sense!

THEOREM 7.5. For every n X n £1 matrix A of rank r,

2

n
disc(A) > —.
isc( )_16r

ProOE. We are given a 1 matrix A = (q;;) of low rank r = rk(A) and wish to find
in it a submatrix of hight discrepancy. For this, we first observe that
n

Z AijXiYj

ij=1

disc(A) = max |x T Ay| = max

>

where the maximum is over all (0, 1) vectors x and y: each pair of such vectors corre-
spond to a submatrix of A. So, we only need to find (0, 1) vectors x and y for which
x Ay is large. As an intermediate step we shall consider the set

Ball={u e R": |uy;| <1 for all i}
of real vectors of small maximum norm and show that disc(A) can be lower bounded
by the maximum of u'Av over the vectors u, v € Ball.
Cram 7.6. For any u, v € Ball we have that

.
A
disc(A) > — - v

PrOOE. Letting z = Av, we have that u'Av = Y. wu;z. Hence, Y, u;z >

u'Av/2, where K is either the set of coordinates i where both u; and z; are posi-
tive or the set of coordinates in which both are negative. Assume the first case (the
second case is similar by using vector —v instead of v). Then letting x € {0,1}" to
be the characteristic vector of K and using the fact that |u;| < 1 for all i, we have
xTAv = Z?:l X% 2 Do W% = u'Av/2. Repeating this argument with z = x"A,
we can replace v with a (0,1) vector y obtaining that x'Ay > u'Av/4. Hence,
disc(A) > x "Ay > u"Av/4, as claimed. O
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To finish the proof of the theorem it is enough, by Claim 7.6, to find two vectors
u,v € Ball for which u"Av > n?/4r. For this we will use a known relation between
spectral norm, Euclidean norm and the rank of a matrix.

The spectral norm of a matrix A is defined as the maximum ||A|| = max [u"Av| over
all vectors u, v € R" whose Euclidean norm |[ul| = (31, u?)"/2 is equal to 1. The name
“spectral norm” comes from the fact that

|A]l = max{ﬁ | A is an eigenvalue of ATA} .

The Euclidean norm (known also as Frobenius norm) of A is just the Euclidean norm

w(a) = (2 ; aizj)l/ 2 of the corresponding to the matrix vector of length n?.

CraM 7.7. For every real matrix A,
W(A)

v/ 1k(A)

PrOOE. Observe that W(A)? is equal to the trace tr(B) i.e. the sum of diagonal
elements, of the matrix B = ATA. On the other hand, the trace of any real matrix is
equal to the sum of its eigenvalues. Hence, W(A)? = tr(B) = Z?:l A; where A, > ... >
A, are the eigenvalues of B. Since B has only r = rk(B) = rk(A) non-zero eigenvalues,
and since all eigenvalues of B are nonnegative (B is symmetric), the largest eigenvalue
A, is bounded by W(A)?/r < A, < W(A)2. It remains to use the (mentioned above)

<A <wW(A).

fact that ||A]| = v/ A;. O
We will now construct the desired vectors u, v € Ball with
2
n
u'Av > —.
4r
We start with two vectors x,y € R" of Euclidean norm ||x|| = ||y|| = 1 for which

xTAy = ||All. Let p > 1 be a parameter (to be specified later), and consider the sets of
indices

I={i:|x;|>1/yp} and J={j:|y;|>1/v/p}.

Since 1 = ||x||> = X._, x? > |I|/p, we have that |I| < p, and similarly, |J| < p.
Consider the vectors a and b defined by:

0 ifiel, 0 ifjed,
a; = . and b; = )
x; otherwise y; otherwise.
We claim that
n
-
a Ab>— —p. 7.2
NG p (7.2)
To show this, consider the matrix B which agrees with A on all entries (i, j) with i € I
and j € J, and has 0’s elsewhere. Then
a'Ab=xTAy —x'By.
Since W(A) = n, Claim 7.7 yields x"Ay > n/,/r. The same claim also yields x "By <

|IB|]| < W(B) < p, where the last inequality follows since B has at most p nonzero rows
and p nonzero columns. So,

n

T T T

a'Ab=x"Ay—x'By>——p.
Yy y_ﬁ p
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Set now p :=n/(24/7), and consider the vectors u := %a and v := %b. Both vectors
u, v belong to Ball, and we have

n2
u'Av=p-a'Ab> —. t
4r

7.1.3. Nondeterministic communication. The cover number, Cov(A), of a (0,1)
matrix A is the smallest number of all-1 submatrices of A covering all its 1’s; this time
the matrices in a cover need not be disjoint. The nondeterministic communication com-
plexity, NC(A), of a matrix A is defined by:

NC(A) = log, Cov(A).

Perhaps, the best way to view a nondeterministic communication protocol between
two parties, Alice and Bob, wishing to evaluate a given matrix 4, is a scheme by which a
third party, Carole (a “superior being”), knowing the whole input (x, y), can convince
Alice and Bob what the value of A[x, y] is. Hence, we have three players, Alice, Bob
and Carole. Given an input (x,y), Carole’s goal is to convince Alice and Bob that
Alx,y] = 1. For this purpose, she announces to both players some binary string, a
witness for (or a proof of) the fact that “A[x, y] = 1.” Having this witness, Alice and
Bob verify it independently and respond with either Yes or No. Alice and Bob agree that
Alx,y] =1 (and accept the input (x, y)) if and only if they both replied with Yes. If
A[x,y] = 0 then Alice and Bob must be able to detect that the witness is wrong no
matter what Carole says. The protocol is correct if, for every input (x,y), Alice and
Bob accept it if and only if A[x, y] = 1. The communication complexity of this game is
the length of the witness in the worst case.

ExampLE 7.8. For example, Carole can easily convince Alice and Bob that two
binary strings x and y of length n are not equal: using only [log,n] + 1 bits she
announces (the binary code of) a position i with x; # y; and the bit x;; Alice checks
whether the bit she received is the ith bit of the string she can see, and Bob checks
whether y; # x;. If however Carole would like to convince that x = y, then she would
be forced to send n bits, just because Cov(I,,) = 2" for a 2" x 2" identity matrix I,,.

7.1.3.1. An upper bound. The following lemma says that only sparse matrices can
have large nondeterministic communication complexity. For a (0,1) matrix, let |A|
denote the number of its 1-entries.

LEMMA 7.9. Let A be a (0,1) matrix. If every column or every row of A contains at
most d geroes, then
Cov(A)=0(dIn|A]).

Proor. We only consider the column case, the row case is the same. To cover the
ones of A we construct an all-1 submatrix B with row set I and column set J via the
following probabilistic procedure: pick every row of A with probability p = 1/(d + 1)
to get a random subset I of rows, and let J be the set of all columns of A that have no
zeroes in the rows of B.

A l-entry (x,y) of Ais covered by B if x was chosen in I and none of (at most d)
rows with a 0 in the y-th column was chosen in I. Hence,

Pr[(x,y) is covered by B] > p(1 —p)¢ > pe P! >p/e.

If we apply this procedure t times to get t all-1 submatrices, then the probability that
(x,y) is covered by none of these submatrices does not exceed (1 — p/e)t < e 'P/e,
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Hence, the probability that some 1-entry of A remains uncovered is at most
|A| - eP/¢ = exp(In |A| - t/(e(d + 1)),
which is <1 for t > e(d +1)InlA|. O

7.1.3.2. Lower bounds. We now turn to lower bounds on the covering number
Cov(A), and hence, on the nondeterministic communication complexity.

Given a (0,1) matrix A and a nonzero (0, 1) matrix B < A, let w,(B) denote the
largest possible number of 1-entries in B that can be covered by some all-1 submatrix
R of A. (Note that R needs not be a submatrix of B.) Since no all-1 submatrix of A
can cover more than w,(B) 1’s of B, at least |B|/w,(B) all-1 submatrices are needed to
cover all 1’s of A. Hence, the following greedy covering number,

|B|
A)=max ——,
u(A) nax L B)
is a lower bound on Cov(A). Interestingly, this lower bound is not very far from the
truth.

LEMMA 7.10. For every (0,1) matrix A, we have
Cov(A) < u(A)-In]A|+1.

Proor. Consider a greedy covering Ry, ...,R, of A by all-1 submatrices. That is, in
the i-th step we choose an all-1 submatrix R; < A covering the largest number of all
yet uncovered 1’s in A. Let B; be a (0, 1) matrix containing all 1’s of A that are left
uncovered after the i-th step. That is, B;[x,y] =1 iffA[x,y] =1and Ry[x,y] =...=
R;[x,y] = 0. Hence, B, = A and B, = 0 (all-0 matrix). Let b; = |B;| and w; = w,(B;).
Since, by the definition of u = u(A), none of the fractions b; /w; can exceed u, we have
that b;,; = b; —w; < b; — b;/u. This yields

b < bo(1—1/u) <I|A]-e7/*.

For i = t — 1, we obtain 1 < b, _; < |A|- e~ "D/t and the desired upper bound
Cov(A) <t <uln|Al + 1 follows. O

A natural choice for a “difficult to cover” matrix B < A is to take a permutation
matrix. This leads to the following, easy to apply lower bounds. Say that two 1-entries
in a matrix are independent if they do not lie in one row or in one column.

The term-rank trk(A) of A is the largest number of its pairwise independent 1-
entries. The clique number w(A) of A is the largest number r such that A contains an
r x r all-1 submatrix. Finally, the line weight £(A) of A is the largest number of 1’s in a
line (row or column), that is, w(A) is the maximum degree of the corresponding to A
bipartite graph. Using these matrix parameters we can lower bound the cover number
as follows:

trk(A) - |A]|
w(A) T LA )
The first inequality follows since any r x r all-1 submatrix of A can have at most r
independent 1’s. The second inequality is a direct consequence of a classical result of
Konig-Egervary saying that the term-rank trk(A) of A is exactly the minimum number
of lines (rows and columns) covering all 1’s in A.

Although simple, the first lower bound in (7.3)—known as the fooling set bound—
is one of the main tools for proving lower bounds on the nondeterministic communi-
cation complexity of boolean functions.

Cov(A) > (7.3)
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For sparse matrices, we have a somewhat better bound. Proposition 7.2 implies
that, for any symmetric matrix A, the fraction trk(A)?/|A| is a lower bound on the
decomposition number Dec(A) of A. We now show that this fraction is also a lower
bound on the covering number Cov(A).

LEMMA 7.11. For every non-gero (0, 1) matrix A, we have

trk(A)?
Al

Cov(A) >

Proor. Take a largest set I of |I| = trk(A) independent 1-entries in A, and let
R4,...,R, be a covering of the 1-entries in A by t = Cov(A) all-1 submatrices. Define a
mapping f : I — {1,...,t} by f(x,y) =min{i |R;[x,y] =1}, and let I, = {(x,y) €|
f(x,y)=1i}. That is, I; consists of those independent 1-entries in I that are covered
by the ith all-1 submatrix R; for the first time. Note that some of the I;’s may be empty,
so let Iy,...,I; be the nonempty ones. Say that an entry (x,y) is spanned by I; if
(x,y") €I, for some column y’ and (x’,y) € I; for some row x’.

Let S; be the submatrix of R; spanned by I;. Hence, S;,...,S; are disjoint all-1
submatrices of A covering all 1-entries in I. Moreover, each S; is an r; X r; matrix with
r; = |I;|. Since the S;’s are disjoint, we have that

ri+ -+ = |I| = trk(A)
and
rP4e 42 <AL
By the Cauchy-Schwarz inequality,
trk(A? =(ry +-+ ) <k-(r?+---+r2) <k-|Al,
and the desired lower bound t > k > trk(A)?/|A| follows. 1

REMARK 7.12. For all (0,1) matrices A with |A| < trk(A) - w(A) ones, Lemma 7.11
yields somewhat better lower bounds than those given by the fooling set bound (7.3).
If, for example, an N X N matrix A contains an identity matrix and some constant
number ¢ of r x r all-1 matrices with r = +/N, then Lemma 7.11 yields Cov(A) >
N2%/(cr? + N) = Q(N), whereas the fooling set bound (7.3) only yields Cov(A) >
N/r=+/N.

7.1.3.3. Communication with restricted advice. Recall that Cov(A) < t iff all 1-
entries of A can be covered by at most ¢t all-1 submatrices. When doing this, one 1-
entry of A may be covered many times. Let us now consider a version of this measure,
where the cover frequency is restricted. This corresponds to nondeterministic com-
munication, where Carole cannot use one and the same witness for many inputs; this
situation is usually referred to as a nondeterministic communication with a restricted
number of advice bits.

Let Covy(A) be the smallest number of all-1 submatrices of A covering all its 1-
entries in such a way that no 1-entry of A is covered by more than k of these submatri-
ces. Let rk(A) denote the rank of A over the real numbers.

LEMMA 7.13. For every (0,1) matrix A and any integer k > 1, we have

Covi (A) = Q(k - rk(A)5).
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PrROOE. Let Ry,...,R, be t = Covi(A) (0,1) matrices of rank 1 such that A <
ZleRl- < kJ, where J is the all-1 matrix. This is an equivalent definition of Cov;(A):
the 1-entries in each of the R;’s correspond to an all-1 submatrix of A. For a subset
I C{1,...,t}, let R; be a (0,1) matrix with R;[x,y] = 1 iff R;[x,y] =1 forall i € I.
By the inclusion-exclusion formula, we can write the matrix A as a linear &1 combina-
tion

A=Z(—1)“'+1R,. (7.4)
I#0
The condition ZleRl- < kJ implies that R; = O for all I of size |I| > k. Hence,
the right hand of (7.4) has at most 21;1 (:) non-zero terms. Using the estimates
(:) < (;) < (et/k)¥, the subadditivity of rank yields

k k
REDY C) < k(e—kt) ,
i=1

from which the desired lower bound on ¢t = Cov;(A) follows. O

The following example shows that the lower bound in Lemma 7.13 cannot be
improved.

ExaMPLE 7.14. Let I be an identity n X n matrix with n = 2™ for some m divisible
by k, and let I =J — I be its complement. Then rk(I) = n, but we have that

Covi(I) < k-n'/k.

To see this, encode the rows and the columns by vectors x € {0,1}™; hence, I[x,y] =1
iff x # y. Split the set [m] into k disjoint subsets S, ..., Sy, each of size m/k. For every
je[m]and a € {0,1}™*, define the rectangle:

R;, = {(x,y) | projection of x onto S; coincides with a and that of y doesn’t}.

These k2™* = kn'/* rectangles cover all 1’s of I, and each pair (x,y) with x # y
appears in at most k of them (since we take only k projections).

7.2. P = NP N co-NP for fixed-partition games

Having deterministic and nondeterministic modes and having the (far-fetched)
analogy with the P versus NP question, it is natural to consider the relations between
the corresponding complexity classes. Here for convenience (and added thrill) we use
the common names for the analogs of the complexity classes:

Let P (resp., NP) consist of all boolean functions in 2m variables whose deter-
ministic (resp., nondeterministic) communication complexity is polynomial in
logm.

The complement of a (0,1) matrix A is the matrix A = A — J, where J is the all-1
matrix (of the same dimension). Note that in the case of deterministic protocols, there
is no difference what of the two matrices A or A we consider: we always have that
C(A) = C(A), because each deterministic protocol must cover all 0’s as well as all 1’s
of A. In the case of nondeterministic communication, the situation is different in two
respects:

a. we only need to cover the 1’s of A, and
b. the submatrices need not be disjoint.
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FIGURE 3. R intersects S in rows, intersects T in columns, and inter-
sects Q in both rows and columns.

This is where an asymmetry between nondeterministic protocols for A and A comes
from. And indeed, we have already seen that the nondeterministic communication
complexities of the identity matrix and its complement are exponentially different.

But what if both A and A have small nondeterministic communication complexity,
what can be than said about the deterministic communication complexity of A. This is a
version of the famous P versus NP N co-NP question in communication complexity. To
answer questions of this type (in the communication complexity frame), we now give
a general upper bound on the deterministic communication complexity.

7.2.1. Making non-disjoint coverings disjoint. Let X and Y be two finite sets.
A rectangle is a subset R € X X Y of the form R = R® x R! with R® C X and R C Y.
That is, a subset R is a rectangle iff for every two points (x,y) and (x’,y’) of R, the
combined points (x, y’) and (x’, y) belong to R as well.

Let us consider the following general scenario of covering a rectangle by ist sub-
rectangles. We are given a finite set Z of (not-necessarily disjoint) rectangles, as well
as a labeling of rectangles. The only requirement is that the labeling must be legal in
the following sense:

(*) Any two rectangles with different labels must be disjoint.

Let P be the set of all points (x, y) belonging to at least one of these rectangles. We
consider the following search problem for %: given a point (x,y) € P, find a label
of a rectangle containing this point. Note that, if the point belongs to more than one
rectangle then, by (%), all these rectangles must have the same label.

We want to solve this problem using a communication game between two players,
Alice and Bob, where Alice obtains the first coordinate x and Bob obtains the second
coordinate y. Let cc(2) denote the deterministic communication complexity of such a
game for .

Say that a rectangle S = S° x S! intersects a rectangle R = R® x R! in rows, if
S9NRY # 0, and intersects R in columns, if S' NR! # 0 (see Fig. 3). Note that, SNR# 0
if and only if S intersects R in rows and in columns. This immediately leads to the
following basic observation about disjoint rectangles.

OBSERVATION 7.15. Let S be a rectangle and % a set of rectangles. f SNR =10
for all R € %, then either S intersects at most half of rectangles R € & in rows or S
intersects at most half of these rectangles in columns.

Using this observation, we can give a general upper bound on cc(%).
LEMMA 7.16. For every finite set  of legally labeled rectangles,
co(Z) < 2(log, | Z|)?.
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Proor. Let r = [log, |2|], Say that two rectangles in & are consistent if they have
the same label, and inconsistent otherwise. A rectangle R = R® x R! contains a row x
(a column y) if x € R% (resp., y € R'). The protocol consists of at most r rounds and
in each round at most 1+ r bits are communicated. After each round the current set
of rectangles is updated. Given a input (x,y), the goal is to decrease the number of
rectangles in each round by at least one half.

a. Alice checks whether all rectangles in %, containing her row x, are consistent.
If yes, then the (unique) label i of all these rectangles is a correct answer, and
she announces it.

b. Otherwise, Alice tries to find a rectangle R € £ containing x such that R
intersects in rows at most half of rectangles that are inconsistent with R. If
such a rectangle R exists, then Alice sends its name (using r bits) to Bob and
they both update £ so that it only contains the rectangles that intersect with
R in rows (the other rectangles cannot contain (x, y)).

c. If Alice is unable find such a rectangle then she communicates this to Bob
(using one bit).

d. Now is Bob’s turn. Since Alice failed, Observation 7.15 ensures that there must
be a rectangle R € £# that contains y and intersects in columns at most half of
rectangles that are inconsistent with R. Bob takes any of such rectangles R and
sends its name (using r bits) to Alice and they both update % so that it only
contains the rectangles that intersect with R in columns (the other rectangles
cannot contain (x,y)). At this point the round is definitely over since they
successfully eliminated at least half of the rectangles in £, and we can proceed
by induction.

After at most r rounds the players will agree on a rectangle containing (x, y), and the
label of this rectangle is the correct answer. O

As a direct consequence we obtain the following important result due to Aho,
Ullman and Yannakakis (1983), implying that P = NP N co-NP holds for the fixed-
partition communication complexity.

THEOREM 7.17. For every (0,1) matrix A,
C(A) < 2max{NC(A),NC(A)}>.

PROOE. Let Z = %, U %, where %, is a set of |Z,| < 2V°™ all-0 submatrices
covering all zeroes of A, and %, is a set of |%,| < 2V¢@ all-1 submatrices covering all
ones of A. Assign label “0” to all rectangles in %, and label “1” to all rectangles in %, .
It is clear that this is a legal labeling, since every rectangle in %, must be disjoint from
every rectangle in &,. Hence, on a given input (x, y), the players have only to find out
the label of a rectangle containing (x,y). By Lemma 7.16, this can be done using at
most 2(log, |2 ])? < 2max{NC(A), NC(A)}? bits of communication. O

Theorem 7.17 cannot be essentially improved. To show this, consider the disjoint-
ness matrix D, ; introduced in Section 3.3.1. Recall that its rows and columns are

labeled by all Z?:o (7) subsets a of [n] of size at most k, and the entry in the a-th row
and b-th column is defined by:

0 ifanb#40,

D bl =
nkla,b] {1 ifanb=20.
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We already know that these matrices have full rank, even over GF(2). Hence,
C(Dpy) = log, k(D 1) = Q(klog(n/k)). (7.5)

It is also easy to see that
Nc(m) <log,n (7.6)

(just guess a point in the intersection of a and b). It turns out that the nondeterministic
communication complexity of the matrix D, itself is also not very large.

Cramm 7.18. Cov(D,;) < 2k4*Inn.

ProoOF. The rows as well as columns of D, ; are labeled by elements of the the set
[n]=k of all subsets of [n] of size at most k. Say that a subset Y C [n] separates pair
(a, b) of two disjoint members a and b of [n]=Xif a C Y and bNY = 0. Let Y be
a random subset of [n] chosen uniformly with probability 27". Then for a fixed pair
(a, D),

Pr[Y does not separate (a,b)]=1—Pr[aCY and bNY = 0]
on-lal~b|

B A R 1
on '

Let £ := 2k4*Inn, and take £ independent copies Y1,...,Y, of Y. Then the probability
that none of them separates a given pair (a, b) is at most

(1- 2—|a\—\b|)f <(1- Z—zk)‘ <ot

Since there are no more than n?* pairs (a, b), the probability that at least one of the
pairs (a, b) is left unseparated by all the sets Y,...,Y,, is smaller than

(.72 —
2k.682 =Tl2k' 2k1nn=1.

n e

So, there must exists a sequence Y;,...,Y, of subsets of [n] such that D, ,[a, b] = 1 iff
(a, b) is separated by at least one of these sets. Since the set {(a,b) |a CY;,bNY; =0}
of all pairs separated by the ith set Y; corresponds to an all-1 submatrix of D, ;, this
implies Cov(D, ;) < ¢, as desired. O

Claim 7.18 together with bounds (7.5) and (7.6) implies

COROLLARY 7.19. Let A= D, with k = log,n. Then both NC(A) and NC(A) are
O(logn), but C(A) = Q(log?n).

Recall that the decomposition number Dec(A) of a (0,1) matrix is the smallest
number of its mutually disjoint monochromatic submatrices covering all entries of A.
We already know that C(A) > log, Dec(A). Since both NC(A) and NC(A) do not exceed
log, Dec(A), Theorem 7.17 implies a partial converse of this inequality.

THEOREM 7.20. For every (0,1) matrix A,

C(A) < 2(log, Dec(A))?.
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7.2.1.1. Clique vs. independent set game. In fact, an even stronger fact holds.
In the definition of the decomposition number Dec(A) we require that all 1-entries
and all O-entries of A be decomposed into monochromatic submatrices. But what if
we only know that all 1-entries of A can be decomposed in a small number of all-1
submatrices—does then C(A) is small?

THEOREM 7.21. If the 1-entries of a (0, 1) matrix can be decomposed into m mutually
disjoint all-1 submatrices, then

C(A) =0(log*m).

We will derive the theorem from a more general result about the communication
complexity of the following “clique versus independent set” decision game cis; of a
given graph G:

- Alice gets a clique C €V of G.
- Bob gets an independent set I €V of G.
- Answer “17iff CNI =0.

Note that we always have that |[CN1I| < 1.
LEMMA 7.22. For every n-vertex graph G, C(cisg) = O(log n).

PrOOE. Given an n-vertex graph G = (V,E) we describe an appropriate commu-
nication protocol for the game cis;. The protocol works in logn rounds, and in each
round at most O(logn) bits are communicated. The idea is to do binary search for
intersection.

For a subset U C V of vertices and a vertex v € U, let dy(v) denote the number
of neighbors of v in U. At each stage, the players maintain a subset U C V of vertices
with the following property:

(*) If C and I intersect then the intersection is in U.
Initially U = V. In each stage the players do the following:

a. Alice looks for a vertex u € C NU such that d;;(u) < |U|/2. She sends “0” if no
such vertex exists; otherwise she sends “1” followed by the name of u (logn
bits).

b. If Alice sends a name of a vertex u, then Bob checks whether u € I. If so,
he gives the answer “0” (there is an intersection), and the game is over. If
u & I then the players update the current set U by removing from it all non-
neighbors of u, and the next round starts. Since d;(u) < |U|/2, the size of the
new set U is at most half of the old size.

c. If Alice fails to find a needed vertex, then it is Bob’s trun. He looks for a vertex
v € INU such that dy;(v) > |U|/2. If there is no such vertex v, then he gives
the answer “1” (C and I are disjoint), and the game is over. Assuming (),
this is a correct answer, for if there would be a vertex w € CNINU then
we would have that d;;(w) > |U|/2 (since w does not suited Alice) as well as
dy(w) < |U|/2 (since w does not suited Bob). If there is a vertex v e INU
such that d;;(v) > |U|/2, then Bob sends its name to Alice.

d. Alice checks whether v € C. If so, she gives the answer “1” (there is an intersec-
tion, and the game is over. Otherwise, both players update the set U by remov-
ing from it all neighbors of v, and the next round starts. Since, d;(v) > |U|/2,
the size of the new set U is again at most half of the old size.
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Since after each round the size of U is halved, the number of rounds is at most log, n,
leading to a total communication of O(log? n) bits. It remains, therefore, to ensure that
the property () is kept through all rounds. Suppose that CNI # @ and letw e CNI
be the unique vertex in their intersection. The vertex w could be lost (removed from
U) if Alice sends a vertex u and this vertex is different than w. But since w € C and
C is a clique, w is a neighbor of u, and hence, cannot be removed when updating U
(only non-neighbors of u are removed during this update). The only other possibility to
“loose” the vertex w is when Bob sends a vertex v and this vertex is different than w.
But since w € I and I is an independent set, w is a non-neighbor of v, and hence,
cannot be removed when updating U (only neighbors of v are removed during this
update). O

PrOOF OF THEOREM 7.21. Let Ry,...,R,, be a decomposition of 1-entries of A into
m mutually disjoint all-1 submatrices. Consider the graph G on m vertices 1,...,m in
which

i and j are adjacent iff R; and R; intersect in rows.
Now, given an input (x, y), Alice and Bob transform them to sets

X={i|xisarowofR;} and Y ={i|y is acolumn of R;}.

Note that X is a clique in G. Moreover, since the submatrices Ry, ...,R,, are disjoint, Y
is an independent set of G. Also, X N'Y # 0 iff (x,y) is in a 1-rectangle. Hence, the
players can use the protocol for cisg. t

The clique vs. independent sets game cis; is important in the context of un-
derstanding the power of linear programming for NP-hard problems. Namely, Yan-
nakakis (1991) has shown that any n-vertex graph G, for which this game requires
w(logn) bits of nondeterminisitic communication, would give a super-polynomial lower
bound for the size of linear programs expressing Vertex Packing and Traveling Sales-
man Problem polytopes. Note that NC(—cis;) < log,n for any n-vertex graph: just
guess a vertex in the intersection. But for the problem cisg; itself only graphs G with
NC(cisg) = Q(logn) are known.

RESEARCH PROBLEM 7.23. Exhibit a sequence G,, of n-vertex graphs such that
NC(cisg) = w(logn).
7.2.1.2. Rank upper bound. There is yet another upper bound, similar in its form
to that of Theorem 7.17. Instead of Cov(A) it uses the following matrix parameter. Say

that a square (0, 1) matrix A = (9;;) is triangular if 6; =1 and 6;; = 0 for i > j. For
example, a 3 x 3 triangular matrix has the form:

0 0 1
0 1 =
1 % =

For a (0, 1) matrix A, define
A(A) = min{d | A contains an d X d triangular submatrix} .
It is clear that A(A) < min{rk(A), Cov(A)}.
THEOREM 7.24. For every (0,1) matrix A we have that
C(A) < (2+NC(A))- (log, A(A)).
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FIGURE 4. Proof of (7.7): Since A; is an all-0 submatrix, no triangular
submatrix of R; can share a row or a column with a triangle subma-
trix of C;. Permute rows and columns of A to “glue” these triangular
submatrices into a triangular submatrix of A.

PrOOE. Let r = NC(A), and let Ay, ...,A,- be the all-O submatrices of A covering all
0’s of A. For every matrix A;, consider the matrix R; formed by the rows of A intersecting
A;, and C; be the matrix formed by the columns of A intersecting A;. Since A; consists
only of 0’s, we have that (see Fig. 4 for a proof):

A(R)+ A(C) ZAM). (7.7)

The protocol consists of log, A(A) rounds, in each of which at most 2 +r = 2+ NC(A)
bits are communicated.

In each round, the players do the following. First, Alice checks whether there is
an index i such that her row intersects A; and A(R;) < %A(A). If yes, then (using 1+r
bits) she sends “1” and the index i of this submatrix to Bob. If not, then she sends “0”.
Now Bob checks whether there is an index i such that his column intersects A; and
A(C) < %A(A). If yes, then (using 1 + r bits) he sends “1” and the index i to Alice. If
not, then he sends “0”.

If either Alice or Bob find a suitable index i in this round then, by communicating
at most 2+ r bits, they have restricted the problem to a matrix A’ (= R; or C;) for which
AA) < %A(A). Hence, in this case, the theorem follows by induction.

If both players have sent “0” in this round, then they can finish the protocol: the
answer is “A[x, y] = 1”. Indeed, if there would be a 0 in the intersection of Alice’s row
and Bob’s column, then this 0 would belong to some submatrix A;. However, for this
submatrix we have on the one hand A(R;) > %A(A) (since i did not suit Alice), on the
other hand A(C;) > %A(A) since i did not suit Bob. But this contradicts (7.7).

Thus, we have shown that C(M) < (24 r) - log, A(A), as desired. O

Together with Lemma 7.13, Lemma 7.24 implies that nondeterministic communi-
cation complexity with a small number k of witnesses cannot be much smaller than
the deterministic communication complexity. Define

NC(A) :=log, Covi(A).

COROLLARY 7.25. There is a constant € > 0 such that, for any (0,1) matrix A, we

have
[C(A)
ch(A) =€ T .
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ProOE. Since C(A) = C(A) and rk(A) > rk(A) — 1, Lemma 7.24 implies that C(A)
is at most about NC(A) - log, A(A) < NC.(A) - log, A(A), and hence, at most about
NCi(A) - log, rk(A). On the other hand, by Lemma 7.13, we have that NC)(A) must be
at least about (log, rk(A))/k. This implies log, rk(A) = O(NC,(A)/k), and hence, the
desired lower bound on N C;(A) follows. O

7.3. Randomized communication

In a randomized communication protocol, Alice and Bob are allowed to flip a coin.
The coin can be public (seen by both players) or private. Alice and Bob are allowed to
get a wrong result with probability smaller than . That is, a randomized communica-
tion protocol P(x, y,r) using a string r of random bits is an &-error protocol for a (0,1)
matrix A if, for all entries (x, y),

Pr[P(x,y,r) #Alx,y]] <e.

As before, the complexity of the protocol is defined to be the maximal number of bits
sent over all inputs.

For a (0, 1) matrix A, let R,(A) denote the complexity of the best randomized pro-
tocol for A that uses a public random string and errs with probability smaller than €. If
the players must flip their coins privately, then the corresponding measure is denoted
by Rgrivat ( A).

ExampPLE 7.26. To see the difference between these two measures, let n = 2™ and
consider the n x n identity matrix I,. Then C(I,) = m = log, n since Dec(I,) = n. But
randomized protocols can do much better: R;3(I,) = O(1). Indeed, the players pick
a random string r = (ry,...,1,,) in {0,1}™. Alice sends the salar product (r,x), Bob
checks whether (r, y) = (r, x) and sends the answer. Since every nonzero (0, 1) vector
v # 0 is orthogonal over GF(2) to exactly half of all vectors, the error probability is
£ =1/2: juts take v = x & y. To get error ¢ < 1/3, just repeat the protocol two times.

If the random strings r are private (a much more realistic situation), the protocol is
less trivial. Still, also in this case it is enough to communicate exponentially fewer bits

than in the deterministic case: Rgr/i;'at(A) = O(loglogn). Alice picks a random prime

number p between 1 and m?, and sends 4logm bits encoding p as well as x mod p to
Bob. He checks whether y mod p = x mod p, and sends the answer to Alice. If x =y
the result is always correct. If x # y the protocol can err. The protocol errs when Alice
picks a prime number p such that p divides |x — y|. Since |x — y| < 2™, there are
at most log, 2™ = m such “bad” primes numbers. On the other hand, the number of
prime numbers in the interval 1,...,k is at least k/Ink. Hence, Alice is choosing her
number p with equal probability from a collection of at least Q(m?/1nm?) numbers.
Therefore the error probability, that is, the probability to pick one of at most m “bad”
primes is £ < (Inm?)/m — 0.

A note aside: we have completely ignored a subtle issue on how to choose a ran-
dom prime number. In the communication complexity the players are assumed to be
“superior beings:” if an object exists, they can find it immediately—only communica-
tion between these “beings” is costly.

We have seen that randomized protocols with private random bits have harder to
do. Still, Newman (1991) have proved that any randomized communication protocol
with public random bits can be simulated by a protocol with privant random bits at
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the cost of relatively small increase of the number of communicated bits: for every
boolean n x n matrix A and for every constant ¢ < 1/4,

Rgreivat(A) <R,(A)+O(loglogn).

Let us now look at how to prove that some matrices are hard for randomized proto-
cols. Let A be a (0,1) matrix with rows X and columns Y. The result of a randomized
communication protocol of each input (x,y) € X XY is a random variable. To lower
bound R,(A) from below; it is often easier to give a lower bound on a “dual” measure.
Instead of requiring that, on each input (x, y), the randomized protocol can err with
probability at most £, we now consider deterministic protocols and require that they
output correct value everywhere except an e-fraction of inputs (x, y). Or more gener-
ally, given a probability measure u : X XY — [0, 1], we require that the (deterministic)
protocol can err on set of inputs of u-measure at most ¢.

Namely, an ¢-error distributional complexity D,(A|u) of a matrix A with respect to
a measure U is the smallest communication complexity of a deterministic protocol P
such that

u({Ge ) PG,y) #Alx, y1}) <e.
It was proved by Yao (1979) for uniform u and generalized by Babai, Frankl and Simon
(1986) to arbitrary u that
R.(4) = 1D, (Alw)
for any A, u and € > 0.
Consider now the disjointness matrix D,,. This is a 2" x 2" (0, 1) matrix whose rows
and columns are labeled by subsets x C [n], and

D,lx,y]=1 iff xny=40.

THEOREM 7.27. For every € > 0, the e-error randomized communication complexity
of the disjointness matrix is

R.(D,)=Q(vn).

This was later substantially improved to R,(D,) = Q(n) by Kalyanasundaram and
Schnitger (1992); a simpler proof was then found by Razborov (1992a). Still the proof
of the weaker bound is more intuitive, and we present it.

PrOOE. Let X = Y consist of all subsets of size /n of [n]; we assume that n is
a perfect square divisible by 12. We concentrate on the submatrix of D, with row-
set X and column-set Y. We shall select the pairs (x, y) at random from the uniform
distribution over X x Y. Thatis, u(x,y)=1/|X xY|for (x,y) € X xY,and u(x,y)=0
for (x,y) € X x Y. Since the sets in X and in Y have size /n, a random pair (x,y)
in X x Y has probability about 1/e to be disjoint: the probability that two random
s-element subsets x and y of [n] are disjoint is

() =) =(-2) >

Take a rectangle R=F X G € X X Y such that A[x,y] =1 (that is, x Ny = ) for all
but an ¢ fraction of R, that is,

l{(x,y)€R|xny #0} <¢lR]. (7.8)
To show that D,(D,|u) = Q(+/n), it is enough to show that
RI <X x Y[-27" (7.9)
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for some constant ¢c. We will prove this by showing that either |F| < [X|27V™ or
|G| < |Y|27¢¥" (or both) must hold.

Let F; be the set of all rows x € F such that x intersects fewer than 2¢|G| columns
y €G. Clearly |F,| > |F|/2, for otherwise (7.8) would not hold.

CLam 7.28. Given any xi,...,X; € F;, at most |G|/2 of the y € G intersect more
than 4¢k of the x;.

Prook. If more than a half of the y € G would intersect more than 4¢k of the
x;, then some x; would intersect more than 2¢|G| of the y € G, a contradiction with
x; € Fy. (]

CLAIM 7.29. If |F| > |X|27¢V" then there exists x1,...,x; € F such that k > v/7/3
and for every p <k,
X, N U X;

i<p

<+/n/2.

ProOOE Select the x; € F inductively. Suppose x,...,x,_; have been selected
(p—1</n/3)and let z = UKP x;. Then |z| < py/n < n/3. The number of those
x € X satisfying |z N x| > 4/n/2 is therefore less than?

n/3 2n/3 Y\ e .y
(a2 (ﬁ/z) < ()2 =,

k k
where the inequality follows from the well-known estimates (%) < (Z) < (%) .
Therefore |x, Nz| < y/n/2 for some x, € F; — {xq,...,x,_1}.

We now turn to the actual proof of (7.9), and hence, of Theorem 7.27. If the
condition |F| > |X]|27¢Y" of Claim 7.29 does not hold, we are done. Otherwise, there
are at most ( 4’;{) ways to select those 4¢k of the x; which, by Claim 7.28, a given y € G
is allowed to intersect. By Claim 7.29, the union of the remaining x; (not intersected
by y) has size larger than (k — 4ek)/n/2 > k/n/3 > n/9. Therefore

n n—n/9 i o evm
'G'<2(4ek)( /A )52 (ﬁ)‘z vl

and we again conclude that |R| < |X]|-|Y]- 27V, O
7.4. P # NP N co-NP for best-partition games

If f : {0,1}*" — {0, 1} is a boolean function, then any balanced partition (x, y) of
its variables into two blocks of equal size gives us a communication matrix My of f:
this is a 2" x 2" (0, 1) matrix with My [x,y] = f(x,y). The communication complex-
ity of this matrix is then referred to as the communication complexity of f under this
(particular) partition. Note however, that different partitions may result in different
communication matrices of the same boolean function f. The best-partition commu-
nication complexity of f is the minimum, over all balanced partitions (x, y), of the
communication complexity of M; under partition (x, y).

For many functions, this (possibility to chose a suitable partition) can drasti-
cally reduce the number of communicated bits. For example, the equality function
(f(x,y) = 1iff x; = y; for all i) has maximal possible communication complexity

2Recall that |x| = +/n for all x € X.
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equal to n (even nondeterministic), if the players are forced to used this “bad” parti-
tion (x,y). If, however, Alice receives the first half of x and y, and Bob receives the
remaining variables, then they can locally test whether their pieces are equal and tell
this the other player. Thus, under this “good” partition, just two bits of communication
are enough!

Theorem 7.17 implies that P = NP N co-NP in the case of fixed partition games.
But what about best-partition complexity? The question is important because it ex-
poses something about the power of lower bound arguments. We can prove a lower
bound on the deterministic communication complexity of a function f by arguing
about either f or =f. But if both the function and its negation have low nondeter-
ministic complexity under some partitions of variables, other arguments are needed to
show that the deterministic communication complexity must be large for any partition.

It turns out that no analogon of Theorem 7.17 holds in the best-partition case.

THEOREM 7.30. For the best-partition games, we have that P # NP N co-NP.

Recall that in the best-partition case the players can choose different (most suit-
able) partitions for a function f and its negation —f. To visualize the effect of this
choice, we define our function f(X), separating P from NP N co-NP, as boolean func-
tions in n? variables, arranged into an n x n matrix. Hence, inputs for f are 0/1
matrices A: X — {0,1}. We define f (X) in such a way that a partition of X according
to columns is suitable for computing f, and that according to rows is suitable for —f .

Say that a row/column of a (0, 1) matrix is good if it contains exactly two 1’s, and
bad otherwise. Define f(X) by: f(A) =1 if and only if

a. at least one row of A is good and

b. all columns of A are bad.

Theorem 7.30 is a direct consequence of the following two claims.

Cramm 7.31. The nondeterministic best-partition communication complexities of
both f and —f are O(log, n).

ProoE In the protocol for f Alice takes the first half of columns whereas in the
protocol for =f she takes the first half of rows.

To compute f(A) for a given matrix A : X — {0, 1}, the protocol first guesses a
row r (a candidate for a good row). Then, using 3 bits, Alice tells Bob whether all
her columns are bad, and whether the first half of the row r contains none, one, two
or more 1’s. After that Bob has the whole information about the value f(A) and can
announce the answer. The negation —1f (A) can be computed in the same manner by
replacing the roles of rows and columns. O

Craim 7.32. The deterministic best-partition communication complexity of f is Q(n).

Proor. The set-disjointness function DISJ(x,y) is a boolean function in 2n vari-
ables which outputs 1 iff 2?21 x;¥; = 0. Since the disjointness matrix has full rank
(see Section 3.3.1), the lower bound (7.1) implies that the deterministic communica-
tion complexity of DISJ, as well as of =DISJ, under this partition is Q(n). (In fact, even
nondeterministic and randomized communication complexity of this function is Q(n),
but we will not need this important fact.)

Take an arbitrary deterministic protocol for f(X). The protocol uses some bal-
anced partition of X into two halves where the first half is seen by Alice and the second
by Bob. Say that a column is seen by Alice (resp., by Bob) if Alice (resp., Bob) can see
all its entries.
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A column is mixed if it is seen by none of the two players, that is, if each player
can see at least one its entry. Let m be the number of mixed columns. We consider
two cases depending on how large this number m is. In both cases we describe a
“hard” subset of inputs, i.e. a subset of input matrices on which the players need to
communicate many bits.

Case 1: m < n/2. In this case each player can see at least one column. Take one
column seen by Alice and another column seen by Bob, and let Y be the (n — 3) x 2
submatrix of X formed by these two columns without the last three rows. We restrict
the protocol to input matrices A : X — {0, 1} defined as follows. We first set all entries
in the last three rows to 1. This way we ensure that all columns of A are already bad.
Then we set all remaining entries of X outside Y to 0. The columns x and y of Y may
take arbitrary values. Such a matrix looks like:

[ Xy yi 0 ... 0]

Xn—4 Yn-4 0 0
1 1 1 1
1 1 1 1

L 1 1 1 1]

In each such matrix all columns are bad and, for n > 3, the last three all-1 rows
are also bad. Thus, given such a matrix, the players must determine whether some of
the remaining rows is good. Since all these rows have 0’s outside the columns x and y,
this means that the players must determine whether x; = y; = 1 forsome 1 <i < n—3.
That is, they must compute —DISJ(x, y) which requires 2(n) bits of communication.

Case 2: m > n/2. Let Y be the nxm submatrix of Y formed by the mixed columns.
Select from the i-th column of Y one entry x; seen by Alice and one entry y; seen by
Bob. Since m < n and we select only 2m entries, there must be a row r with t < 2
selected entries. Let Y be the n x (m — t) submatrix consisting of the mixed columns
with no selected entries in the row r. We may assume that m — t is odd and that
m —t < n— 2 (if not, then just include in Y fewer columns).

Now restrict the protocol to input matrices A : X — {0, 1} defined as follows. First
we set to 1 some two entries of the row r lying outside Y, and set to O all the remaining
entries of r. This ensures that the obtained matrices will already contain a good row.
After that we set all the remaining non-selected entries of X to 0. A typical matrix
looks like:

0O 0 O 0 1 1 0 0
xX; Yo O X, 0 0 O 0

0O 0 O 0 0 0 O 0

0 x, O Ynoe 0 0 O 0
yp 0 0 ... O O O O 0f -
0O 0 y3 ... 0O O O O 0
L0 0 x3 ... O 0O O O ... O]

where r is the first row.
Since each obtained matrix A contains a good row (such is the row r) and all
columns outside the submatrix Y are bad (each of them can have a 1 only in the row r),
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the players must determine whether all columns of A in Y are also bad. Since all non-
selected entries of Y are set to 0, the players must determine whether x; 4+ y; < 1 for
alli=1,...,m— t. Hence, the players must decide whether Z:n:_lt x;y; = 0, that is, to
compute the set-disjointness function DISJ(x, y ), which again requires Q(m—t) = Q(n)
bits of communication.

This completes the proof of Claim 7.32, and thus, the proof of Theorem 7.30. [

Exercises

Ex. 7.1 (Threshold matrices). Let A be an n x n (0,1) matrix whose rows and
columns are subsets of [r] = {1,...,r}, and whose entries are defined by: A[x,y] =1
iff [x N y| > k. Show that then either (i) A contains an all-1 submatrix with at least
n?/ 4(;)2 entries, or (ii) A contains an all-0 submatrix with at least n?/4 entries.

Hint: Let o = 1/2(;) and call a subset S C [r] row-popular (resp., column-popular) if S is contained
in at least an subsets corresponding to rows (resp., to columns) of A. Look at what happens if at least one
k-element subset of [r] is both row-popular and column popular, at what happens when this is not the case.

Ex. 7.2. For a graph G, let q(G) be the smallest number t with the following
property: There is a sequence Si,...,S, of subsets of V such that, for every clique
C C V and every independent set I € V of G such that CNI = 0, there is an i such that
C € S; and INS; = 0. Let NC(cisg) be the nondeterministic communication complexity
of the “clige vs. independent set” game consideren in Section 7.2.1.1. Prove that

NC(cisg) =log,q(G).

Ex. 7.3. Let Abe a (0, 1) matrix with rows X and columns Y. Given a probability
measure u: X XY — [0, 1], the discrepancy of a submatrix B of A is the absolute value
of the difference between the u-measure of the set of 1-entries and the u-measure of
the set of 0-entries of B. Let Disc,(A) denote the maximum discrepancy of a submatrix
of A.

Prove that matrices of small discrepancy have large distributional, and hence, also
randomized communication complexity: for every constant 0 < & < 1/2,
1-—2¢
D.(Alp) = log, Disc, )
Hint: Given a deterministic communication protocol P(x, y) for A, achieving D, (A|u), estimate the difference
u({Ge, ) [ PGx, y) =Alx, y1}) — u({(x, ) | P(x, ) #Alx, ¥1})

from above in terms of Disc,,(A).

We now consider the discrepancy Disc(A) = Disc,,(A) under a uniform distribution
assigning each entry the probability 272",

Ex. 7.4. Consider a 2" x 2" Sylvester matrix S,,. Its rows and columns are labeled
by vectors in GF(2)", and the entries of S,, are the scalar products of these vectors over
GF(2). Show that

Disc(S,) <272,
and hence, that R,(S,) = Q(n) for any constant & > 0.
Hint: Use Lindsey’s Lemma (Lemma 10.25) from Section 10.4.1.

Ex. 7.5. Consider the following grater than function GT,(x,y): Alice gets a non-
negative n-bit integer x, Bob gets a nonnegative n-bit integer y, and their goal is to
decide whether x > y.



BIBLIOGRAPHIC NOTES 105

Show that R, ,,,(GT,) = O(log?n).
Hint: Let the players recursively examine segments of their strings until they find the lexicographically
first bit in which they differ—this bit determines whether x > y. Alice can randomly select a prime number

3, compute x’ (mod p) where x’ is the first half of x, and send p and x’ (mod p) to Bob; this can

p=n
be done using O(log n) bits. If x’ (mod p) # y’ (mod p), then x’ is different from y’, and the players can
continue on the first half of their strings. Otherwise the players assume that x” = y’, and they continue on
the second half of their strings. The players err in this later case when x’ 7 y’ but x’ (mod p) =y’ (mod p).

Estimate the probability of this error, keeping in mind that there are ©(m/Inm) primes p < m.
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CHAPTER 8

Communication and Circuit Depth

We now consider a generalization of communication games which captures the
depth of boolean circuits as well as the leafsize of DeMorgan formulas. These games
are played on combinatorial rectangles.

8.1. Karchmer-Wigderson games

Recall that an n-dimensional combinatorial rectangle, or just a rectangle, is a non-
empty Cartesian product S = A x B of two disjoint subsets A and B of vectors in {0, 1}".
Vector pairs e = (x, y) with x # y are referred to as edges. The rectangle of a boolean
function f : {0,1}" — {0, 1} is the rectangle

Spi=f7H0)x £71(D).

A rectangle S is monochromatic if there exists a position i € {1,...,n} such that x; # y;
for all edges (x, y) € S; in this case we say that i is a separating position of S.

The communication game on a rectangle S = A X B, introduced by Karchmer and

Wigderson (1990), is the following game.

- Alice gets a vector x €A.

- Bob gets a vector y € B.

- The goal is to find a position i such that x; # y;.
These games constitute an extension of the communication games for (0, 1) matrices,
considered in Section 7.1, to matrices whose entries are sets. This time we have an
|A] x |B| matrix M (the communication matrix of this game) whose entries are subsets
M[x,y]={i|x; # y;} of positions, and the goal of players, on input (x, y), is to find
an element in M[x, y].

The game itself can be looked at as a procedure of covering the rectangle S by
disjoint monochromatic subrectangles. Recall that a rectangle R is monochromatic if
there is a position i such that x; # y; for all pairs (x,y) € R. (see Section 2.5). As
in the case of (0,1) matrices, a communication protocol (or a communication tree) of
a Karchmer-Wigderson game is a binary tree, each inner node of which correspond
to a decision made by one of the players at this node. The only difference is that
now, instead of submatrices, the nodes are labeled by subrectangles of S so that the
following holds:

a. The root is labeled by the whole rectangle S.

b. If a node u is labeled by a rectangle R, then the sons of u are labeled by the
corresponding subrectangles S and T of R. Moreover, these subrectangles are
obtained from R by splitting the rows of R (if u is Alice’s node) or by splitting
the columns of R (if u is Bob’s node).

c. Leafs are labeled by monochromatic rectangles.

106
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Since at each node, the rows (or columns) of the corresponding submatrix are splitted
into disjoint parts, the protocol is deterministic: each edge (x,y) € S will reach pre-
cisely one leaf. The depth of a tree is the maximum number of edges from the root to
a leaf. The minimum depth of a communication tree is the communication complexity
cc(S) of the game on the rectangle S.

Recall that the partition number D(S) of a rectangle S is the smallest number t such
that S can be decomposed into t disjoint monochromatic rectangles (see Section 2.5).
Since each protocol for the game on S gives such a decomposition, we immediately
have

PrOPOSITION 8.1. For every rectangle S, cc(S) > log, D(S).

To give an example of a communication protocol, let us consider the game on a
parity rectangle S = A X B, where all vectors in A haven an even and all vectors in B an
odd number of 1’s.

PROPOSITION 8.2. For every n-dimensional parity rectangle S, we have
D(S) < 4n*.

Prook. We will only show that D(S) < n? if n is a power of two. The general
case then follows by adding redundant zeroes to the strings so that their length is a
power of two. The resulting strings will have length at most 2n, and the upper bound
D(S;) < 4n® follows.

Consider the communication game for the rectangle S;. That is, given a pair (x, y)
of binary strings of length n such that x has a even and y and odd number of 1’s, the
goal of Alice and Bob is to find an i with x; # y;.

The basic idea is binary search. Bob begins by saying the parity of the left half of y.
Alice then says the parity of the left half of x. If these parities differ, then they continue
playing on the left half, otherwise they continue playing on the right half. With each
round they halve the size of the playing field, and use two bits of communication. Thus
after log, n rounds and 2log, n bits of communication they determine an i on which
x and y differ. This gives a partition of S into 2219&2n — 2 disjoint monochromatic
rectangles. O

8.2. Games and circuit depth

Let Depth(f) be the minimum depth of a circuit with AND, OR and NOT gates com-
puting f. The following theorem, which is much in a spirit of Khrapchenko-Rychkov
approach (cf. Lemma 1.8) connects communication with computation.

THEOREM 8.3. For every boolean function f,

Depth(f) = cc(Sy).
We prove lower and upper bounds on Depth(f) separately.
LEmMA 8.4 (Circuit to protocol). cc(S;) < Depth(f).

ProOOE. We may assume that Alice and Bob have agreed on a circuit of smallest
depth computing f. Further, we may assume, using de Morgan’s laws, that negations
are applied only to the variables. That is, inputs to the circuit are variables and negated
variables, and there are only AND and OR gates otherwhere. This does not increase
the depth of a circuit.
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Now suppose Alice gets an input x such that f(x) = 0, and Bob gets an input
y such that f(y) = 1. In oder to find an i such that x; # y;, the players use the
information provided by the underlying circuit. At AND gates speaks Alice, and at OR
gates speaks Bob.

Suppose the output gate is an AND gate, that is, we can write f = f; A f;. Then
Alice sends a bit i corresponding to a function f; such that f;(x) = 0; if both f;(x) and
f1(x) output 0, then Alice sends 0. We know that we must have f;(y) = 1. We can
then repeat this step at the gate corresponding to the output gate of f;, where Alice
sends a bit if the gate is an AND gate and Bob sends a bit if the gate is an OR gate (he
sends a bit corresponding to a function which outputs 1). Alice and Bob repeat this
process until they reach a leaf of the circuit. This leaf is labeled by some variable x; or
its negation —x;. Hence, x; # y; implying that i is a correct answer. O

Recall that a boolean function f separates a rectangle S =A x B if f(x) = 0 for all
x €A and f(y)=1forall y €B.

LEMMA 8.5 (Protocol to circuit). For every rectangle S = A X B there is a boolean
function f such that f separates S and Depth(f) < cc(S). In particular,

Depth(f) < cc(Sy).

Proor. We prove the lemma by induction on ¢ = cc(S). Suppose ¢ = 0. Then we
must have, for some index i, that x; # y; for all pairs (x, y) € S. Thus we may choose
either f = x; or f = —x; according to which function satisfies f (A) =0 and f(B) = 1.

Next, we prove the claim is true for ¢ assuming it is true for ¢ — 1. Consider a
protocol for the communication game on S that uses at most ¢ bits. Let us assume
Alice sends the first bit. Then there is a partition A=Ay UA;, Ay NA; =0, such that for
X € Ay, Alice sends the bit 0 and for x € A, Alice sends the bit 1. After that we are left
with two disjoint rectangles A, x B and A; X B whose communication complexity is at
most ¢ — 1. Applying our induction hypothesis, we find there exists a function f; such
that

fo(Ag) =0, fo(B)=1 and Depth(fy)<c—-1,
and there exists a function f; such that

f1(A1)=0, fi(B)=1 and Depth(f;)<c—1.
We define f = fy A f;. Then f(A) =0, f(B)=1, and

Depth(f) < 1+ max{Depth(f,), Depth(f;)} <c¢

as desired. Note that, if Bob had sent the first bit, we would have partitioned B and
defined f = f, V f;. O

In a monotone version of Karchmer-Wigderson game on a rectangle S, given an
input pair (x,y) € S, the players must find an i such that x; = 0 and y; = 1. In
general, this game may be not well defined: if x is the all-1 vector and y is the all-0
vector, then no valid answer exists. However, if S € Sy for a monotone boolean function
f, then every pair (x, y) has a valid answer.

In the case of monotone boolean functions f the game can be described as a
search for an element in the intersection of O-terms and 1-terms of f. Recall that a
O-term of a monotone boolean function is a set of its variables such that, if we set
these variables to O, the function will output O independent of the values of other
variables. O-terms whose no proper subset is a O-term are called maxterms of f. The
concept of 1-terms and minterms are defined dually. Main property of these terms is



8.3. GAMES ON GRAPHS 109

their “cross intersection:” if p is a 1-term and g a 0-term of the same boolean function,
then p Nq # 0. Given a monotone boolean function f, the game is a follows.

- Alice gets a 1-term p of f.

- Bob gets a O-term q of f.

- The goal is to find a variable in p Nq.

For a monotone boolean function f, let cc (f) be the communication complexity
of a monotone version of the Karchmer-Wigderson game on the rectangle S;. Let
also Depth, (f) be the minimum depth of a boolean formula with AND and OR gates
computing f.

The same argument as in the proof of Theorem 8.3 gives

THEOREM 8.6. For every monotone boolean function f,
Depth, (f) = cc,(Sf).

For a boolean function, let (as before) Sy denote the rectangle S; = f ~1(0) x
F£71(1). Recall that L(f) denotes the smallest size of a DeMorgan formula computing f .
Let I'(S) be the smallest number of leaves in a communication tree for the Karchmer—
Wigderson game on the rectangle S.

THEOREM 8.7. For every boolean function f,
L(f)=T(Ss).

EXERCISE 8.8. Prove this theorem. Hint: Argue as in the proof of Theorem 8.3 using the fact
that the underlying graph of a formula is a tree.

Recall that the partition number D(S) of a rectangle S is the smallest number t such
that S can be decomposed into t disjoint monochromatic rectangles. We already know
that cc(S) > log, D(S) (Proposition 8.1), just because each protocol for the rectan-
gle S produces a decomposition of S into monochromatic rectangles. In the opposite
direction we have the following

LEMMA 8.9. For every rectangle S,
ce(S) < 2(log, D(S))?.

ProOE Let # be an optimal covering of S; by disjoint monochromatic rectangles.
Since each R € # is monochromatic, there must be a position i € {1,...,n} such that
x; # y; for all (x,y) € R. Label each R by the smallest i with this property. Since all
rectangles in & are disjoint, this is a legal labeling (in the sense of Section 7.2). By
Lemma 7.16, for every input (x,y), the players can find out the (unique) rectangle
containing (x, y) by communicating at most 2(log, |%|)* = 2(log, D(S f))2 bits. O

8.3. Games on graphs

Given an n-vertex graph G = (V,E) and an integer 2 < k < n, let caME(G, k) be
the following Karchmer-Wigderson type communication game:
- Alice gets an edge x € E.
- Bob gets an independent set I € V of size |I| < k.
- The goal is to find a vertex v € x — S; this vertex must known to both players.

IFor convenience, we have reversed the roles of players (now Alice gets inputs from f (1), not from
£71(0)). This does not change anything: since we consider only deterministic games, a function and its
complement have the same complexity.



110 8. COMMUNICATION AND CIRCUIT DEPTH

Let ¢, (G) denote the communication complexity of GamEe(G, k).

It is clear that ¢, (G) < 1421log, n for any k: Alice just sends the codes of both end-
points of her edge. Moreover, log, n bits are also necessary just because both players
must know an answer v € x — S.

TueoreM 8.10. Let G = (V,E) be a triangle-free graph without 4-cycles, and let
k =2(d — 1) where d is the maximum degree of its vertices. Then

c(G) >log, |[E|—1.

ProoF. The proof is essentially the same as that of Theorem 3.4 in Section 3.2. As
in that proof we look at vertices as one-element and edges as two-element sets. For a
vertex y € V, let I, be the set of its neighbors. For an edge y € E, let I, be the set of
all its proper neighbors; that is, v € I, precisely when v € y and v is adjacent with an
endpoint of y. Since G has no triangles and no 4-cycles, the sets I, are independent
sets. Moreover, |I,| < 2(d — 1). Hence, for any two edges x, y € E, the protocol must
output a vertex ve x —1I,.

Consider the rectangle R = R! x R® where R! = E is the set of edges and R® = {I v
y € EUV} is the set of all independent sets defined by edges and vertices of G. A
subrectangle M = M' x M of R is monochromatic if there is a vertex v € V such that,
forall x € M! and I € M°, we have that v e x and v & I.

As in the proof of Theorem 3.4, associate with the rectangle R a (0,1) matrix
A whose rows correspond to edges x € E, and columns to independent sets I, with
¥ € VUE. The entries are defined by

1 ifxNny#0,

A =
be.y] {0 ifxny=40.

We have already shown that this matrix has full column-rank; hence, rk(A) = |E|.
On the other hand, if M is a monochromatic subrectangle of R, then we also know
(Claim 3.5) that the matrix A,;, obtained from A by setting to O all entries outside
M, has rank at most 2. The subadditivity of rank therefore implies that we need at
least rk(A)/2 = |E|/2 mutually disjoint monochromatic rectangles to cover the whole
rectangle R. Hence, at least log,(|E|/2) bits must be communicated. O

As we mentioned in Section 3.2, explicit n-vertex graphs G of degree d = ©(y/n)
with Q(n®/?) edges and no 4-cycles, are known; such are, for example, the point-line
incidence graphs of projective planes. Taking k = 2d = ©(4/n), Theorem 8.10 yields
that ¢,4(G) > 1.5log, —O(1). Most interesting, however, is the case k = 2, that is,
when Bob gets non-edges.

RESEARCH PROBLEM 8.11. Find an explicit bipartite n X n graph G such that
¢,(G) > log,n+c-log,logyn for ¢>3.

By the Magnification Lemma (Lemma 1.12) for graph complexity, this would give
us an explicit boolean function f,,, in 2m variables (with m = log, n) such that any
DeMorgan formula for f,,, must have leafsize Q(m°).

Why the rank argument does not work in case k = 2? Just because we don’t
know what matrix should we associate with the corresponding rectangle. If we take a
matrix A; whose rows correspond to non-edges x and columns to edges y, and define
Aglx,y] =1iff xNny # 0, then we are already lost because then A is a matrix of
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scalar products (over the reals) of vectors of length n, implying that rk(A;) < n for any
graph G.

Note that the communication game corresponding to the matrix A; is a special
version of the “clique vs. independent” game for the graph G, which we considered in
Section 7.2.1.1: edges are cliques (of size 2) and non-edges are independent sets (of
size 2).

An interesting question is: how the communication complexity C(Ag;) the matrix
A (a decision problem) is related to the communication complexity c¢,(G) of the edge-
nonedge game on G (a search problem)?

It is not difficult to see that C(Ag;) < ¢,(G)+log, n+1. Indeed, having an endpoint
v € x of her edge y = {u, v} such that v & y, Alice can just send the binary code of
the other endpoint u of her edge (using log, n bits) to Bob, and he just replies (using
one bit) whether u is in his non-edge x. Much more interesting is the other direction:
how, knowing that x N y =0 or not, to determine a vertex v € x — y using fewer than
2log, n bits of communication?

If xNy = 0, then Alice can just announce (using log,n bits) any one of the
endpoints of her edge x, and the game is over. But what if xNy # 0? It seems like then
the original task of the players has not been made simpler: they must still determine
the unique vertex, the endpoint of Alice’s edge which is not present in Bob’s non-edge.
Kushilevitz and Weinreb (2009) have recently shown that this is not true: knowing a
communication protocol for the matrix A; one can design a protocol for GaME(G, 2)
which uses fewer than 2log, n bits of communication. Namely, for every graph G,

c,(G) £0.886 - C(A;) +log, n+ O(loglogn).

8.4. A cn lower bound for matching

Let MATCH,(x) be a monotone boolean function in ('21) variables encoding the
edges of a graph on n = 3m vertices. The function computes 1 iff the graph contains
an m-matching, that is, a set of m vertex disjoint edges.

THEOREM 8.12. For the function f = MATCH,, we have
Depth_ (f) = Q(n).

ProoE. Minterms of this function are m-matchings. What are its O-terms? If q is a
subset of m — 1 vertices, then the clique c, on its complement g = [n] — q is a O-term:
if we set all edges of that clique to 0 then no m-matching is possible since every such
matching p must have at least one edge lying in that clique.

In a monotone version of Karchmer-Wigderson game for MATCH, Alice (holding a
minterm p) and Bob (holding a maxterm ¢q) must find a variable in their intersection
(recall that variables correspond to edges, not to vertices). It will be convenient to give
Bob not cliques c, but rather the sets q themselves; then p N ¢, # @ iff some edge of p
has no endpoint in q.

Thus, Depth  (f) is at least the communication complexity C(MATCH,,) of the fol-
lowing game.

MATCH,,: Alice gets an m-matching p and Bob gets an (m—1)-element set q of vertices.
Find an edge e such thate € p and eng = 0.

This is a search problem: find a desired edge. Our proof strategy is to reduce
this problem to a decision problem: given two subsets of [m] decide whether they
are disjoint. Since this last problem is known to have randomized communication
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Figure 1. x =(2,0,1,2) and y =(1,2,0,2)

complexity at least 2(m) (see Theorem 7.27 and the comment after it), we will be
done. To construct the desired reduction, we consider several intermediate decision
problems.

MATCH;: Alice gets an m-matching p and Bob gets an m-element set q" of vertices.

DIST,:

DISJ,,:

Is there an edge e such that e € p and e N g’ = §?
Alice gets x € {0,1,2}™ and Bob gets y € {0,1,2}™.
Isx;#y;foralli=1,...,n?

Alice gets x € {0,1}™ and Bob gets y € {0,1}™.
Isx;ANy;=0foralli=1,...,m?

Through a series of reductions we will show that

@

®) © ©)
Q(m) = Ry 3(DISJ,,) < Ry 3(DIST,,) < Ry 3(MATCH',) < C(MATCH,,).

The lower bound (a) was proved by Kalyanasundaram and Schnitger (1992), and by
Razborov (1992a) (see Theorem 7.27 for the proof of a slightly weaker bound).

(b)

@]

(d)

Ry /3(DISJ,,) < Ry/3(DIST,,). Transform an input (x,y) € {0, 1}?™ for DISJ,,
into an input (x,y’) € {0,1,2}*™ for DIST,, by setting y/ = 1 if y; = 1, and
y/=2if y;=0. Then3i x; = y; = 1iff i x; = y/.

Ry/3(DIST,,) < Ry/3(MATCH)). Since each randomized protocol for a function
f is also a randomized protocol for its negation —f, it is enough to reduce
DIST,, to ~MATCH;,. For this, it is again enough to encode inputs for DIST,, as
inputs for MATCH',. To do this, split all n = 3m vertices into m vertex-disjoint
triples, and number the three vertices in each triple by 0,1,2. Given a vector
x € {0,1,2}™, Alice chooses from the ith triple the edge e = {0,1,2} — {x;}.
Similarly, given a vector y € {0,1,2}™, Bob chooses from the ith triple the
vertex y;. Since the triples are vertex-disjoint, Alice obtains an m-matching p,,
and Bob obtains an m-element set q; of vertices. It remains to observe that
an edge e with e € p, and e N q’y = 0 exists iff x; = y; for some i € [m] (see
Fig. 1).

Ry/3(MATCH!) < C(MATCH,,). This is the only non-trivial reduction. Let P
be a deterministic protocol for MATCH,. We first turn it into a randomized
protocol P for MATCH,, as follows. Alice has an m-matching p and Bob has an
(m—1)-element set q. The players flip coins publicly and choose a permutation
7 : [n] — [n] on the set of vertices of the graph. Then they execute the
protocol P on nt(p) and ©(q). If ey, ..., e, € p were the edges in p which do not
intersect g, then P returns each edge from {e;,...,e.} with equal probability.
Note that k > 1 since || <m — 1.
We now construct a randomized protocol P’ for MATCH!, as follows.
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FiGURE 2. In the situation left the gamble is correct: e nq’ # @ for all
e € p. In the situation right the gamble is wrong since e’ Ngq’ = 0. But
the error probability is then < 1/2 since, in this case, the protocol P
with not choose e with probability at least 1/|{e,e’}| =1/2.

a Given an m-matching p (for Alice) and an m-element set q’ of vertices (for
Bob), Bob chooses a random vertex v € ¢’ and defines q :=q’ — {v}.

b Alice and Bob run P on p and g, and eventually agree on an edge e such
that e € p and eng = 0. Bob checks whether v € e and reports this to Alice.

cIf v €ethen eng = 0, and the players know that the answer is “1”.
Otherwise they gamble on “0”.

It remains therefore to show that the gamble can only be wrong with proba-

bility at most 1/2. Let C be the set of all edges in p that contain no endpoint

in q’. The gamble is wrong if C # 0 and v € e (see Fig. 2). But the protocol P

outputs each edge in C U {e} with the same probability p = 1/|C U {e}| < 1/2.

In particular, it will pick the edge e (and not some edge in C) with such a

probability. So the probability of error is at most 1/2. To decrease the error

probability, just repeat the protocol P’ twice.

This completes the reductions, and thus, the proof of Theorem 8.12. t

Theorem 8.12, together with the monotone version of Spira’s theorem (Theo-
rem 2.3) gives an exponential lower bound on the monotone size of DeMorgan for-
mulas. Recall that fy = MATCH,, is a monotone boolean function in N = (}) = @(n*)
variables.

COROLLARY 8.13.
Lo (fy) =29,

Borodin et al. (1982) observed that a randomized algorithm for matching, pro-
posed by Lovasz (1979b), can be implemented by shallow circuits, that is, Depth(fy) =
O(log® N). Together with the lower bound Depth, (fy) = Q(vN) of Theorem 8.12, this
gives an exponential gap between the depth of monotone and non-monotone circuits,
just like Theorem 4.16 gave such a gap for the size of circuits.

Yet another consequence of Theorem 8.12 is for switching networks. Such a net-
work is monotone if it has no negated variables as contacts.

. . 1/4
COROLLARY 8.14. Every monotone switching network for fy must have 2%V con-

tacts.

PrOOF. Every switching network with s contacts can be simulated by a DeMorgan
circuit of depth O((logs)?). We leave this as an exercise. (Hint: binary search.) O
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8.5. A log®n lower bound for connectivity

We already know (Proposition 1.1) that switching networks are not weaker than
DeMorgan formulas. In this section we will show that monotone switching networks
can be even exponentially more powerful than monotone formulas.

We consider directed graphs on n vertices with two additional vertices s (the
source) and t (the target). The st-connectivity problem sSTCON,, is, given a directed
graph on these n vertices with a source node s and a target node t, to determine
whether it contains a path from s to t. Hence, this is a boolean function in ©(n?) vari-
ables, and is monotone: if we add edges we cannot disconnect an existing path from s
tot.

ExErcisk 8.15. Show that sTcon,, can be computed by a monotone switching net-
work of size O(nz). Hint: Take a contact for each potential edge.

We will use the communication complexity approach to show that any monotone
circuit solving this problem has depth 2((log, n)?), and hence, any monotone DeMor-
gan formula has super-polynomial leafsize n*(1°8™

We will do this by proving this lower bound on the communication complexity of
the corresponding game:

o Alice gets a graph G with s-t path and Bob gets a graph H with no s-t paths.
Find an edge which is present in G but is absent in H.

Note that this is a monotone game: an edge which is present in H but absent
in G is not a correct answer. Since we are interested in proving lower bounds on the
communication complexity of this game, we can restrict our attention to special inputs.

o Game sTcoN,: Alice gets a directed path p form s to t and Bob gets a coloring
¢ of vertices by the colors 0 and 1 such that c¢(s) = 0 and c(t) = 1. Find an
edge (u,v) € p such that c(u) =0 and c(v) =1.

Note that the path p must have at least one such edge (u, v) because the path p starts
in the node s colored 0 and ends in the node t colored 1.

Let C(sTcon,) denote the communication complexity of this last game. Note that
every protocol for the original game can be used to solve this (restricted) game: given
a coloring ¢, Bob converts it into a graph H in which (u, v) is an edge iff c(u) = c(v).

EXERCISE 8.16. Prove that C(sTcon,,) = O((log, n)2). Hint: Use binary search; in fact one
of the players may do most of the talking, with the other player communicating only O(log, n) bits overall.

So as it is, the second game is no more “symmetric” since the players receive
objects of different types: Alice receives paths and Bob colorings. Still, it is possible to
reduce this game to a symmetric one.

Let n = km, and assume that the n vertices are partitioned into k levels (layers)
Ly,..., L, with m vertices in each layer. We also have the O-th layer L, = {s} containing
only the source vertex s, and the (k + 1)-th layer L,,; = {t} containing only the target
vertex t. Each s-t path then corresponds to a string in the grid [m]* consisting of all
strings a = (ay, ..., ;) with ¢; € [m] ={1,...,m}.

Given two paths (strings) a and b in [m]¥, say that i € [k] is a fork position of
a,b if either i =1 and a; # by, ori > 0 and a;_; = b;_; but a; # b;. Note that any
two distinct strings must have at least one fork position: either they differ in the first
coordinate, or there must be a coordinate where they differ “for the first time”, that is,
the proceeding coordinate is the same in both strings.

We will be interested in the following symmetric games on subsets S € [m]*.
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o Game FORK(S): Alice gets a string a € S and Bob gets a string b € S. Find a
fork position i of a and b, if a; # by. If ap = by theni =k + 1 is also a legal
answer.

If, for example, a = (1,2,4,3,4) and b = (3,2,2,5,4) theni=1,i =3 and i = 4
are legal answers, and players can output any of them.

Let C(FORK,,;) denote the communication complexity of the fork game on the
whole set § = [m]*.

We can relate this game to the previous (s-t connectivity) game as follows. When
doing this, we restrict our attention to graphs on n = m - k vertices, where only edges,
connecting nodes from adjacent levels, are allowed.

LEMMA 8.17. C(FORK;, ;) < C(STCON,).

Proor. Suppose we have a protocol II for stcon,. We will show that this protocol
can be used for the game FORK,, ;. To use the protocol II, the players must convert
their inputs a = (ay,...,a;) and b = (by,..., b;) (for the fork game) to inputs for the
s-t connectivity game.

Alice converts her input (a,,...,q;) into a path p = (ug,uy,...,u, ur;) where
Uy =S, Uy = t, and u; = q; for 1 <i < k. Bob converts his input (b, ..., by) into a
coloring ¢ by assigning color 0 to all vertices s, by,..., by, and assigning color 1 to the
remaining vertices; hence, c(s) = 0 and c(t) =1 (because t & {s, b,,..., b }).

The players now can use the protocol II for sTcon, to find an edge (u;_;,u;) in p
such that c(u;_;) = 0 and c(u;) = 1. This means that u;_, is in the path (s, by, ..., by)
and u; is not. We claim that i is a valid answer for the fork game on the pair a, b.

Ifi =1thenu;_; =uy =sand u; = a,. Hence, c(s) =0and c(a;) =1 #0=c(b;),
implying that a; # b, (no vertex can receive two colors).

Let now 1 < i < k. Recall that c assigns color 0 to exactly one vertex in each layer
L;, namely, to the vertex b;. Hence, the fact that c(a;_;) = c(u;_;) = 0 means that
a;_, = b;_;, and the fact that c(q;) = c(u;) = 1 # 0 = ¢(b;) means that a; # b;.

Finally, let i = k+ 1. Then u;_; = a; and u; = t. Since c(a;) = c(y;_,) = 0 and
since only the vertex b, on the kth layer can receive color 0, this implies a; = by.
Since, in this case, i = k + 1 is a legal answer for the form game, we are done. 1

By Lemma 8.17 and Exercise 8.16 we know that the communication complexity
of the fork game on [m]¥ is at most about (log,(km))?. We will show that this upper
bound is almost optimal.

THEOREM 8.18.
C(FORK,, ) = Q((log, m) - (log, k)) .

Proor. Call a two-player protocol an (a, k)-protocol if it is a protocol for the game
FORK(S) on some subset S C [m]* such that |S| > am*. Denote by C(a, k) the min-
imum communication complexity of an (a, k)-protocol. That is, if C(a,k) = d then
there exists a subset S € [m]* of |S| > am* strings and a protocol I of communication
complexity d such that IT works correctly on S. In particular, C(1, k) = C(FORK, ;).

We start with two simple claims.

CraiM 8.19. For any k > 1 and any a > 1/m, C(a, k) > 0.

PrROOE. Suppose that C(a, k) = 0. Thus, there exists a subset of strings S € [m]*
such that |S| > am* > m*~! and the players must know the unique answer i €
{1,...,k,k + 1} for all input pairs a,b € S without any communication. Since |S|
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is strictly larger than m*~!, there must be two strings a, b € S with ay # by. Hence, on
this input pair (a, b) the answer must be some i < k. But on input pair (a,a) the only
legal answer is i = k + 1, a contradiction. t

Cramm 8.20. For every k > 1 and «, if C(a,k) > 0 then C(a, k) > C(a/2,k)+ 1.

PrOOE. Let d = C(a, k). Thus, there exists a subset S € [m]* such that |S| > am*

and there is a protocol IT such that for all a,b € S, the protocol correctly solves the
game on these inputs. Assume w.l.o.g. that Alice speaks first (the case when Bob speaks
first is similar). Hence Alice sends either O or 1. After this (first) bit is communicated,
the set S is splitted into two parts S, and S;. Assume wl.o.g. that |Sy| > |S;|. Let
I1, be the rest of the protocol II, after assuming that the first bit send by Alice was
0. That is, IT, works exactly like IT, but without sending the first bit, and continuing
as if the value of the first bit was 0. The communication complexity of I, is at most
d — 1. Obviously, I1, must work correctly on S, because II does this on the whole set
S =8, US;. Hence, I, is an (a/2, k)-protocol. Thus, C(a/2,k) <d—-1=C(a,k). O

Starting with @ = 1 and applying Claim 8.20 t = (log, m)/2 times, we obtain that
C(1,k) > C(a, k) + t with @ = 1/+/m. Since a > 1/m, Claim 8.19 yields C(FORK,, ;) =
C(1,k) = Q(log, m). This lower bound is, however, too weak. What we claim in
Theorem 8.18 is that the actual lower bound is about log k times larger.

The reason why Claims 8.19 and 8.20 alone cannot yield larger lower bounds
is that, when compared to the whole universum [m]¥, the density of the sets S (on
which a protocol is still correct) drops down very fast. In such situations it is usually
helpful to take a projection S |; of S onto some subset I C [k] and work in smaller
universum [m]’. A hope is that then the relative density of S|, within [m]’ will be
much larger than that of S within the whole universum [m]*. This trick is usually
called the “amplification” of density.

We now turn to an amplification step: given an (a, k)-protocol (with k > 2 and
a not too small), we convert it to a (v/a/2,k/2)-protocol. Thus a may be amplified
greatly® while k is cut in half. By amplifying a after every about log, k steps, we may
keep a > 1/m until k reaches 1, showing the protocol must have a path of length at
least log, m times log, k.

LEMMA 8.21 (Increasing Density). For every k > 0 and a > 16/m,
Cla,k)>C(Va/2,k/2).

PrOOE. We are given an (a, k)-protocol working correctly on some set S € [m]* of
|S| > am* strings (paths). Consider a bipartite graph G = (U, V,S) with parts U and
V where U consists of all m*/? possible strings on the first k/2 levels, and V consists
of all m*/? possible strings on the last k/2 levels. We connect u € U and v € V if their
concatenation uov is a string in S; in this case we say that v is an extension of u. Hence,
G is a bipartite graph with parts of size m*/? and |S| > am* = a|U x V| edges.

We need the following combinatorial fact about dense matrices. Let Abe an M X N
(0,1) matrix. We say that A is a-dense if at least an a-fraction of all its entries are 1’s.
Similarly, a row (or column) is a-dense if at least an a-fraction of all its entries are 1’s.

Cramm 8.22. If Ais 2a-dense then either: (a) there exists a row which is v/a-dense,
or (b) at least a fraction /a of the rows are a-dense.

2Note that v/ is at least twice larger than a, if a < 1/4.
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kr2 kr2 kr2 k2

@ (b)
FiGure 3. Two cases for constructing a protocol for strings of length k/2.

PrOOFE. Suppose that the two cases do not hold. We calculate the density of the
entire matrix. Since (b) does not hold, less than +/aM of the rows are a-dense. Since
(a) does not hold, each of these rows has less than y/aN 1’s; hence, the fraction of 1’s
in a-dense rows is strictly less than (v/a)(v/a) = a. We have at most M rows which
are not a-dense, and each of them has less than aN 1’s. Hence, the fraction of 1’s in
these rows is also less than a. Thus, the total fraction of 1’s in the matrix is less than
2a, a contradiction with the 2a-density of A. O

By Claim 8.22, when applied to the adjacency matrix

1 ifuves;
0 ifuv¢s,

of our bipartite graph G = (U, V,S), at least one of the following two must hold:
(a) There is an u, € U with

[{veV|uovest = /2v|=/2m"2.
(b) Thereis an S’ C U such that |S’| > \/gmk/z and

Alu,v] = {

){veV|uov€S}|2%|V|=%mk/2 forall ues’.

In both cases (a) and (b), we show how to construct a (v/a/2, k/2)-protocol (see
Fig. 3).

Case (a): In this case, we have one string u, on the left that has many extensions

v on the right such that uy o v € S. Thus we can recover a (1/a/2,k/2)-protocol as
follows: let S’ be the set of all extensions of u,. Given two strings v,w € S’, the
players can play the S’-game on these inputs by following the S-protocol for the pair of
strings uy o v and u, o w. Since these strings are identical on the first k/2 coordinates,
the answer i must correspond to a point where (the paths corresponding to) v and w
diverge.

Case (b): In this case, we take a random partition of the km/2 nodes in the right
k/2 levels. More precisely, take m/2 nodes at random from each of the right k /2 levels,
and call their union X; call the set of remaining km/4 right nodes Y. Say that a string
u € U is good if it has an extension vy(u) lying entirely in X and another extension
vy (u) lying entirely in Y.

CrLaiM 8.23. The expected number of good strings in S’ is at least 0.9|S’|.
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Proor. We can construct a subset of X as follows. Take m/2 uniformly distributed
paths py, ..., p,, - of the right k/2 layers, color their vertices red and let X be the union
of these vertices. The paths are not necessarily vertex disjoint and some layers may
have fewer than m/2 vertices. To correct the situation, we randomly color additional
vertices red in each layer to ensure that all layers have exactly m/2 red vertices. Finally,
we color all remaining vertices blue.

Take now a path u € S’. By (b) we know that each red path p; is an extension of
u with probability at least @/2. That is, p; is not and extension of u with probability at
most 1 —a/2. Since a > 12/m, the union bound implies that the probability that none
of m/2 red paths is an extension of u does not exceed

(1—a/2)"?<(1-6/m)™?<e 3 <0.05.

Since the red and blue vertices are identically distributed, the same also holds for blue
paths. Therefore, each u € S’ is good with probability at least 1 —2-0,05 = 0.9,
implying that the expected fraction of good strings in S’ is at least 0.9. O

This yields a (v/a/2,k/2)-protocol as follows. Let S” € S’ be the set of all good
strings in $’. By Claim 8.23 and since 0.9/+v2 > 0.5, the density of the set S” within
[m]*/2 is at least 0.94/a/2 > y/a/2, as desired. Given strings a,b € S”, the players
follow the S-protocol on the inputs a o vx(a) and b o vy (b). Since the S-protocol is
correct on these strings, and since they share no vertices in the right k/2 levels, the
protocol must return an answer i in the first k/2 levels, hence the answer is in fact
valid for a and b.

This completes the proof of Lemma 8.21. O

Now we can finish the proof of Theorem 8.18 as follows.
By r = |log,(+/m/8)] applications of Claim 8.20 and one application of Lemma 8.21,
we obtain that

C(2/v/m,k) > C(16/m,k)+r > C(2/V/m,k/2)+r.
Applying the last inequality s = |log, k] times, we obtain
C(2/vm,k)>C(2/vm,1)+r-s>r"-s.
Hence,

C(FORK,, ;) = C(1,k) > C(2/vVm, k) > r-s = Q((log, m) - (log, k)). O

Eercises

Ex. 8.1. The game FORMULA is a game of two players Up (upper) and Lo (lower),
Up will try to prove an upper bound for the formula size of a boolean function; Lo will
try to interfere him. A position in this game is a triplet (U, V, t) where U,V C {0.1}",
UNV =0and t > 1 is an integer. Up begins the game. He obtains a position (U, V, t),
chooses one of the two sets U,V (say, U), somehow represents U and t in the form

U=U'uU” t=t'+t" (t/,t">1)

and hands to Lo the two positions (U’,V, t") and (U”,V,t”). If Up chooses the set V,
the description of his actions is given in the analogous way.

Lo chooses one of the two positions offered to him and returns it to Up (the re-
maining position is thrown out). Then Up moves as above (in the new position) and
so on. The game is over when Up receives a position of the form (U*,V*,1). Up wins
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if U* x V* forms a monochromatic rectangle, that is, if there is an i € [n] such that
x; #y;forall x e U* and y € V*.

Prove that Up has a winning strategy in a position (U, V, t) iff there exists a boolean
function f : {0,1}" — {0,1} such that: f(U) =0, f(V) =1 and f has a DeMorgen
formula of leafsize < t.

Hint: Argue by induction on ¢ as in the proof of Theorem 8.3.

Ex. 8.2. Say that a string x € [m]* is a limit for a subset S C [m] of strings if
x € S and for every position i = 1,...,k there is a string y € S such that x # y and
Xi =Yi-

Prove: If S € [m]* and |S| > km then S has a limit for itself.

Hint: What does it mean that S does not have a limit for itself?

Ex. 8.3. One somewhat artificially looking thing in the definition of the fork game
is that the players need not necessarily output a fork position, even when a # b (note
that then at least one fork position must exist). Instead, they are also allowed to
answer “k + 17, if ay = b;. It makes therefore sense to look at what happens if we
consider the following modified fork game:

a. Alice gets a string a € S and Bob gets a string b € S.

b. Find a fork position i of a and b, if there is one.

That is, the only difference from the original fork game is that, if an input pair a # b
coincides in the last position (i.e., a = by) i = k + 1 was allowed as a legal answer
whereas in the modified game they must output some other position i < k (such a fork
position exists since a # b).

Prove: the modified fork game on [m]* has communication complexity Q(k-log m).

Hint: Assume that d bits of communication are enough, where 2¢ < m*/(km). Use the previus exercise
to get a contradiction.

Ex. 8.4. Let G be a bipartite n x n graph, and consider the following “edge-
nonedge” game on it:

a. Alice gets an edge x of G.

b. Bob gets a non-edge y of G (a pair y of two nonadjacent vertices).

c. Find avertexvex —y.

Let (as before) c,(G) be the communication complexity of this game. Let also A be the
adjacency matrix of G. Prove that

¢,(G) < log, Cov(A) +log,n+1.

Hint: Alice can tell in which of the all-1 submatrices of A her edge lies.

Ex. 8.5. Given a graph G = (V, E), consider now a decision version of the “edge-
nonedge” game, where the playerst must give answer “1” iff x Ny = 0. Let nc,(G) be
the nondeterministic communication complexity of this game.

Let ¢(G) be the smallest number t with the following property: There is a sequence
Sq,...,S; of subsets of V such that, for every edge x and every non-edge y of G, there
isanisuch that x €S; and y NS; =0.

Prove that nc,(G) = log, q(G).
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CHAPTER 9

Many Players

A general scenario of a k-party communication is as follows. We have some func-
tion f (x) whose input x is splitted into k equal sized parts x = (xy,...,x;). There are
k players who wish to collaboratively evaluate a given function f on every input x.
Each player has unlimited computational power and full knowledge of the function.
As in the case of two players, the players are not adversaries—they help and trust each
other. Depending on what parts of the input x each player can see, there are two main
models of communication:

a. In the “number in the hand” model, the ith player can only see x;.
b. In the “number on the forehead” model, the ith player can see all the x; ex-
cept Xx;.
Note that for k = 2 (two players) there is no difference between these two models. The
difference comes when we have k > 3 players. In this case the second model seems
to be (and actually is) more difficult to analyze because players share some common
information. For example, the first two players both can see all inputs xa, ..., X.

Players can communicate by writing bits 0 and 1 on a blackboard. The blackboard
is seen by all players. The game starts with the empty blackboard. For each string
on the blackboard, the protocol either gives the value of the output (in that case the
protocol is over), or specifies which player writes the next bit and what that bit should
be as a function of the inputs this player knows (and the string on the board). During
the computation on one input the blackboard is never erased, players simply append
their messages. The objective is to compute the function with as small amount of
communication as possible.

The communication complexity of a k-party game for f is the minimal number ¢
such that on every input x € X the players can decide whether f(x) = 1 or not, by
writing at most ¢ bits on the blackboard. Put otherwise, the communication complexity
is the minimal number of bits written on the blackboard on the worst-case input.

Note a big difference between the two models of communication. If the number
k of players increases, the communication complexity in the “number in hand” model
can only increase (the pieces of input each player can see is smaller and smaller),
whereas it can only decrease in the “number on the forehead” (the pieces of seen input
are larger and larger). This is why the first model deserved much less attention. Still,
the model becomes interesting if instead of computing a given function f exactly, the
players are only required to approximate its values.

9.1. The “number in the hand” model

Consider the following approximate disjointness problem Disj,. Each X; consists of
all subsets q; of [n] = {1,...,n}. Given a sequence a = (ay,...,q;) the k players are
required to distinguish between the following two extreme cases:

121
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- Answer “input is positive” if (._, a; # 0.

- Answer “input is negative” if a; Na; =@ for all i # j.

- If neither of these two events happens, then any answer is legal.

LEMMA 9.1. In the “bit in hand” model, the approximate disjointness problem Disj,
requires Q(n/k) bits of communication.

Proor. First note that any c-bit communication protocol for the approximate dis-
jointness problem partitions the space of inputs into at most 2° “boxes”, where a box
is a Cartesian product S; x S, x --- x S with S; C 2" for each i. Each box must be
labeled with an answer, and thus the boxes must be “monochromatic” in the following
sense: no box can contain both a positive instance and a negative instance. (There are
no restrictions on instances that are neither negative nor positive.)

We will show that there are exactly (k 4+ 1)" positive instances, but any box that
does not contain a negative instance can contain at most k" positive instances. It then
follows that there must be at least

(k+1D)"/k"=(141/k)" ~ ek

boxes to cover all positive instances and thus the number of bits communicated must
be at least the logarithm Q(n/k) of this number, giving the desired lower bound.

To count the number of positive instances, note that any partition of the n items
in [n] between k players, leaving some items “unlocated”, corresponds to a mapping
g : [n] — [k + 1], implying that the number of positive instances is exactly (k + 1)".

Now consider a box § = §; X S, x -+ x §; that does not contain any negative
instance. Note that for each item x € [n] there must be a player i = i, such that x € a
for all a € S;. This holds because otherwise there would be, in each S;, a set a; € S;
containing x, and we would have that ﬂi;l a; 2 {x} # 0—a negative instance in the
box S.

We can now obtain an upper bound on the number of positive instances in S by
noting that any such instance corresponds to a partition of the n items among k players
and “unlocated”, but now with an additional restriction that each item x € [n] can not
be in the block given to the i,-th player. Thus each item has only k possible locations
for it and the number of such partitions is at most n*. O

9.1.1. Approximate set packing problem. The set packing problem is, given a
collection A of subsets of [n] = {1,...,n}, to find the largest packing—that is, largest
collection of pairwise disjoint sets. The packing number of A, is the largest number of
sets of A in a packing of [n].

The set packing communication problem is as follows: we have k players each
holding a collection A; of subsets of [n], and the players are looking for the largest
packing in the union A = A; U --- U A of their collections. The goal of players is to
approximate the packing number of A to within a given multiplicative factor A.

ProroSITION 9.2. There is a k-player protocol approximating the packing number
within a factor of A = min{k, /n} and using O(kn?) bits of communication.

Proor. Getting an approximation factor k is easy by just picking the single player
with the largest packing in her collection. If k > 4/n, we can do better by using the
following simple greedy protocol: at each stage each player announces the smallest set
a; € A; that is disjoint from all previously chosen sets; this requires n bits of commu-
nication from each of k players. The smallest such set is chosen to be in the packing.
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This is repeated until no more disjoint sets exist; hence, the protocol ends after at most
n stages. It remains to verify that this packing is by at most a factor of 4/n smaller than
the number of sets in an optimal packing.

Let a,...,a, be the sets in A chosen by out protocol. The sets

B;={a€A|ana; #0}

form a partition of A. Moreover, since all sets in B; contain an element of a;, the
maximum number of disjoint sets in B; is at most the cardinality of a;. On the other
hand, every set in B; is of size at least |g;|, so the maximum number of disjoint sets in
B, is also at most [n/|a;||. Thus, the optimal solution can contain at most

min{|a,], |n/|a;|]} < maxmin{x, [n/x]} = [Vn]
xe
sets from each B;. O

On the other hand we have the following lower bound.

THEOREM 9.3. Any k-player protocol for approximating the packing number to within
a factor less than k requires 220"/ k) bits of communication.

In particular, as long as k < n'/27¢ for ¢ > 0, the communication complexity is
exponential in n.

PrOOE. We have k players, each holding a collection A; of subsets of [n]. It is
enough to prove a lower bound on the communication complexity needed in order to
distinguish between the case where the packing number is 1 and the case where it is
k. That is, to distinguish the case where there exist k disjoint sets a; € A;, and the case
where any two sets a; €A; and a; € A; intersect (packing number is 1).

Suppose now that ¢ bits of communication are enough to distinguish these two
cases. We will show that then the approximate disjointness problem Disj, for N =
eX/K) can be also solved using at most ¢ bits of communication. Together with
Lemma 9.1 this will immediately yield the desired lower bound £ = Q(N /k)

The reduction uses a set of partitions .o/ = {a’* | s = 1,...,N}, where each a° is
a partition @’ = (aj,...,a;) of [n] into k disjoint blocks. Say that such a set ./ of
partitions is cross-intersecting if

afiﬂa;j #0 forall 1<i#j<k and 1<s;#5;<N,
that is, if different blocks from different partitions have non-empty intersection.
CLAIM 9.4. A cross-intersecting set of N = e"/ (2k*) /k partitions exists.

PrOOE. Let fi,..., fy be independent copies of a random function f : [n] — [k]
where Pr[f(x) = i] = 1/k for every x € [n] and i € [k]. Each function f, gives us a
partition a® = (aj,...,ay) of [n] with aj = {x | f;(x) = i}. Now fix 1 <i # j < k and
two indices of partitions 1 <s; #s; < N. For every fixed x € [n], the probability that
f,(x) #ior fs]_ (x)# jis 1—1/k2. Since af." N a;j = 0 holds iff this happens for all n
elements x, we obtain that

Prla N =0] = (1-1/k*)" <e /.

Since there are at most k2N? such choices of indices, we get that the desired set of
.o, . . 2
partitions exist, as long as k2N? < e/, O
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FIGURE 1. k = 9 players, the ith one with x; with on his/her forehead.

We now describe the reduction of the approximate disjointness problem Disj, to
the problem of distinguishing whether the packing number is 1 of k. Player i, who gets
as input a set b; € [N] in the problem Disjy, constructs the collection A; = {a; | s € b;}
of subsets of [n].

Now, if there exists s € ﬂi;l b;, then a k-packing exists: aj € Ay,...a; € A;. On
the other hand, if b; N b; = @ for all i # j, then for any two sets af" € A; and aj.j EA,,

we have that s; #s;, and thus af." N a;j # (), meaning that the packing number is 1. [

9.2. The “number on the forehead” model

This model is related to many other important problems in circuit complexity, and
is much more difficult to deal with than the previous one. Recall that in this model
the information seen by players on a given input x = (xq,...,X;) can overlap: the ith
player has access to all the x;’s except x;. Recall also that each x; is an element from
some (fixed in advance) n-element set X;. Thus, we have two parameters: the size n
of a domain for each players, and the number k of players.

We can imagine the situation as k poker players sitting around the table, and each
one is holding a number to his/her forehead for the others to see. Thus, all players
know the function f but their access to the input vector is restricted: the first player
sees the string (x, x5, ..., x; ), the second sees (x;,*, X3,...,Xt), ..., the kth player sees
(X9, e ees X1, %)

Let C,(f) denote the minimum communication complexity of f in this “bit on
forehead” model.

It is clear that C,(f) <log,n+ 1 for any f: the first player writes the binary code
of x,, and the second player announces the result. But what about the lower bounds?
The twist is that (for k > 3) the players share some inputs, and (at least potentially)
can use this overlap to encode the information in some wicked and non-trivial way
(see Exercises 2 and 3).

The lower bounds problem for C,.(f) can be re-stated as a Ramsey type problem
about the minimal number of colors in a coloring of the hypercube which leaves no
“forbidden sphere” monochromatic.

A Hamming sphere, or just a sphere in X around a vector x = (x,...,x;) isasetS
of k vectors of the form:

k
xt = (X1, X0, x0), X2 = (00, XY, e, X)), ey XN = (0, X000, X)),

where for each i, xlf # x; and Xx;, xlf € X;. The vector x is a center of this sphere. Hence,
there are exactly (n — 1)* spheres around each vector x.

Such a sphere is forbidden (for f) if it lies entirely in one of the parts f ~1(0) or
£71(1), whereas its center belongs to the other part.
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An r-coloring ¢ : X — {1,...,r} of X is legal (with respect to f) if it:

a. leaves no forbidden sphere monochromatic;
b. uses different colors for vectors in f ~}(0) and in f ~1(1).

Let y.(f) denote the minimal number of colors in a legal coloring of X.

This measure is motivated by the fooling-set bound in the case of k = 2 players
(see (7.3) in Section 7.1.3). In this case each function f : X — {0,1} with X = X; x X,
can be looked at as an |X;| x |X,| matrix. A sphere x' = (x},x,), x* = (x;, x}) around
an entry x = (x;,x,) (as well as around the entry x" = (x7, x})) of this matrix has then
the form

(x1,x) -+ (xp,x5)
(x1,x3) -+ (Xl:xé)
Such a sphere is forbidden if one of the following two configurations appear:
1 * 0 *
: or :
o --- 1 1 -+ 0

Being forbidden in this case means that the sphere cannot entirely lie in one monochro-
matic rectangle.

Our starting point is the following combinatorial lower bound of the k-party com-
munication complexity.

ProposITION 9.5. For every f : X — {0,1}, C(f) = log, xx(f).

Proor. Take an optimal protocol of the communication game for f. Color each
vector x € X by the string, which is written on the blackboard at the end of commu-
nication between the players on the input x. We have 2% colors and it remains to
verify that the coloring is legal for f.

To show this, assume that some forbidden sphere S = {x!,...,x*} around some
vector x is monochromatic. Assume w.l.o.g. that f(x})=...= f(x*)=1and f(x) =
0. An important fact is that given the first [ bits communicated by the players, the
(I + 1)-th bit of communication (transmitted, say, by the ith player) must be defined
by a function which does not depend on the ith coordinate of the input: player P,
cannot see it. Therefore, for every [, there is an i (1 <i < k) such that the (I + 1)-th
communicated bit is the same for both inputs x and x!. Since on all inputs x?, ..., x*
the players behave in the same way (i.e., write the same string on the blackboard), it
follows that they will also behave in the same way on the input x. But this means that
the players will accept x, a contradiction. O

9.3. Discrepancy bound

Let X,,...,X} be finite sets, and X = X; X --- xX}.. A subset T; of X is called a cylin-
der in the ith dimension if membership in T; does not depend on the ith coordinate.
That is,

(X1,...,X;,...,X;) € T; implies that (xq,...,x7,...,x;) € T; for all x] € X;.

A subset T C X is a cylinder intersection if it is an intersection T = T; N--- N Ty,
where T; is a cylinder in the ith dimension. The (normalized) discrepancy of a function
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f:X —{-1,1} on aset T is defined by

Dise; () = = £ ()
|X| xeT
The discrepancy Disc(f) of f is the maximum, over all cylinder intersections T, of the
absolute value }DiscT( f )}.

The case k = 2 is more intuitive. In this case, X = X; X X, is just an n X n grid,
and f : X — {—1,1} is an n x n &1 matrix. Cylinder intersections T in this case are
precisely the submatrices of X. Hence, in this case, Disc;(f) is just the sum of all
entries in the submatrix T divided by the size |X| of the entire matrix.

The importance of the discrepancy stems from the fact that functions with small
discrepancy have large multi-party communication complexity. For a function F : X —
{0,1}, its +1 version f : X — {—1,1} is defined by f(x) =1 —2- F(x).

PROPOSITION 9.6. For every F : X — {0, 1}, C,(F) = —log, Disc(f).

PrOOF. It can be shown (see Exercise 9.8) that a set T is a cylinder intersection
if and only if it does not separate a sphere from its center, i.e., if for every sphere S
around a vector x, S € T implies x € T. Thus, a coloring ¢ : X — {1,...,r} is legal for
a given function F : X — {0, 1} if and only if each color class T = c¢~*(i) is a cylinder
intersection and the function F is constant on T. Since this last event is equivalent

to }DiscT( f )| = |T|/|X|, no color class can have more than |X| - Disc(f) vectors. This
implies that we need at least 1/Disc(f) colors, and Proposition 9.5 yields the desired
lower bound on Ci.(f). O

However, this fact alone does not give immediate lower bounds for the multi-party
communication complexity, because Disc(f) is very hard to estimate. Fortunately, the
discrepancy can be bounded from above using the following more tractable measure.

A k-dimensional cube is defined to be a multi-set D = {ay, by} x- - - x {ay, by }, where
a;, b; € X; (not necessarily distinct) for all i. Being a multi-set means that one element
can occur several times. Thus, for example, the cube D = {a;,a;} x -+ x {ay, a,} has
2k elements.

Given a function f : X — {—1,1} and a cube D C X, define the sign of f on D to
be the value

fFoy=] Jreo.
x€D
Hence, f(D) = 1 if and only if f(x) = 1 for an even number of vectors x € D. We
choose a cube D at random according to the uniform distribution. This can be done by
choosing a;, b; € X; for each i according to the uniform distribution. Let

&) =[] =& [ ]|

x€D



9.3. DISCREPANCY BOUND 127

be the expected value of the sign of a random cube D. To stress the fact that the
expectation is taken over a particular random object (this time, over D) we will also
write Ej, [ f(D)] instead of E [ f(D)].

THEOREM 9.7. Forevery f : X — {—1,1},
Disc(f) < &(H)"*,

and hence,
1
()’
The theorem is very useful because &(f) is a much simpler object than Disc(f). For

many functions f, it is relatively easy to compute &(f) exactly; we will demonstrate
this in the next sections.

1
C(f)= > log,

Proor. We will only prove the theorem for k = 2; the general case is similar.
Solet X =X; XX, and f : X — {—1,1} be a given function. Our goal is to show
that Disc(f) < &(f)"*. To do this, pick at random (uniformly and independently) an
element x € X. The proof consists of showing two claims.

Cramv 9.8. For all functions h : X — {—1,1}, &(h) > (E, [h(x)]*.
Cramm 9.9. There exists h such that E, [h(x)] > Disc(f) and &(h) = &(f).

Together, these two claims imply the theorem (for k = 2). In the proof of these
two claims we will use two known facts about the mean value of random variables:

E [52] >E[E]* for any random variable &; 9.1)

and

E[£-&'|=E[E]-E[&'] if& and & are independent. (9.2)
The first one is a consequence of the Cauchy-Schwarz inequality, and the second is a
basic property of expectation.

ProOOF OF CLAIM 9.8. Take a random 2-dimensional cube D = {a,a’} x {b, b’}.
Then

00 = (D] =y | [ o) |

=E, By [h(a, b))-“;llza, b)-h(a’,b)-h(d’,b")]

=Eqq [ (B [h(a,b)-h(a’,b)])?] by (9.2)

> (o By [h(a,b)-h(d,b)])" by (9.1)

= (EaEb [h(a, b)z:l )2 Pr[a’] = Pr[a]

= (Eq (B [h(a, )])%)” by (9.2)

> (E, [h(a, )])" by (9.1). 0

ProoF oF CLAIM 9.9. Let T = A x B be a cylinder intersection (a submatrix of X,
since k = 2) for which Disc(f) is attained. We prove the existence of h by the proba-
bilistic method. The idea is to define a random function g : X; x X, — {—1,1} such
that the expected value E [g(x)] = E; [g(x)] is the characteristic function of T. For
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this, define g as the product g(x) = g,(x) - g,(x) of two random functions, whose
values are defined on the points x = (a, b) € X; x X, by:

(@.b) 1 if a €A
a,b)= .
£1 set randomly to 1  otherwise

and

(@.b) 1 if b € B;
ab)= .
82 set randomly to =1  otherwise.

These function have the property that g, depends only on the rows and g, only on the
columns of the grid X; x X,. That is, g,(a,b) = g,(a, b’) and g,(a,b) = g,(d’, b) for
all a,a’ € X; and b, b’ € X,. Hence, for x € T, g(x) = 1 with probability 1, while for
x & T, g(x) = 1 with probability 1/2 and g(x) = —1 with probability 1/2; this is so
because the functions g4, g, are independent of each other, and x & T iff x €Ax X, or
x & X, x B. Thus, the expectation E [g(x)] takes the value 1 on all x € T, and takes
the value % + (—%) =0onall x ¢T,ie., E[g(x)] is the characteristic function of the
set T:

1 ifxeT;

Els(0] = {0 ifxe&T.

Let now x be a random vector uniformly distributed in X = X; X X,. Then
DiSCT(f) =E, [f(X) : Eg I:g(x)]] = Eng I:f(x) g(x)] = EgEx I:f(x) : g(x)] .
So there exists some choice of g = g; - g, such that
Ey [f(x)-g(x)] = Discy(f) = Disc(f)

and we can take h(x) := f(x)-g(x). Then E, [h(x)] > Disc(f ). Moreover, &(h) = &(f)
because g; is constant on the rows and g, is constant on the columns so the product

g(D)=1]1],cp&(x) cancels to 1. O
This completes the proof of Theorem 9.7 in case k = 2. To extend it for arbitrary
k, just repeat the argument k times. O

9.4. Generalized inner product

Say that a (0, 1) matrix A is odd if the number of its all-1 rows is odd. Note that,
if the matrix has only two columns, then it is odd iff the scalar (or inner) product of
these columns over GF(2) is 1. By this reason, a boolean function, detecting whether
a given matrix is odd, is called “generalized inner product” function. We will assume
that input matrices have n rows and k columns.

That is, the generalized inner product function Gip(x) is a boolean function in kn
variables, arranged in an n x k matrix x = (x;;), and is defined by:

n k
GIp(x) = @ /\xij .
i=1 j=1

We consider k-party communication gates for gip(x), where the the jth player can see
all but the jth column of the input matrix x.

TueEOREM 9.10. The k-party communication complexity of GIp is (n4_k).

It can be shown (see Exercise 9.6) that this lower bound is almost optimal: C;(GIp) =
O(kn/2").
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Proor. Since we want our function to have range {—1,1}, we will consider the
function

f(X) — (_1)GIP(X) — l_[(_l)x,-lxizmxik ) (9.3)
i=1
By Theorem 9.7, it is enough to prove that &(f) < 27927 I fact we will prove that
1 n
&(f)= 1—; . 9.4

In our case, the function f is a mapping f : X; X X, x ---X; — {—1,1}, where the
elements of each set X; are column vectors of length n. Hence, a cube D in our case is
specified by two n X k (0, 1) matrices A = (a;;) and B = (b;;). The cube D consists of
all 2% n x k matrices, the jth column in each of which is either the jth column of A or
the jth column of B. By (9.3), we have that

foy=[Treo=1] ]‘[(—1) with x;; € {a;;, b;;}
x€D xeD i=1
= l_[ l_[(_l)xilxiz"'xik
i=1 xeD

n
= l_[(_ 1)(ai1 +biy)aip+big)(ag+by) .
i=1

Note that the exponent (a;; + b;;)(a;2+ b;p) -+ - (a; + by is even if a;; = b;; for at least
one 1 < j <k, and is equal to 1 in a unique case when a;; #* bl-j forall j =1,...,k,
that is, when the ith row of B is complementary to the ith row of A. Thus,

f(D) = —1 iff the number of complementary rows in A and B is odd.

Now, &(f) is the average of the above quantity over all choices of matrices A and B.
We fix the matrix A and show that the expectation over all matrices B is precisely the
right-hand side of (9.4). Let a4,...,a, be the rows of A and b,..., b, be the rows of
B. Then f(D) =[], g(b;), where

+1 ifb;#a;®1,

b.):=(-1 (@1 +bi1 )@ +bip)(ay+by) —
g( l) ( ) -1 ifbi:ai®1.

Thus, for every fixed matrix A, we obtain that
By | [ Jecbo] =] o Leo0) by 9.2
i=1 i=1
1
=[ T3 226
i=1 b,
o1
k
l_[ = (2¢-1)

i=1

1 n
1) g
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9.5. Matrix multiplication

Let X = X; X ---X,, where each X; is the set of all m x m matrices over the field
GF(2); hence, |X;| = n=2™. For x; €X,,...,x; €X,, denote by x; - - - x; the product
of xq,...,x; as matrices over GF(2). Let F(xy,...,x;) be a boolean function whose
value is the element in the first row and the first column of the product x; - - x.

THEOREM 9.11. C(F)=Q (m/Zk).

The theorem is a direct consequence of Theorem 9.7 and the following lemma.
Define the function f : X — {—1,1} by

Fxpensx) = (=1)FC0X) =1 — 2F (xy,..., x;).
LEMMA 9.12. &(f) <(k—1)27™.

Proor. For every cube D = {a;, by} x -+ X {ay, b},

O =[Tre =] J~0® = (1),

x€D x€D

Since F is linear in each variable,
f(D) = (—1)F@®brac®) — 1 _2F(q; @ by,...,a; ® by),

where a; ® b; denotes the sum of matrices a; and b; over GF(2). If we choose D at
random according to the uniform distribution, then (a; & b4, ..., a; ® by) is a random
vector x = (xq,...,x;) uniformly distributed over X. Therefore,

E(f)=Ep [f(D)]=E[1—2F(a; ®by,...,a, ®by)]
=E, [1-2F(x)] =E, [f(x)] .

To estimate the expectation E,. [ f(x)], where x = (xy,...,X;) is uniformly distributed
over X sequence of m X m matrices, let E; denote the event that the first row of the
matrix x; -+ x4 contains only 0’s. Define p; = Pr[E,]. Since p, is determined by x;
and since x; is uniformly distributed, we have

p1 =Pr[E;]=27".

Clearly we also have Pr[E; ;|E;] = 1. On the other hand, since x4, is uniformly
distributed, Pr[E4,|7E4] =27™. Therefore, forall 1 <d <k,

Pat1 = Pr[Eqy|Eq] -Pr[Eq] +Pr[Egq|-E4] - Pr[—E4]
= pi+(Q—=pg)-27"<pg+27",

implying that p; <d -2 foralld =1,...,k.

If E;_; occurs then F(x,...,x;) is always 0, and hence, f(x,...,x;) is always 1.
If E;_, does not occur then, since the first column of x; is uniformly distributed, the
value F(xq,...,x;) is uniformly distributed over {0,1}, and hence, f(xq,...,x;) is
uniformly distributed over {—1, 1}. Therefore,

(f)=E, [f()] =PrlE ] =pry < (k—1)-27". O
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9.6. What about more than log n players?

Both lower bounds on the k-party communication complexity of the generalized
inner product function GIP,, ;, and the matrix product function are useless when we
have k > log, n players. To prove lower bounds for more than logarithmic number of
players is a an old open problem. This problem remains open even for very special
communication protocols, known as simultaneous messages protocols or SM-protocols.
In this case no communication between the players is allowed. Instead of that, seeing
his/her part of the input, each player sends a message to a “referee” who, having the
messages from all k players, announces the answer.

Besides its own importance, proving lower bounds on the k-party communication
complexity, when there are k > log, n players, is important since this would re-solve
some other old open problems in circuit complexity. One of them is to prove super-
polynomial lower bounds for ACC circuits. Recall that such circuits have unbounded
fanin AND, OR and MOD,, gates, where

MOD,(x1,...,x,) =1 iffx;+...+x, =0modp.

When p is a prime power, exponential lower bounds for such circuits were proved by
Razborov (1987) and Smolensky (1987). (We will do this for p = 3 in Section 11.4.)
However, the case of composite moduli p—even the case of circuits with AND, OR and
MODg gates—remains widely open. On the other hand, ACC circuits are related to
depth-2 circuits of the following special type.

A depth-2 symmetric (r,s)-circuit is a circuit of the form ¢(g,...,g;), where ¢ is
a symmetric boolean function, and each g; is an AND of at most r literals. Based on an
earlier result of Yao (1990), Beigel and Tarui (1994) have shown that every ACC circuit
can be simulated by a symmetric (r,s)-circuit with r = polylog(n) and s = 2prelvlos(m),

Symmetric depth-2 circuits are related to communication games via the following
fact, which actually holds for symmetric circuits with the g; being arbitrary boolean
functions of at most k — 1 variables, not just AND gates.

LEMMA 9.13. If a boolean function f in n = km variables can be computed by a sym-
metric (k —1,s)-circuit then, for any equal-sized partition of the input among the players,
the k-party communication complexity of f is O(klogs), and the SM-communication
complexity of f is O(logs).

PrOOF. Since each bottom gate of our symmetric circuit has fanin at most k — 1,
there is at least one player who can evaluate that gate. Partition the bottom gates
among the players such that all the gates assigned to a player can be evaluated by that
player. Now each player broadcasts the number of her gates that evaluate 1. This takes
O(logs) bits per player since the top gate has fanin at most s. Finally, one of the players
can add up all the numbers broadcasted to compute the symmetric function given by
the top gate and announce the answer.

It is obvious that this works in the SM model as well: each player sends to the
referee the number of gates evaluating to 1 among her gates, and the referee adds
these numbers to compute f. O

RESEARCH PROBLEM 9.14. Prove a larger than polylog(n) lower bound on the SM-
communication complexity for more than polylog(n) players.
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9.7. Best-partition k-party communication

Let f : {0,1}" — {0, 1} be a boolean function on n = km variables. The “number
on the forehead” communication protocols work with a fixed partition x = (x1,...,X;)
of the input vector x € {0,1}" into k blocks x; € {0,1}™.

We now consider the situation where, given a function f, the players are allowed
to choose the best, most suited for this particular function f balanced partition of its
variables.

Say that a partition of a finite set into k disjoint blocks is balanced if the sizes of
blocks differ by at most one. Note that, if there were no restriction on the sizes of the
blocks, then the communication complexity of any function would be zero.

Let C]E’e“( f) denote the smallest possible k-party communication complexity of f
over all balanced partitions of its input vector.

Recall that the generalized inner product function Gip,, ; is a boolean function in
n = km variables which takes m x k (0,1) matrix x as its input, and outputs 1 iff the
number of all-1 rows in it is odd. We have already shown in Section 9.4 that, if we
split the input matrix in such a way that the ith player can see all its columns but the
ith one, then

Cr(GIP, i) = Q(n/k4"). (9.5)

On the other hand, the best-partition communication complexity of this function is
very small: for every k > 2 we have that

Crt (1P ) < 2.

To see this, split the rows of the input m x k matrix x into m/k blocks and give to
the ith player all but the ith block of these rows. Then the first player can write the
parity of the number of all-1 rows she can see, and the second player can announce
the answer.

So, what boolean functions have large k-party communication complexity under
the best-partition of their inputs? To answer this question we use a graph theoretic
approach.

Let 5 be a hypergraph on an n-element vertex set V, that is, a family of subsets
e C V; the members of 7 are usually called hyperedges. Associate with each vertex
v € V a boolean variable x, and consider the following boolean function in these

variables:
GIP (X)) = @ /\xv .

e€H vEe

Note that, if ./ is a k-matching, that is, if the edges of .# form a partition of V into
m = n/k blocks ey, ..., e, of size |e;| =k, then (up to renaming of variables),

GIP_4(x) = GIP, 1 (X). (9.6)

We have however just showed that for such hypergraphs, C]EESt(GIP ) < 2. Still, we
could force C;:eSt(GIP ) be large is we could show that, for any balanced partition
of vertices into k parts, the hypergraph 5 must containsan induced k-matching on
sufficiently many vertices.

If # is a hypergraph on a set V of vertices, and S C V is a set of vertices, then
the sub-hypergraph induced by S is the hypergraph % with the vertex set S and edge
set F = {e € # | e C S}. It is easy to see that then the function GIp, is a subfunction
of GIp,,, and hence, the communication complexity of Gip,, is lower bounded by the
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communication complexity of Gip,: just set x,, = 0 for all v & S. We fix this observation
as

ProrOSITION 9.15. Let 5 be a hypergraph on a set V of vertices. Suppose that
for every balanced partition V. = V; U--- UV, there is a subset S C V of vertices such
that [SNV;| =1 foralli = 1,...,k, and the sub-hypergraph of 5 induced by S is a

k-matching. Then
best |S|
C* (1P, ) = Q .

k24k
ProOE. The induced by S k-matching .# must have at least |S|/k hyperedges, and
the desired lower bound follows from (9.5) and (9.6). O

We will construct the desired hypergraphs ¢ starting from (ordinary) “mixed
enough” graphs G = (V,E). Namely, call a graph s-mixed if, for any pair of disjoint
s-element subsets of vertices, there is at least one edge between these sets. A k-star of
a graph G is a set of its k vertices such that at least one of them is adjacent to all of the
remaining k — 1 of these vertices.

THEOREM 9.16. Let G be an s-mixed regular graph of degree d > 2 on n vertices. Let
2 <k <min{d,n/s} and let 7 be the hypergraph whose hyperedges are all k-stars of G.

Then .
besi _ n—s
Ck t(GIP”)—Q(m) .

Proof. Say that an n-vertex graph G = (V,E) is s-starry if for any 2 < k < n/s and
for any pairwise disjoint sets Sy, ...,S, € V, each of size |S;| > s, there exist vertices
v; €8S4,...,V; €S such that {vy,...,v;} forms a k-star of G.

Note that every s-starry graph is also s-mixed, since we can let k = 2. Interestingly,
the converse is also true:

Cramm 9.17. Every s-mixed graph is s-starry.

Proor. Let G = (V,E) be a s-mixed graph, and let S;,...,S;, € V be pairwise
disjoint subsets of its vertices each of size |S;| >s. Fori € {1,...,k} let T; be the set of
all vertices v € V — S; that are not not adjacent to any vertex in S;. Since |S;| > s and

. . . k
since G is s-mixed, we have that |T;| <s — 1. Hence, the set T = Ui:l T; can have at

most
k
s
i=1

. . k .
vertices. Thus, there must exist a vertex v € (Ui:l Si) — T. That is, v belongs to some

k
IT|< (- Dk <sk< Y |s;]=

i=1

S; and does not belong to T. By the definition of T, v € S; and v &€ T means that v
must be connected by an edge with at least one vertex in each of the sets S;, j # i. But
then v is a center of the desired star. O

Let now G be a graph satisfying the conditions of Theorem 9.16, and let # be the
hypergraph of its k-stars. To finish the proof of Theorem 9.16, it is enough to prove
the following

CramM 9.18. There is a subset S C V of vertices satisfying the conditions of Propo-
sition 9.15 and such that
n —sk

S| >
IS1= kd
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Proor Let V =V, U---UV, be an arbitrary balanced partition of the set V into k
blocks. Hence, |V;| = n/k > s for all j.

We define S recursively. Initially, let S be empty. In each stage, apply Claim 9.17
to find a k-star with vertices in each set of the partition. Add these k vertices to S.
Delete the k vertices, and all their neighbors, from G. Repeat the procedure restricting
the given partition to the remaining vertices of G.

After i stages, at most idk vertices have been removed from V, which means that
each block in the partition (of the remaining vertices) has size at least n/k —idk. Since
G is s-mixed, Claim 9.17 will apply as long as n/k —idk > s. Thus, the algorithm will
run for at least i > (n — sk)/(dk?) stages.

Because all hyperedges of 5# (the k-stars of G) have exactly k vertices, and in each
stage we remove all neighbors of the k vertices we added to S, the sub-hypergraph of
¢ induced by S contains only one hyperedge for each stage, and these are pairwise
disjoint. This, the absence of any other hyperedge of s lying in S, is the main reason
to take k-stars as hyperedges of 5 since in each stage we remove all neighbors of the
actual star, none of the remaining k-stars can intersect it.

This completes the proof of Claim 9.18, and thus, the proof of Theorem 9.16. [

Thus, what we need are explicit graphs satisfying the following two conditions:
(i) the graph must have small degree, but
(i) any two sufficiently large subsets of vertices must be joined by at least one
edge.
Graphs with these properties are known as expander graphs.
The following useful bound, observed by many researchers, ensures property (ii),
as long as the second largest eigenvalue! of adjacency matrix is small enough.

LEmMmaA 9.19 (Expander Mixing Lemma). If G is a d-regular graph on n vertices and
A = A(G) is the second largest eigenvalue of its adjacency matrix, then the number e(S, T)
of edges between every two (not necessarily disjoint) subsets S and T of vertices satisfies

AT

PrROOE. Let A; > A, > ... > A, be the eigenvalues of the adjacency matrix M of
G, and let x4, ...,x, be the corresponding orthonormal basis of eigenvectors; here x
is % times the all-1 vector 1. Let v4 and v be the characteristic vectors of S and T.
Expand these two vectors as linear combinations

e(S,T)—

n n
vS:(a,vS>=Zaixi and vT:<b,vT>:Zbixi
i=1 i=1
of the basis vectors. Since the x; are orthonormal eigenvectors,

n T n n
e(S,T)ZV;rMVTZ (Zaixi) M(Zbl‘xi) sziaibi. (97)
i=1 i=1 i=1

Since the graph G is d-regular, we have A, = d. The first two coefficients a; and b, are

scalar products of x; = %1 with v and v; hence, a; = |S|/+/n and b, = |T|/+/n.
dISIIT]

Thus, the first term A,a,b; in the sum (9.7) is precisely ==—. Since A = A, is the

n
second largest eigenvalue, the absolute value of the sum of the remaining n — 1 terms

IRecall that 2 is an eigenvalue of M if Mx = Ax for some vector x # 0.
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in this sum does not exceed AZLZ |a; b;| which, by Cauchy-Schwarz inequality, does
not exceed

Allall-lIbll = Allvsll - lvrll = 2/1S] - T]. O

Thus, a graph G is mixed enough if A = A(G) is small enough. Examples of such
graphs are Ramanujan graphs RG(n,q). These are (q + 1)-regular graphs with the

property that A < 2,/q.
CoroLLARY 9.20. Ramanujan graphs RG(n, q) are s-mixed for s = 2n/./q.

Proor If |S| = |T| = s then, by Lemma 9.19, there is at least one edge between
S and T as long as ds?/n — As > 0, which happens if A < ds/n. Since for Ramanujan
graph RG(n,q), we have d = ¢+ 1 and A < 2,/q, this graph is s-mixed as long as
(q +1)s/n > 2,/q which, in particular, is the case for s = 2n/./q. 1

Explicit constructions of Ramanujan graphs on n vertices for every prime q =
1 mod 4 and infinitely many values of n were given in Margulis (1973), Lubotzky,
Phillips and Sarnak (1988); these were later extended to the case where ¢ is an arbi-
trary prime power in Morgenstern (1994) and Jordan and Livné (1997).

Let g be a prime number lying between 16k? and 32k2. Then the Ramanujan
graph G = RG(n,q) has degree d = q + 1 and (by Corollary 9.20) is s-mixed for
s =2n/.,/q < n/2k. Using such graphs, Theorem 9.16 yields the following

COROLLARY 9.21. If 5 is the hypergraph of k-stars in G, then

CEeSt(GIP”) =Q (L) .
k#4k
It can be shown that, this bound is tight with respect to the number k of players:
for any balanced partition of n vertices into k + 1 parts, we have that C,(61p,) < k+1
(Exercise 9.9). Thus, for every constant k > 2 there is an explicit boolean function
f = GIP,, such that

C(f)=Q(n) but Gy (f)=0(1).

Exercises

Ex. 9.1. The set cover communication problem is as follows: we have k players
each holding a collection A; of subsets of [n] = {1,...,n}, and the players are looking
for the smallest covering of [n] using the sets in their collections. That is, the goal is
to find the smallest number r of subsets ay,...,a, of [n] such that each a; belongs to
at least one A;, and a; U---Ua, = [n].

Show that O(kn?) bits of communication are enough to construct a covering using
at most (Inn+1) times larger number of sets than an optimal covering algorithm would
do.

Hint: Use a greedy protocol, like in the proof of Lemma 7.10.

Ex. 9.2. For a fixed vector x € X, there are many (how many?) spheres around it.
How many colors do we need to leave none of them monochromatic?

Ex. 9.3. Consider the function f : X; X Xy, — {0, 1} such that f(x;,x,) =1 if and
only if x; = x,. Show that y(f) = n. Hint: If x(f) < n then some color class contains two distinct
vectors (x7,x7) and (x,, x5). What about the color of (x1, x5)?
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Ex. 9.4. Three players want to compute the following boolean function f (x, y,z)
in 3m variables. Inputs x, y,z are vectors in {0,1}™, and the function is defined by:

m
f(x’.y:z) = @Maj(xi’yiyzi) .
i=1
Prove that Cs (f) < 3. Hint: Show that the following protocol is correct. Each player counts the number
of i’s such that she can determine the majority of x;, y;, 2; by examining the bits available to her. She writes
the parity of this number on the blackboard, and the final answer is the parity of the three written bits.

Ex. 9.5. Consider the following k-party communication game. Input is an n x k
(0,1) matrix A, and the ith player can see all A except its ith column. Suppose that the
players a priori know that some string v = (0,...,0,1,...,1) with the first 1 in position
t + 1, does not appear among the rows of A. Show that then the players can decide if
the number of all-1 rows is even or odd by communicating only ¢ bits.

Hint: Let y; denote the number of rows of A of the form (0,...,0,1,...,1), where the first 1 occurs
in position i. For every i = 1,...,t, the ith player announces the parity of the number of rows of the form
(0,...,0,%,1,...,1), where the * is at place i. Observe that this number is y; + y;;1. Subsequently, each
player privately computes the mod 2 sum of all numbers announced. The result is (y; + y;1) mod 2, where

Yey1 =0,

Ex. 9.6. Prove that C,(c1p) = O(kn/25).

Hint: Use the previous protocol to show that (without any assumption) k-players can decide if the
number of all-1 rows in a given n x k (0, 1) matrix is even or odd by communicating only O(kn/2*) bits. To
do this, divide the matrix A into blocks with at most 25~1 — 1 rows in each. For each block there will be a
string v’ of length k — 1 such that neither (0,v") nor (1,v") occurs among the rows in that block. Using k bits
the first player can make the string (0,v”) known to all players, and we are in the situation of the previous

exercise.

Ex. 9.7. Consider the following multiparty game with the referee. As before, we
have an n X k 0-1 matrix A, and the ith player can see all A except its ith column.
The restriction is that now the players do not communicate with each other but simul-
taneously write their messages on the blackboard. Using only this information (and
without seeing the matrix A), an additional player (the referee) must compute the
string P(A) = (xy,...,X,), where x; is the sum modulo 2 of the number of 1’s in the
ith row of A.

Let N be the maximal number of bits which any player is allowed to write on any
input matrix. Prove that N > n/k.

Hint: For a matrix A, let f (A) be the string (pq,...,px), where p; € {0,1}" is the string written by the
ith player on input A. For each possible answer x = (xq,...,x,) of the referee, fix a matrix A, for which
P(A,) = x. Argue that f(A,) # f(A,) for all x # y.

Ex. 9.8. Show that a set T C X is a cylinder intersection if and only if, for every
sphere S around a vector x, S C T implies x € T. Hint: For the “if” part consider the sets T; of
all vectors (X1,...,X;,...,x) such that (xq,...,x/,...,x;) €T for at least one x/ € X;.

Ex. 9.9. Let ## be a hypergraph on n vertices, and 2 < k < n be a divisor of n
Suppose that |e] < k — 1 for all e € 2#. Show that then, for any balanced partition
of the input into k parts, there is a k-party communication protocol evaluating Gip,,
using at most k bits of communication.

Hint: Given a partition of n vertices into k blocks, each e € 5 must lie outside at least one of these blocks.
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Ex. 9.10. Let us consider simultaneous messages n-party protocols for the parity
function f(x) = x; & x, ® --- ® X,,, where the referee makes his life easier: he just
outputs the majority of the answers of players. That is, we have n people, each with
a random bit 0 or 1 on his (or her) forehead. Everybody can see everybody’s else
bit except his own. We are interested in how the group can coordinate their guesses
so that the majority of people in the group guesses the correct answer. More precisely,
each person casts a private vote (1 or 0); the outcome of the election is the value which
the majority of voters cast. The voters are said to win the election when the outcome
is equal to the parity of the n bits. Consider the following strategy for players:

Each voter looks around at everybody else. If a voter sees as many O’s as 1’s, she
casts a vote 0. Otherwise, she assumes that the bit on her forehead is the same as the
majority of the bits she sees; she then casts a vote consistent with this assumption.

Show that this strategy has a success probability 1 — that is, will correctly com-

1
o(vn)’
pute the parity for all 2" but a fraction 1/6(4/n) of input vectors.
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Bounded Depth Circuits



CHAPTER 10
Depth-3 Circuits

We consider boolean circuits with unbounded fanin AND and OR gates. Inputs are
variables x,,...,x, and their negations X,...,Xx,. A Il; circuit is a circuit of depth 3
whose gates are arranged in three layers: AND gate at the top of the circuit (this is the
output gate), OR gates on the next (middle) layer, and AND gates on the bottom (next
to the inputs) layer (see Fig. 1). A 5 circuit is defined dually by interchanging the OR
and AND gates. The size of such a circuit is the total number of gates in it.

Exponential lower bounds for depth-2 circuits (DNFs and CNFs) are easy to prove.
So, for example, any DNF for the parity function x; ®x,®- - -®x, must have 2" ! ANDs:
every AND gate must have all n variables as inputs, for otherwise the DNF would make
an error—accept two inputs of different parities. The situation with depth-3 circuits is
much more complicated—this is the first nontrivial case.

10.1. Why depth 3 is interesting?

In last two decades several important methods of proving lower bounds for depth-
3 circuits, and even for depth-d circuits with an arbitrary constant d, emerged. We will
discuss these methods in this and the next chapter. For depth-d the obtained lower
bounds have the form 2% This however does not solve the problem completely,
since easy counting shows that boolean functions requiring much larger number of
gates—namely, about 20 ~*)"—exist.

To find an explicit boolean function f in n variables such that any depth-3 circuit
for f requires 2#"/1°8108" gates for some a — oo, is one of intriguing open problems. By
a seminal result of Valiant (1977), this would give the first super-linear lower bound on
the size of log-depth circuits with NOT and fanin-2 AND and OR gates, thus resolving
one of the central problems in circuit complexity. We now show how does this happen.
By a graph we will mean a directed graph.

A labeling of a graph is a mapping of the nodes into the integers. Such a labeling
is legal if for each edge (u,v) the label of v is strictly greater than the label of u. The
depth a graph is the largest number of nodes on directed path.

A canonical labeling is to assign each node the total number of edges on a longest
directed path that terminates at that node. If the graph has depth d then this gives
us a labeling using only d labels 0,1,...,d — 1. It is easy to verify that this is a valid
labeling: if (u,v) is an edge then any path terminating in u can be prolonged to a path
terminating in v.

OBSERVATION 10.1. The depth of a graph does not exceed the number of labels
used by any legal labeling.

Proor. All labels along a directed path must be distinct. t

140
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FiGURE 1. Depth-3 circuit for Parity x; @ x, ® x5 @ x4 of n = 4 variables.

LEMMA 10.2. Let d = 2 and 1 < r < k be integers. In any directed graph with s
edges and depth d it is possible to remove rs/k edges so that the depth of the resulting
graph does not exceed d /2".

Proor. Consider any directed graph with s edges and depth d, and consider the
canonical labeling using labels 0,1,...,d — 1. Fori = 1,...,log,d = k, let X; be the
set of all edges, the binary representations of labels of whose endpoints differ in the
ith position (from the left) for the first time. If X; is removed from the graph then we
can relabel the nodes using integers 0,1,...,d/2 — 1 by simply deleting the ith bit in
the binary representation of the of labels. It is not difficult to see that this is a legal
labeling (of a new graph): if an edge (u, v) survived, then the first difference between
the binary representations of the old labels of u and v were not in the ith position.
Consequently, if any r < k of the X,’s are removed, Observation 10.1 implies that a
graph of depth at most d /2" remains. t

An important consequence is that any log-depth circuit of linear size can be re-
duced to a X5 circuit of moderate fanin of middle layer gates and not too large fanin
of the top gate.

LEmMMA 10.3. For every € > 0, ¢; and c,, there exists a constant K such that, if a
boolean function f in n variables can be computed by a fanin-2 circuit of depth c; logn
using c,n gates, then f can be written as a sum of exp(Kn/loglogn) CNFs each with at
most exp(n®) clauses.

Note that the top gate is now a sum gate (over the reals), not just an OR gate.
Thus, what we obtain is a restricted version of a 35 circuit: for every input, at most
one AND gate on the middle layer is allowed to output 1.

ProoE. Take a circuit C of depth ¢, logn with c,n fanin-2 gates. Hence, the circuit
has at most s < 2c,n wires. Apply Lemma 10.2 with k about log(c, logn) and r about
log(c;/€) (a constant). This gives us a set S of |S| < sr/k = O(n/loglogn) wires whose
removal leaves us with a circuit of depth at most d =27" - ¢; logn = elogn.

Take a set of new variables y = (y, | e € S), one for each cut wire. For each
such wire e = (u,v) € S, let C, be the subcircuit of C whose output gate is u. Each
such subcircuit C, depends on some x-variables and some y-variables. Moreover, each
subcircuit C, depends on at most 2¢ = n® variables because each of these subcircuits
has depth at most ¢log, n, and each gate has fanin at most 2. Hence, the test y, =
C,(x,y) can be written as a CNF ¢,(x, y) with at most 22" = 27" clauses. Consider the
CNF

P(x6,y) = ol A N\ 9o, 3),

eeS
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where ¢, is the CNF of the last subcircuit, rooted in the output gate of the whole
circuit. The CNF ¢ has (|S|+ 1)2" clauses, and for every assignment o = (a, | e € S)
in {0,1}°, we have that ¥(x,a) = 1 iff C(x) = 1 and the computation of C on input
x is consistent with the values assigned to cut wires by a. Since the computation of C
on a given vector x cannot be consistent with two assignments a; # a,, the function
computed by our circuit C can be written as a sum

Clr)= > Ylxa)

ae{0,1}%
of s = 21| CNFs, each with at most (|S| +1)2" clauses. O
The consequence, which makes depth-3 circuits interesting, is the following.

CoroLLARY 10.4. If a boolean function f in n variables requires X5 circuits of size
larger than exp(n/loglogn), then f cannot be computed by a log-depth circuit using a
linear number of fanin-2 gates.

10.2. An easy lower bound for Parity

A binary vector is odd if it has an odd number of 1’s; otherwise the vector is even.
A parity function is a boolean function x; ® x, ® - - - ® x,, which accepts all odd vectors
and rejects all even vectors. Recall that a formula is a circuit in which all gates have
fanout at most 1. The top fanin is the fanin of the output gate.

LEMMA 10.5. Every I3 formula computing x; ®x,®- - - ® X, with top fanin t requires
at least t2""V/t AND gates on the bottom layer.

PrOOE. Let s; be the fanin of the ith OR gate on the middle layer. The ANDs at
bottom layer can be labeled with (i,j) for 1 <i < t and 1 < j <s;(see Fig. 1). Let h; ;
denote the (i, j)-th AND. Then the circuit computes the function /\E:1 \/j‘: 1 hi ;. By the
distributive rule x A (y V2) = (x A y) V (x A g), this is an OR of ANDs of the form

H:hl’jl/\hz’jz/\"‘/\h i (10.1)

t,j,*
We call these “big” ANDs H the monomials produced by the circuit. We claim that:
each monomial H accepts at most one odd vector. To show this, say that a variable x; is
seen by a gate, if either x; or X; is an input to this gate.

Case 1: Each of n variables is seen by at least one of hy j,hy;,...,h, ;. In this
case, H is a (possibly inconsistent) product of all n variables, and hence, can accept at
most one vector.

Case 2: Some variable x; is seen by none of the gates hy ; ,hy,...,h. ;. We
claim that in this case H~!(1) = 0. Indeed, if the set H~!(1) of accepted inputs is not
nonempty, that is, if the monomial H contains no variable together with its negation,
then H!(1) must contain a pair of two vectors that only differ in the ith position. But
this is impossible, since one of these two vectors must be even, and the circuit would
wrongly accept it.

Hence, we have s;s, - --s, monomials H, and each of them can accept at most one
odd vector. Since we have 2" ! odd vectors, this implies s;s,-++s, > 2", Since our
circuit is a formula, the total number of AND gates on the bottom layer is s; +--- +
s;. Using the fact that the arithmetic mean (a + b)/2 is greater than or equal to the
geometric mean (a- b)!/? , we can conclude that

Sy s, > t(sysy e es )V > 20D/ O
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10.3. The method of finite limits

The above argument only works for circuits with small top fanin, much smaller
that n. We now describe another, less trivial argument which works for circuits with
arbitrary top fanin.

Let B C {0,1}" be a set of vectors. A vector y & B is a k-limit for a set B if for any
k-element subset S C {1,...,n} of positions there exists a vector x € B such that y < x
and x; = y; for all i € S. In particular, if y is a k-limit for B then the fact that y does
not belong to B cannot be detected by looking at k of fewer bits of y.

The following lemma reduces the lower bounds problem for depth-3 circuits to a
purely combinatorial problem about finite limits. We say that a circuit C separates a
pairA,B € {0,1}", AnNB =0 if

Clx) 1 forx €A,
X)=
0 forx €B.

We also say that a circuit has bottom fanin k if each gate, next to the inputs, has at
most k negated inputs (the whole number of inputs to the gate may be n). By a Hé
circuit we will mean a I1; circuit of bottom fanin at most k.

LEmmA 10.6 (Limits and circuit size). If every 1/{ fraction of vectors in B has a
k-limit in A, then every H]; circuit separating (A, B) must have more than { gates.

ProoOE. Suppose, for the sake of contradiction, that (A, B) can still be separated by
a ng circuit of size £. Since the last (top) gate is an AND gate, some of the OR gates g
on the middle layer must separate the pair (A, B’) for some B’ C B of size |B’| > |B|/L.
By our assumption, the set A must contain a vector y which is a k-limit for the set B’.
Hence,
g(y)=1and g(x) =0 for all x € B'.

To obtain the desired contradiction, we will show that then g, and hence, the whole
circuit C, is forced to (incorrectly) reject the limit y.

Take an arbitrary AND gate h on the bottom layer feeding in g, and let S be the
corresponding set of negated inputs to h. Since |S| < k and since y is a k-limit for
B’, we know that y coincides on these inputs with some vector xg € B’. Since g is
an OR gate and since g must reject all vectors in B’, we also know that h(xg) = 0.
If some negated variable feeding in h computes 0 on xg then it does the same on y
(since y coincides with xg on all positions in S), and hence, h(y) = 0. Otherwise,
the 0 is produced on xg by some non-negated variable. Since y < xg, this variable
must produce 0 also on y, and hence, h(y) = 0. Since this holds for every AND
gate h feeding into g, this implies that also the gate g must (incorrectly) reject y, a
contradiction. O

In oder to show that a given boolean function f cannot be computed by a Il
circuit with fewer than ¢ gates, we can now argue as follows.

a. Assume that f can be computed by such a circuit.

b. Assign some variables of f to constants in order to reduce the bottom fanin of
the circuit till k.

c. Choose and appropriate subsets A C f~!(1) and B € f'(0), and show that
every subset B’ C B of size |B’| > |B|/{ has a k-limit vector y € A.

d. Apply Lemma 10.6 to get a contradiction.

The bottom fanin can be reduced using the following simple lemma.
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LEMMA 10.7. Let & be a family of { subsets of [n] each of cardinality more than k.

(< (L)k (10.2)

el/om
then some subset T of [n] of size |T| = n — m intersects all members of F.

If

ProoF. We construct the desired set T via the following "greedy" procedure. Since
each set in % has more than k elements, and since we only have n elements in total,
at least one element x; must belong to at least k/n fraction of sets in . Include such
an element x; in T, remove all sets from % containing x; (hence, at most a (1 —k/n)
fraction of sets in & remains), and repeat the procedure with the remaining sub-family
of &, etc. Our goal is to show that, if the initial family # had ¢ sets, and ¢ satisfies
(10.2), then after n — m steps all the sets of # will be removed.

The sub-family resulting after n — m steps has at most £ - a sets, where

(D) () ()

—k(Inn—Inm—1/6)

k
<e n 1 w1 < e

noN\ -k
B (el/em) ’

where the last inequality follows from known estimates H, = In+7y, on harmonic
series H, =1+1/2+ /3 +---+1/nwith ; <y, < 2. O

Now, having a I1; circuit of size ¢ satisfying (10.2), we can reduce its bottom fanin
to k by just setting to 1 all variables in T. By Lemma 10.7, this will evaluate all bottom
AND gates with more than k negated inputs to 0.

The next task—forcing a k-limit—depends on a boolean function we are dealing
with. To demonstrate how this can be done, let us consider the Majority function
Maj, (x4, ...,x,) which accepts an input vector iff it contains at least so many 1’s as
0’s.

10.3.1. A lower bound for Majority. Let (['rl]) denote the r-th slice of the binary
n-cube, that is, the set of all vectors in {0, 1}" with precisely r ones.

LEmMA 10.8. For every subset B C ([':]) of size |B| > k" there is a k-limit y with
fewer than r ones.

Prook Inductiononr.If B C (['11]) and |B| > k+1 then 0 = (0,...,0) is the desired
k-limit of A. Suppose now that the lemma holds for all slices smaller that r and prove
it for the r-th slice. So, take a set B C ([:]) of size |B| > k”. If 0 is a k-limit for B, then
we are done.

Otherwise, by the definition of a k-limit, there must be a set of k coordinates such
that every vector in B has at least one 1 among these coordinates. Hence, at least
k™! fraction of vectors in B must have a 1 in some, say ith, coordinate. Replace in all
these vectors the ith 1 by 0, and let B’ be the resulting set of vectors. Since B’ € (r[f]l)
and |B’| > |B|/k > k"', we have by the induction hypothesis that some vector y with
fewer than r — 1 ones is a k-limit for B’. The ith coordinate of y is 0. Replacing this
coordinate by 1 we obtain a vector with at most r —1 ones and this vector is the desired
k-limit for B. O
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THEOREM 10.9. Any depth-three circuit computing the majority function Maj, has
size at least 22",

PrOOE Let ¢ be the minimal size of a depth-three circuit computing =Maj,,, the
negation of majority, and hence, the minimal size of a depth-three circuit computing
Maj, itself. Since —Maj, is self-dual (complementing the output and all inputs does
not change the function), we can w.l.o.g. assume that we have a I1;-circuit.

Let k < n and r < n/2 be parameters (to be specified later). Set m :=n/2+r
and assume that the size ¢ of our circuit satisfies the inequality (10.2). Then, by
Lemma 10.7, it is possible to set n — m = n/2 — r of the variables to 1 so that the
resulting circuit has bottom fanin at most k. The new circuit computes a boolean
function f : {0,1}™ — {0,1} in m variables such that f(x) = 1 iff x has fewer than
n/2 —(n—m) =r ones. Hence, the new circuit separates the pair (A, B) of sets

A = {all vectors in {0, 1}™ with fewer than r ones}

and

B = {all vectors in {0, 1}"" with precisely r ones} .
Since the new circuit has size at most £ and its bottom fanin is at most k, Lemma 10.6
implies that no 1/£ fraction of vectors in B can have a k-limit in A. Together with
Lemma 10.8, this implies that |[B|/{ = (";) /£ cannot be larger than k". Hence,

= (m) > (3) . (10.3)
r kr

By our assumption (10.2), this lower bound holds for any parameters k, r and m =

n/2 + r satisfying
m " " 10.4)
— <—. .
(kr e/om (

To ensure this, we can take, say, k about +/n and r about ,/n/2. Under this choice,
(10.4) is fulfilled, and we obtain the desired lower bound

m r

(> — | =29 =200, 0
— \kr

10.3.2. NP # co-NP for depth-3 circuits. In this section we will exhibit a boolean

function f in n variables such that f has a ¥ circuit of size O(n) but its complement

—f requires ¥4 circuits of size 29/M_ Note that we cannot take the majority function
Maj,, for this purpose just because it is self-dual:

—Maj,(—xq,...,7x,) = Maj, (x1,...,x,).

Hence, by Theorem 10.9, both Maj, and —Maj,, require X5 circuits of exponential size.
We therefore must use another function.
So, let S; ,, be the boolean function with n = 2sm variables defined by

S m
SomCe )=\ N\ VT (10.5)

i=1j=1
This is an important function, known as iterated disjointness function. The func-
tion takes two sequences x = (xq,...,x,) and ¥y = (yy,...,Y,) of subsets of [m] =

{1,...,m}, and accepts the pair (x, y) iff x; N y; = 0 for at least one i € [s].

It is clear (from its definition) that S ,, can be computed by a X circuit of size
1+s(m+ 1) = O(n). We shall show that, for s = m = 4/n, this function requires
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I15-circuits of size 2%Y™ implying that any % circuit for its negation requires this
size.

LeMMA 10.10. If f, m(x) = \/i_; /\|2; X; j is computed by a Ty circuit of size € and
bottom fanin k, then
m S
e=(7)
k

PrROOE. Any circuit for f; ,, must separate the pair (4, B) where A C {0,1}*™ is the
set of all vectors with at most s—1 ones and B is the set of m® vectors with exactly s ones
killing all ANDs in f. Assume now that £ < (%)s Then, by Lemma 10.6, no subset

B’ C B of size |B| > |B|/{ > m°/ (%)S = k* can have a k-limit in A, a contradiction
with Lemma 10.8. O

LeEmMMA 10.11. For any k < sm, any Il5-circuit computing S ,, has size at least

2. (2))

ProoE. Take a II3-circuit computing S; ,,(x, y), let £ be its size and assume that
¢ < 2k, We claim that then there exists a setting of constants to variables such that the
resulting circuit has bottom fanin k and computes f; ,,. Together with Lemma 10.10,

this claim implies that either £ > 2% or ¢ > (%)S, and we are done. So it remains to
prove the claim.

The most natural way is to randomly set one variable from each pair x; ;, y; ; to
1. Any such setting will leave us with a circuit computing f; ,,. It remains therefore to
show that at least one of such settings will leave no bottom AND gate with more than
k negated inputs.

If a bottom AND gate contains both x; ; and y; ; negatively for some i, j then it
is always reduced to 0. Otherwise such an AND gate with > k negated inputs is not
reduced to 0 with probability < 2=**1)_ Since we have at most £ < 2% such AND
gates, the probability that some of them will be not reduced to 0 does not exceed
¢-2(+D < 1/2. This, in particular, means that such a setting of constants exists. [

CoroLLARY 10.12. Any I-circuit computing S 5 s has size at least 200/,
PrOOE. Take s = m = /n and k = v/n/2 in Lemma 10.11. O

REmARK 10.13. Recently, Razborov and Sherstov (2008) have shown that the it-
erated disjointness function (10.5) is hard in yet another respect: if A = (a, ) in an

nxn +1 matrix withn = m® and a, , = 1-2-S,,,,2(x, y), then A has sign-rank 20
Recall that the sign-rank of a real matrix A with no zero entries is the least rank of a ma-
trix B = (b, ,) such thata, , - b, , > 0 for all x, y. This result resolved an old problem
about the power of probabilistic unbounded-error communication complexity.

The highest lower bounds for depth-3 circuits computing explicit boolean func-
tions in n variables have the form 2%V"), We have seen how such lower bound can
be derived for the majority function. To break this “square root barrier” is an impor-
tant open problem. It is especially interesting in view of possible consequences for
log-depth circuits (see Corollary 10.4).

ResEARCH ProOBLEM 10.14. Prove an explicit lower bound for %4 circuits larger than
20(vn).
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To get such lower bounds, one could try to use the graph theoretic approach in-
troduced in Section 1.8.

10.4. Graph theoretic lower bounds

Recall first what does it means that a boolean function g (or a circuit) “represents”
a given graph G. The variables of g correspond to vertices of G, one for each vertex.
The function g accepts/rejects subsets of vertices. We say that g represents the graph
G if it accepts all edges and rejects all non-edges. On other subsets of vertices g may
output arbitrary values.

The characteristic function of a bipartite n x n graph G with n = 2™ is a boolean
function f;(x, y) in 2m variables such that f;(x, y) = 1 iff the vertices corresponding
to vectors x and y are adjacent in G.

Define the size of a 35 circuit as the maximum max{s, r}, where s is the fanin of
its top OR gate, and r is the maximum fanin of its AND gates on the middle layer.
Let £5(G) denote the smallest size of a monotone %5 representing the graph G. For a
boolean function f, let Ef( f) denote the smallest size of a E;‘) circuit computing f.

Magnification Lemma (Lemma 1.12 in Section 1.8) immediately yields:

ProprosITION 10.15. For every bipartite graph G, 25(fg) = 25(G).
This motivates the following problem.

RESEARCH PROBLEM 10.16. Prove that an explicit bipartite n X n graph cannot be
represented by a monotone %, circuit using fewer than n'/* gates, where k = logloglogn.

By Corollary 10.4 and Proposition 10.15, this would re-solve an old problem in
circuit complexity, namely, give an explicit boolean function which cannot be computed
by a log-depth circuit using a linear number of fanin-2 gates.

Using counting arguments it can be shown that almost all bipartite n X n graphs
require monotone ¥4 circuits of size Q(4/n) (Exercise 10.3). The problem therefore is
to exhibit a specific graph.

Each monotone %5 circuit for a graph G is just an OR of monotone CNFs

= () (Y ) nn (V)

VES, VES,
Such a CNF rejects a pair (u,v) of vertices iff at least one of the complements I; = S;
covers this pair, that is, contains both endpoints u and v. Hence, F represents a graph
Hiff I,,...,I, are independent sets of H whose union covers all non-edges of H.
Thus, if cnf(H) denotes the minimum number of clauses in a monotone CNF rep-
resenting the graph H, and if A is the adjacency matrix of H, then

enf(H) = Cov(A),

where A is the complement of A, and Cov(B) is the smallest number of all-1 submatrices
of B covering all its ones.

We have already considered the cover number Cov(B) in Section 7.1.3 and showed
(see Lemma 7.9) that, for every (0, 1) matrix B,

Cov(B) =0(dIn|B|),

where |B| is the total number of ones in B, and d is the maximal number of zeroes in
a line (row or column) of B. When translated to the language of graphs, this yields:
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ProprosITION 10.17. For every bipartite n X n graph G of maximum degree d, we
have that cnf(G) = O(d logn) and £5(G) = O(v/dlogn).

Thus, all graphs of small degree can be represented by small monotone X5 circuits.
This also means that in order to solve Problem 10.16 above, we must consider graphs
of large degree. In particular, good candidates must be dense enough, that is, have
many edges.

It is conjectured that dense K, ,-free graphs, that is bipartite graphs without 4-
cycles, could be good candidates.

As we already mentioned in Section 3.3, explicit constructions of dense triangle-
free graphs without 4-cycles are known. Such is, for example, the point-line incidence
n x n graph G, of a projective plane PG(2,q) for a prime power g. Such a plane has
n=q?+q+1 points and n subsets of points (called lines). Every point lies in q + 1
lines, every line has g + 1 points, any two points lie on a unique line, and any two lines
meet is a unique point. Now, if we put points on the left side and lines on the right,
and joint a point x with a line L by an edge iff x € L, then the resulting bipartite n x n
graph will have (q + 1)n = ©(n*/?) edges and contain no 4-cycles.

RESEARCH PROBLEM 10.18. Prove or disprove: £5(G,) > n®1),

If the bound is true, this would clearly resolve Problem 10.16, and hence, yield
the first super-linear lower bound for log-depth circuits.

In the next section we will prove the desired lower bounds for modified 3 circuits,
where all gates on the bottom level are Parity gates (not OR gates).

10.4.1. Depth-3 circuits with parity gates. Let us consider 2;‘9 circuits. These
are X5 circuits with the OR gates on the bottom (next to the inputs) layer replaced by
Parity gates. Hence, at each AND gate on the middle layer a characteristic function
of some affine subspace over GF(2) is computed. The fanin of the top OR gate tells
therefore how many affine subspaces, lying within f ~'(1), do we need to cover the
whole set £ ~1(1).

Let ©2(G) denote the smallest top fanin of a £ representing the graph G. For a
boolean function f, let Z;e( f) denote the smallest top fanin of a Zg? circuit comput-
ing f.

Our starting point is the following immediate consequence of the Magnification
Lemma (Lemma 1.12):

ProposITION 10.19. For every bipartite graph G, £2(f;) = 23(G).

Hence, if Z;'?(G) > n®, then Ef( fg) = 2°™; recall that f; is a boolean function in
2m variables.

We are going to prove a general lower bound: any dense graph without large
complete subgraphs requires large top fanin of £ circuits. This immediately yields
exponential lower bounds for many explicit functions.

A graph is K, ,-free if it does not contains a complete a X b subgraph. For a graph
G, by |G| we will denote the number of edges in it.

TurOREM 10.20. If an n x n graph G is K, ,-free, then

|G|
29(G) > @rom
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FIGURE 2. (a) An adjacency matrix of a fat matching, (b) the adja-
cency matrix of a graph represented by an OR gate g = \/VGAUB X,
and (c) the adjacency matrix of a graph represented by a Parity gate

g = @®reass Xy

To prove the theorem, we first give a combinatorial characterization of the top
fanin of X}? circuits, representing bipartite graphs, and then give a general lower bound
on this characteristic.

A fat matching is a union of vertex-disjoint bipartite cliques (these cliques need
not to cover all vertices). A fat covering of a graph G is a family of fat matchings such
that each of these fat matchings is a subgraph of G and every edge of G is an edge of
at least one member of the family.

Let fat(G) denote the minimum number of fat matchings in a fat covering of G.
Theorem 10.20 is a direct consequence of the following two lemmas.

LEMMA 10.21. For every bipartite graph G, fat(G) = £(G).

PrOOF. Let U and V be the color classes of G, and let g = P, ., 5 X, with A S U
and B C V be a gate on the bottom level of a £ circuit representing G. Since g is a
parity gate, it accepts a pair uv of vertices u € U, v € V iff either u € Aand v & B, or
u¢Aand v € B. Thus, g represents a fat matching (A x B)U (A x B) where A=U — A
and B=V — B (see Fig 2(b)). Since the intersection of two fat matchings is again a fat
matching (show this!), each AND gate on the middle level represents a fat matching.
Hence, if the circuit has top fanin s, then the OR gate on the top represents a union of
these s fat matchings, implying that s > fat(G).

To show Z2(G) < fat(G), let M = J._, A; x B; be a fat matching. Set A= J;_, 4
and B = Uirzl B;. We claim that the following AND of Parity gates represents M:

7= (@)(@)( @ ) © =)
ueA veB weA,UB, WweA, UB,

Indeed, if a pair e = uv of vertices belongs to M, say, u € A; and v € B,, then the first
three sums accept uv because u € A, and v & B;. Moreover, the mutual disjointness
of the A; as well as of the B; implies that u ¢ A; and v € B; C B; forall i = 2,...,r.
Hence, each of the last sums accepts the pair uv as well. To prove the other direction,
suppose that a pair uv of vertices is accepted by F. The last r sums ensure that, for
eachi=1,...,r, one of the following must hold:

(@) u€A; and v € B;;

(b) u¢A; and v & B;.
The first two sums of F ensure that (b) cannot happen for all i. Hence, (a) must
happen for some i, implying that uv belongs to M.

Thus, every graph G can be represented by a Zg? circuit of top fanin fat(G). O
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LEmMA 10.22. Let G be a bipartite n x n graph. If G is K, ,-free then

G|
fat(G) > m

PrOOE. Let H = UleAl- x B; be a fat matching, and suppose that H € G. By
the definition of a fat matching, the sets A,,...,A,, as well as the sets By,...,B, are
mutually disjoint. Moreover, since G contains no copy of K, ,, we have that |A;| < a or
|B;| < b for all i. Hence, if we set I = {i : |A;| < a}, then

t t
[HI =D 1A x Bl = Y Al Bl < D ja Bl + Y JJAl-b < (a+Db)n.
i=1 i=1 iel il
Thus, no fat matching H € G can cover more than (a + b)n edges of G, implying that
we need at least |G|/(a + b)n fat matchings to cover all edges of G. O

There are many explicit bipartite graphs which are dense enough and do not have
large complete bipartite subgraphs. By Theorem 10.20 and Proposition 10.19, each of
these graphs immediately give us an explicit boolean function requiring an exponential
(in the number of variables) lower bound on the top fanin of their Z;" circuits.

To give an example consider the disjointness function. This is a boolean function
DISJ,,, in 2m variables such that

DIST 9 (¥1s+vvsYm>Z1s---5%,) = 1 if and only if Zyizl-zO.
i=1

THEOREM 10.23. Every Zg? circuit for DISJ,,, has top fanin 20-%8™,

Proor. The graph G; of the function f = DISJ,, is Kneser-type bipartite graph
K,, € U x V where U and V consist of all n = 2™ subsets of [m] = {1,...,m}, and
uv € K,,, iff unv = 0. The graph K,, can contain a complete bipartite a x b subgraph
Ax B # 0 only if a <2 and b < 2™ * for some 0 < k < m, because then (| J,c,x,) N

(U,e5x,) = 0. In particular, K,, can contain a copy of K, , only if a < 2™/2 = \/n.
Since this graph has

Kol = dy =2 =3 (’”) om=i = gm > 158

uelU uelU =0

edges, Theorem 10.20 yields that any X}? circuit representing K,,—and hence, any X}?
circuit computing DISJ,,,—must have top fanin at least

|Km| - n1.58

> — 008 _ 50.08m 0
2an ~ nl®

We now consider a generalization of X}? circuits, where we allow to use an arbi-
trary threshold gate, instead of an OR gate, on the top. To analyze such circuits, we
need the so-called “discriminator lemma” for threshold gates.

Let #B be a family of subsets of a finite set X. A family B;,...,B, of members of
2B is threshold cover of a set A C X, it there exists a number 0 < k < t such that, for
every x € X, x € Aif and only if x belongs to at least k of B;. Let thr,(A) denote the
minimum number ¢ of members of 98 in a threshold cover of A.

To lower bound thr 4(A) the following measure turned out to be very useful:

Ag(A) = gleaé(AB(A),
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@ (b)

FIGURE 3. Schematic description of discriminators: Ag(A) is large in
case (a), and is small in case (b).

where

IANB| |ANB|
Al |A]

Small A4 (A) means that every member B of 4 is splitted between the set A and its

complement A rather balanced: the portion of BN A in A is almost the same as the
portion of BNA in A. That is, the set A does not “discriminate” any member of 2.

Ap A=

LEMMA 10.24 (Discriminator Lemma).

>
thr,(A) > A0A)
Proor Let By,...,B, € & be a threshold-k covering of A, i.e. x € A iff x belongs
to at least k of B;’s. Our goal is to show that then A, (A) > 1/t.
Since every element of A belongs to at least k of the sets AN B;, the average size of
these sets must be at least k. Since no element of A belongs to more than k — 1 of the
sets AN B;, the average size of these sets must be at most k — 1. Hence,

IANB;| |ANB;]|
|A] IA|

1< 1 &G
1<—> |AnNB|- =) |ANB| <t- max
|A|;: l W; ' 1<i<t

The next fact which we need is one fact about Hadamard matrices.
An Hadamard matrix of oder n is an n X n matrix with entries =1 and with row
vectors mutually orthogonal.

LEMMA 10.25 (Lindsey’s Lemma). The absolute value of the sum of all entries in any
a X b submatrix of an n X n Hadamard matrix H does not exceed v abn.

PrOOE. By the definition of H, the matrix M = %H is unitary: MM = I. Since
such matrices preserve the Euclidean norm, for every real vector v, we have |[Mv|| =
lIlvll, and hence, [[Hv|| = v/nv]|.

Now, if we denote by vy the characteristic 0-1 vector of S € {1,...,n}, with v¢(i) =
1iff i € S, then the absolute value of the sum of all entries in an |S| x |T| submatrix
of H is the absolute value of the scalar product of vectors v¢ and Hv;. By the Cauchy-
Schwarz inequality, this value does not exceed

1vsll - [IHv |l = /nllvs]l - lvr ]l = V/nISIIT]. O

Now we are able to prove high lower bounds on the size of £ with an arbitrary
threshold gate on the top.
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A graph associated with an Hadamard matrix M (or just an Hadamard graph) of
oder n is a bipartite n x n graph where two vertices u and v are adjacent if and only if
M[u,v] =+1.

THEOREM 10.26. Any Z;‘? circuit which has an arbitrary threshold gate on the top
and represents an n x n Hadamard graph must have top fanin Q(+/n).

PrOOE Let A be an n x n Hadamard graph. Take an arbitrary ©J circuit which
has an arbitrary threshold gate on the top and represents A. Let s be the fanin of this
threshold gate, and let 98 be the set of all fat matchings. Then, by Lemma 10.21,
s > thr4(A). To prove s = Q(+4/n) it is enough, by the Discriminator Lemma, to show
that, for every fat matching B = Ule S; XR;,

IANB| |ANB]
|A] A]

=o(n 3.

Since both the graph A and its bipartite complement ! A have ©(n?) edges, it is enough
to show that B
lanB| - [AnB| < n*2.
By Lindsey’s lemma, the absolute value of the difference
IAN(S; x R)I = AN (S; X Ry)

. t
does not exceed /5;7;7, where s; = |S;| and r; = |R;|. Since both sums );_,s; and
t .
D, T are at most n, we obtain

D 1AN(S; xR = D AN (S; X R))

1

'|AmB|—|ZmB|

t

i=1 i
t t
s;+r1;
SZ,/Sirinsx/ﬁZ%Snwz. O
i=1 i=1

Recall that the inner product function is a boolean function in 2m variables defined
by

m
IPZm(xl:'--;Xm;yly---;ym) = inyi mod 2.
i=1
Since the graph G of f = IP,,, is a Hadamard n x n graph with n = 2™, Theorem 10.26
immediately yields

CoroLLARY 10.27. Any X5 circuit which has an arbitrary threshold gate on the top
and computes IP,,, must have top fanin Q(2™/?).

10.4.2. Small depth-2 circuits for Ramsey graphs. Results above could wake
an impression that Ramsey type graphs—that is graphs without large cliques in them
and in their complements—could be good candidates of graphs requiring large depth-3
circuits. We will now show that this is not the case!

THEOREM 10.28. There exist bipartite m X m graphs H such that
a. both H and H are K, ,-free for t = 2log, m, but
b. H can be represented as a parity of 2log, m OR gates.

A bipartite complement H of a bipartite graph H is obtained by complementing its adjacency matrix.
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PrOOE. LetF, = GF(2) and r be a sufficiently large even integer. With every subset
S C IF}, we associate a bipartite graph Hg C S X S such that two verticesu € Sand v € S
are adjacent if and only if (u,v) = 1, where (u,v) is the scalar product over GF(2).
Such graphs are known as Sylvester graphs. For n = 2", the graph Hg with S = T, is
denoted by H,,. We first show that H,, can be represented as a parity of r = log, n OR

gates:
DV~ (10.6)

i=1 vel;

with I; = {v | v(i) = 0}. Indeed, two vertices u € S and v € S are adjacent in H,, iff>
[v Aul is odd iff r — |u A v| is odd iff the number of sets I; containing at least one of u
and v is odd iff the number of clauses \/ _, x, accepting the pair uv is odd.

We are now going to show that H, contains an induced m x m subgraph Hg with
m = 4/n satisfying the first claim of Theorem 10.28. The fact that Hg is an induced
subgraph implies that (10.6) is also a representation of Hg: just set to O all variables
x, with v €8S.

To prove that such a subgraph exists, we first establish one Ramsey type property
of graphs H; for arbitrary subsets S C F,.

LemMA 10.29. Suppose every vector space V € ', of dimension | (r +1)/2] intersects
S in less than t elements. Then neither Hg nor the bipartite complement Hg contains K-

Proor. The proof is based on the observation that any copy of K, , in Hg would
give us a pair of subsets X and Y of S of size t such that (u,v) =1 for all u € X and
v € Y. Viewing the vectors in X as the rows of the coefficient matrix and the vectors in
Y as unknowns, we obtain that the sum dim(X") + dim(Y") of the dimensions of vector
spaces X’ and Y’, spanned by X and by Y, cannot exceed r 4+ 1. Hence, at least one of
these dimensions is at most (r + 1)/2, implying that either [X'NS| <t or [Y'NS| < t.
However, this is impossible because both X’ and Y’ contain subsets X and Y of S of
size t. (]

It remains therefore to show that a subset S C IF;, of size |S| = 272 = /n satisfying
the condition of Lemma 10.29 exists. We show this by probabilistic arguments. For
this, we use the following versions of Chernoff’s inequalities: if X is the sum of n
independent Bernoulli random variables with the success probability p, then

Pr[|X| < (1—c)pn] <e P2 for0<c<1,
and
Pr[|X| > cpn] < 27" for ¢ > 2e.

Let S C F}, be a random subset where each vector u € F}, is included in S indepen-
dently with probability p = 2'7"/2 = 2/,/n. By Chernoff’s inequality, |S| > pn/2 = 27/?
with probability at least 1 — e *PN) =1 — o(1).

Let now V C FF7, be a subspace of F} of dimension |[(r +1)/2] = r/2 (remember
that r is even). Then |V| = 2"/2 = y/n and we may expect p|V| = 2 elements in [SNV|.
By Chernoff’s inequality, Pr[|SN V| > 2c] < 272 holds for any ¢ > 2e. The number of
vector spaces in I}, of dimension r/2 does not exceed (,) < 2"/+/7. We can therefore

take ¢ = r/2 and conclude that the set S intersects some r/2-dimensional vector space
V in 2¢c = r or more elements with probability at most 27 ~(08"/2=1 = r=1/2 = 5(1),

2|v Au| is the number of common 1’s of vectors u and v.



154 10. DEPTH-3 CIRCUITS

Hence, with probability 1—o(1) the set S has cardinality at least 2"/ and |SNV| < r for
every r/2-dimensional vector space V. Fix such a set S’ and take an arbitrary subset
S C 8’ of cardinality |S| = 2/2. By Lemma 10.29, neither Hg nor Hg contains a copy
of K, . O

10.5. Depth-3 threshold circuits

We now consider depth-3 circuits whose inputs are literals and gates are un-
bounded fanin threshold functions

Th(xy,...,x,) =1 iff x;+x3+-+x, =k.

These circuits are important by at least two reasons. The first reason is that threshold
circuits are closely related to neural nets, an active area in computer science. The
second reason (important in the context of circuit complexity) is that such circuits are
unexpectedly powerful. Perhaps the most impressive result along these lines is due
to Yao (1990) who showed that the whole class ACC is doable by depth-3 threshold
circuits of

a. size 20°8°” and
b. AND gates of fanin at most (logn)°™ at the bottom.

The class ACC consist of all boolean functions computable by constant-depth poly-
nomial size circuits with NOT and unbounded fanin AND, OR and MOD,, gates for an
arbitrary but fixed m. The function MOD,, computes 1 iff the number of 1’s in the
inputs vector is divisible by m.

Exponential lower bounds for ACC circuits are only known when m is a prime
power (we will show this for m = 3 in the next chapter (see Section 11.4). But no
such bound is known for a composite number m, say, for m = 6. This is why depth-3
threshold circuits with AND gates at the bottom are of particular interest. Below we
will prove the largest known (superpolynomial) lower bound for such circuits.

Our starting point is the following theorem due to Hastad and Goldmann (1991),
derived using a powerful result in multiparty communication complexity due to Babai,
Nisan and Szegedy (1992); see Lemma 9.13 in Section 9.6 for the proof.

Recall that the generalized inner product function is defined by:

n S
GIP, (x) =P N\ x;-

i=1 j=1

THEOREM 10.30 (Hastad-Goldmann). Any depth-3 threshold circuits which com-
putes GIP, ; and has bottom fanin at most s — 1, must be of size exp(£2(n/s4*)).

The consequence of this theorem is that the generalized inner product circuit re-
quires depth-3 circuits of exponential size, as long as bottom fanin is smaller than logn.
We state this observation as

CoroLLARY 10.31. Any depth-3 threshold circuit which computes GIP, 1,4, and has
bottom fanin at most (logn)/3, must be of size exp(n®™).

We are now going to use this result to prove a super-polynomial lower bound in
the case when bottom gates are AND gates of arbitrary fanin. For this, consider now



10.5. DEPTH-3 THRESHOLD CIRCUITS 155

the following boolean function

n logn n

F0) = N\ Dxie-

i=1 j=1 k=1

TueorREM 10.32. Any depth-3 threshold circuit which computes f,,(x) and has un-
bounded fanin AND gates at the bottom, must be of size n1°8™)

PrOOE. Let C be a depth-3 threshold circuit computing f,(x). The strategy of the
proof is to hit C with a random restriction in order to reduce the bottom fanin. Then
we apply Corollary 10.31 to the resulting sub-circuit.

Set p := (2Inn)/n. Let p be the random restriction which assigns independently
each variable to * with probability p, and to 0,1 with probabilities (1 — p)/2. Given
a boolean function g in n variables and a restriction o, we will denote by g [, the
function we get by doing the substitutions prescribed by p.

Let K be a monomial, that is, a conjunction of literals. Denote by |K| the number
of literals in K. We are going to show that for each K we have

Pr[|K[, | > $logn] < n~Sogm) (10.7)

To show this, consider two cases.
Case 1: |[K| < (logn)?. In this case we have

(logn)?
;logn

0l

1
pr[|K[Q | > %]ogn] < ( ) .pglogn < 0(plog n)(logn)/3 < p~logn)

Case 2: |K| > (logn)?. In this case we have

1+p\ o
Pr[|K[, | > +logn] < Pr[K|,# 0] = (T) < p-Slogn)

Now, when we have (10.7), the reduction to Corollary 10.31 becomes easy. Namely,
if our original circuit C would have size at most n®'°¢" for a sufficiently small £ > 0
then, by (10.7), the probability that C [, has an AND gate on the bottom level of
fanin larger than élogn would tend to 0. On the other hand, we have nlogn sums
s(x) =D, X;jx in f,, and the probability that some of them will be evaluated by o
to a constant, is also at most

—2Inn

logn
(1—p)'nlogn<eP'nlogn=e nlognzi—>0
n

So, there exists an assignment p such that both these events happen. That is, after this
assignment p we are left with a depth-3 threshold circuit C’ which has bottom fanin at
most ; logn and computes a subfunction £, of f, where none of the sums g(x) is set to
a constant. By setting (in necessary) some more variables to constant, we will obtain a
circuit of bottom fanin at most % logn computing GI Py iogn- BY Corollary 10.31, this is
only possible if size(C’), and hence also size(C), is at least exp(n®!)), a contradiction
with our assumption that size(C) < n®'°8", O

The reason why Theorem 10.32 does not imply large lower bounds for ACC cir-
cuits® is that Yao’s reduction (mentioned above) requires much larger lower bounds,
namely, bound of the form exp((logn)*) for a — co.

3And could not imply since, by its definition, the function f, itself can be computed using n?logn AND
and MOD, gates.
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Exercises

Ex. 10.1. For a bipartite graph G, let (as before) cnf(G) denote the smallest num-
ber of clauses in a monotone CNF representing G. Define the intersection number int(G)
of G as the smallest number r for which it is possible to assign each vertex v a subset
S, €1{1,...,r} such that u and v are adjacent in G iff S, NS, = 0.

Prove that cnf(G) = int(G).

Hint: Given a monotone CNF C; A---AC,, let S, ={i | x, & C;}.

Ex. 10.2. Show that a bipartite graph can be represented by a monotone Xj
circuits with top fanin s and middle fanin r iff it is possible to assign each vertex v an
s xr (0,1) matrix A, such that u and v are adjacent in G iff the product-matrix A, -AI.
(over the reals) has at least one 0 on the diagonal. Hint: Previous exercise.

Ex. 10.3. Show that almost all bipartite n x n graphs require monotone>:5 circuits
of size Q(4/n). Hint: Previous exercise.

Ex. 10.4. A ®-decision tree for a boolean function f (x,...,x,,) is a binary tree
whose internal nodes are labeled by subsets S € [m] and whose leaves have labels
from {0, 1}. If a node has label S then the test performed at that node is to examine
the parity @, x;. If the result is 0, one descends into the left subtree, whereas if the
result is 1, one descends into the right subtree. The label of the leaf so reached is the
value of the function (on that particular input). Let DISJ,,,,(x, y) be a boolean function
in 2m variables defined by DISJ,,, (x,y)=1iff x;y; =0foralli=1,...,m.

Show that any @-decision tree for DISJ,,, requires 22(™ leaves.

Hint: Transform the decision tree into a Z? circuit.

Ex. 10.5. Research problem. Prove or disprove: there exists a bipartite 2™ x 2™
graph G such that G can be represented by a monotone X, circuit of size 2P°V1°8(™) byt
its bipartite complement G cannot be represented by a monotone X5 circuit of such
size.

Comment: Note that here G needs not be explicit—a mere existence would be
enough! This would separate the second level of the communication complexity hier-
archy introduced by Babai, Frankl and Simon (1986), and thus, solve an old problem
in communication complexity.
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CHAPTER 11

Large Depth Circuits

We now consider circuit of depth d > 3. As before, gates are unbounded fanin
ORs and ANDs, and inputs are variables and their negations. We may assume that the
underlying graph is layered so that: (i) inputs for gates on one layer are gates from the
previous layer, and (ii) each layer consists of either OR gates or of AND gates. Hence,
we have d alternating layers of OR and AND gates. Moreover, the first two (nearest to
inputs) layers consist of CNFs (or of DNFs).

Lower bounds for such circuits are proved by reducing the depth one by one, until
a circuit of depth-2 (or depth-1) remains. The key is the so-called Switching Lemma
which allows to replace a CNF on the first two layers by a DNE thus reducing the
depth by 1. This is achieved by setting some variables to constants. If the total number
of gates in a circuit is not large enough and the depth is constant, then we will end
with a circuit computing a constant function, although a fair number of variables were
not set to constants. For functions, like the Parity function, this yields the desired
contradiction.

11.1. Switching lemma for non-monotone forms

Recall that a boolean function is a ¢t-CNF function if it can be written as an AND
of an arbitrary number of clauses, each being an OR of at most t literals. Dually, a
boolean function is an s-DNF if it can be written as an OR of an arbitrary number of
monomials, each being an AND of at most s literals.

Suppose we have a t-CNF function. Our goal is to find its dual representation as
an s-DNF with s as small as possible. If we just multiply the clauses we can get very
long monomials, much longer than s. So, the function itself may not be an s-DNE We
can try to assign constants O and 1 to some variables and “kill off” all long monomials
(i.e., evaluate them to 0). If we set some variable x;, say, to 1, then two things will
happen: the literal Xx; gets value 0 and disappears from all clauses, and all the clauses
containing the literal x; disappear (they get value 1).

Of course, if we set all variables to constants, then we are done — there will remain
no monomials at all. The question becomes interesting if we must leave some fairly
large number of variables not assigned. This question is answered by the following
lemma.

Recall that a restriction is a map p of the set of variables to the set {0, 1,*}. The
restriction p can be applied to a function f = f(xy,...,x,), then we get the function
f1, (called a subfunction of f) where the variables are set according to o, and o(x;) =
* means that x; is left unassigned.

LEmMMA 11.1 (Switching Lemma). Let f be a t-CNF on n variables, and let p be a
random restriction leaving a fraction p of variables unassigned. Then

Pr[f], is not an s-DNF ] < (ypt)’, (11.1)

157
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input literals input literals

FIGURE 1. After the Switching Lemma is applied, levels 2 and 3 can
be collapsed into one level.

where v is an absolute constant.

We will prove this lemma in the next section. Now we apply it to show that the
parity function cannot be computed by constant depth circuits of polynomial size.

THEOREM 11.2. Any depth-d circuit with unbounded fanin AND and OR gates com-
puting a parity of n variables requires 20n") gates.

PrOOF. Let C be a depth-d circuit for parity of size S. Our first goal is to reduce the
fanin of gates on the first (next to the inputs) layer. Suppose that they are OR gates; a
symmetric argument applies if they are AND gates.

We think of each such gate as a 1-DNE We apply the Switching Lemma with t =1,
s = 2log, S and p = 1/(2y), and deduce that after a random restriction each of the
these 1-DNFs becomes an s-CNF (in fact, a single clause of length < s) with probability
at least

1—(yptyf=1-2"=1-572.
Since we have at most S of the these 1-DNFs, this in particular implies that there is a
restriction that makes all these 1-DNFs expressible as an OR of at most s input literals.
We apply such a restriction, and what we obtain is a circuit of depth d such that each
bottom gate has fanin at most
b:=2log,S
and the circuit still computes parity of n’ = n/(2y) variables.
We now apply the Switching Lemma to the first two bottom layers with

p=1/(2yb)

and both s and t equal to b. We get that, for each AND gate on layer 2, after the
restriction the gate can be replaced by an s-DNF with probability at least 1 —27% =
1—S72. Hence, there is a restriction for which this is true for all the at most S gates at
layer 2. We apply this restriction, replace each layer-2 gate with a s-DNE and and use
associativity to collapse the OR gate of each DNF into an OR gates of the second layer
of the original circuit. This way we collapse layer 2 with layer 3 (see Fig. 1).

Now we have a circuit of depth d — 1 that computes parity of

, n

b= 4v%b

variables, and such that every bottom gate has fanin at most b.
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If we repeat the same argument another d — 3 times, we will eventually end up
with a circuit of depth 2 such that the fanin of the bottom gates is at most b = 2log, S
and the circuit computes parity of

n n

m = =
(4r?b)?"%  (4ylog, S)!2
variables. Since in any DNF (or CNF) computing parity of m variables, each monomial
(clause) must have length m, this implies that

n
2log,S=b>m=————
&2 (4v%log, S))42
from which the desired lower bound S = 20nD) follows. |

Note that the only property of the parity function, we used in the proof, is that the
function cannot be made constant by setting fewer than n — 1 variables to constants.
Hence, we in fact have a more general result:

THEOREM 11.3. If a boolean function f in n variables cannot be made constant by set-
ting all but Q(n"/?) variables to constants, then any depth-(d +1) circuit with unbounded
fanin AND and OR gates computing f requires 200" gates.

11.2. Razborov’s proof of switching lemma

We denote by % the set of all restrictions assigning exactly £ stars. Hence

n
2= |2~
rg (E)

A minterm of f is a restriction o such that f [,=1 and which is minimal in the sense
that un-specifying every single value p(i) € {0, 1} already violates this property. The
length of a minterm is the number n — |p ~!(x)| of assigned variables.
Let min(f) be the length of the longest minterm of f, and let
Bad’(s,t) := {Q e ' : min(f [o) > s} .

In particular, Bad‘(s, t) contains all the restrictions o € & for which f [o is not an
s-DNE

LEMMA 11.4. Let f be a t-CNF on n variables. Then, forany 1 <s <{ <n,
IBad‘(s, )| < |2 7| - (4t ). (11.2)

Before we merge into the proof of Lemma 11.4, let us show that it indeed implies
Switching Lemma. To show this, take a random restriction o in % for £ = pn. Then,
by Lemma 11.4, the probability that f [, is not an s-Or-And function, is at most

[Bad(s, t)| - ()2 4y - ( 8te ) B ( 8tp )
220 I () A ¢) \(1-p)

n—

which is at most! (16pt)° as long as p < 2/3.
We now turn to the proof of Lemma 11.4. A general idea is to apply the following:

IMore precise calculations yield (7pt)* but we will not care about this.
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Coding Principle: In order to prove that some set A is not very large try to construct
an injective mapping Code : A — B of A to some set B which is a priori known
to be small, and give a way how to retrieve the element a € A from its code
Code(a). Then |A| < |B|.

PrOOF OF LEMMA 11.4. Let F be a t-CNF formula. Fix an order of its clauses and
fix an order of literals in each clause. Suppose that p is a bad restriction, i.e., p €
Bad’(s,t). Then there must be a minterm 7 of F lo Whose length is at least s. We
truncate 7 so that it has length exactly s.

Our goal is to show, how using the minterm 7 and the formula F plus a “small”
additional information, to reconstruct the restriction p.

Consider the first clause C; of F that is not set to 1 by p; hence, o does not set any
literal of C; to 1 and does not set all literals of C; to 0. Let 7t; be the portion of 7 that
assigns values to variables in C; (actually, to variables in C; [, since 7 is a minterm of
F[,, not of the whole formula F). Let also 7; be the uniquely determined restriction
which has the same domain as 7, and does not set the clause C; [, to 1. That is, 7T,
evaluates all the literals “touched” by 7, to 0.

Define the string a; € {0,1}* based on the fixed ordering of the variables in clause
C, by letting the j-th component of a; be 1 if and only if the j-th variable in C; is set
by 7, (and hence, also by 7T;). Note that since C, [, is not an empty clause there is at
least one 1 in a;. Here is a typical example:

C, = X3 V X4 V X¢ V X3 V X
T, = % 1 * 1 0
T, = % 1 * 0 0
a, = 0 1 0 1 1

The main property of the string a; is that knowing C, and a; we can reconstruct 7.

Now, if 7, # 7, we repeat the above argument with 7 — 7, in place of 7, p7; in
place of p and find a clause C, which is the first clause of F not set to 1 by p ;. Based
on this we generate m,, 7T, and a, as before. Continuing this way we get a sequence
of clauses Cy, Cy, . ... Each C; contains some variable that was not in C; for j <, so we
must stop after we have identified at most s clauses. Say we have identified m clauses.
Hence, m = 7y... Ty

Let b € {0, 1} be a vector that indicates for each variable set by 7 (which are the
same as those set by 77) whether it is set to the same value as 7 sets it. (Recall that 7;
must set at least one literal of C; to 1 and may set some of them to 0, whereas 7; sets
all these literals to 0.) We encode the restriction p by a string

Code(p) := (T Ty... Ty, Ay,...,ay, b).

Our goal is to show that the mapping o — Code(p) is injective. For this, it is enough
to show how to reconstruct o uniquely, given Code(p).

First note that it is easy to reconstruct 7;. Identify the first clause of F that is not
set to 1 by p7T;7,...T,,. Since none of the 7; sets a clause to 1, this must be clause
C;. Now use a; to identify the variables of C; that are set by 7;, and use b to identify
how 7, would set these variables. Thus we have reconstructed both sub-restriction 7,
and 7t;. Knowing these sub-restrictions and the entire restriction o7t 7, ... T, we can
construct the restriction o7y ... Tpp.
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Now we can identify C,: it is the first clause of F thatis notsetto 1 by pm 7T, ... Tp,.
Then we use a, to identify the variables of C, set by 7,, and use b to identify how 7,
would set these variables.

Continuing this way, we can reconstruct the restriction 7,7, ... T, and thus the
original restriction p.

To finish the proof of Lemma 11.4, it is enough to upper bound the range of
Code(p). First, observe that restrictions o7t;7,...7,, belong to #‘~*. Hence, the
number of such restrictions does not exceed |%2¢~*|. The number of strings b € {0,1}*
is clearly at most 2°. Finally, each (a4, ...,a,,) is a string in {0, 1} with the property
that each a; has at least one 1 and the total number of 1’s in all a; is s. The number of

j
such strings (a,...,a,,) with k; ones in a; is

m

l_[(kt) Sﬁtkf = tXmki = g5
i i=1

i=1

The number of integer solutions kq,...,k,, > 1 of k;+---+k,, =sis (:1__11) < 2% (show

this!). Thus, the range of Code(p), and hence, the number |Bad’(s, t)| of restrictions
o € #" for which min(f [o) > s, does not exceed |25 x (4t)°, as desired. O

11.3. Circuits with parity gates

We already know that Parity function cannot be computed by constant depth cir-
cuits using a polynomial number of unbounded fanin AND and OR gates. Let us there-
fore extend the model and allow Parity functions be also used as gates. What functions
are then difficult to compute? We will show that such is the Majority function Maj,,
which accepts an input vector of length n iff it has at least as many 1’s as 0’s. The gen-
eral idea is similar as in the case of monotone circuits, but this time with an algebraic
“flavour.” The proof consists of two steps:

a. prove that the majority function is hard to approximate by such polynomials;
b. show that functions, computable by small circuits, can be approximated by low
degree polynomials.

We first establish the first goal (a). In fact we will apply this argument not to
Majority function itself but rather to a closely related function, the k-threshold function
Thy. This function is 1 when at least k of the inputs are 1. Note that each such function
is a subfunction of the Majority function in 2n variables: just set some n — k variables
to 1 and some k of the remaining variables to 0. It is therefore enough to prove a
hight lower bound on Thj; for at least one threshold value 1 < k < n. We will consider
k=[(n+h+ 1)/2] for an appropriate h.

To achieve the first goal (a), we have to show that any polynomial of low degree
over GF(2) has to differ from k-threshold function on a large fraction of inputs. Recall
that the degree of a multivariate polynomial over F, = GF(2) is the length of (the
number of variables in) its longest monomial.

LEmMA 11.5. Let n/2 < k < n. Every polynomial p(x) of degree at most 2k —n — 1
differs from the k-threshold function on at least (}) inputs:

#{ | p(x) £ TH(0} = (Z) .
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PrROOE. Let g be a polynomial of degree d < 2k —n — 1 over F, and let U denote
the set of all vectors where it differs from Thj}. Let A denote the set of all 0-1 vectors
of length n containing exactly k 1’s.

Consider the 0-1 matrix M = (m,,) whose rows are indexed by the members of A,
columns are indexed by the members of U, and m,, = 1 if and only if a > u. For two
vectors a and b we denote by a A b the coordinate-wise And of these vectors. Our goal
is to prove that the columns of M span the whole linear space; since the dimension of
this space is |A| = (Z), this will mean that we must have |U| > (Z) columns.

The fact that the columns of M span the whole linear space follows directly from
the following claim saying that every unit vector lies in the span:

Cramm 11.6. Ifa€Aand U, = {u€ U | m,,, = 1}, then

Z {1 ifb=a;
Mpu = .
& u 0 ifb#a.

To prove the claim, observe that by the definition of U,, we have (all sums are
over Fy):

Dimp=D 1= > (TH()+g())= D, TH(x)+ > glx).

uel, uel x<anb x<aAb x<aAb
usanb

The second term of this last expression is 0, since a A b has at least d + 1 1’s. The first
term is also O except if a = b.
This completes the proof of the claim, and thus, the proof of the lemma. t

Our next goal (b) is to show that, if a boolean f function can be computed by a
small-depth circuit will a small number of AND, OR and Parity gates, then f can be
approximated well enough by a low degree polynomial. This is done in a bottom-up
manner. Input variables themselves are polynomials of degree 1, and need not be
approximated. Also, since the degree is not increased by computing the sum, parity
gates do not have to be approximated as well. Hence, it remains to show how to
approximate AND and OR gates. For this, the following simple fact will be useful.

ProrosiTiON 11.7. Let y € {0,1}™ and let S € {1,...,m} be a random subset. If
y # 0 then

1
Pr[Zies y; is even] = 5"

PrOOF. Say that a vector x is orthogonal to a vector y if their scalar product
(x,y) = 25, x;y; mod 2 over GF(2) is equal to 0. By letting x to be the character-
istic vector of S, it is enough to show that every vector y # 0 is orthogonal to exactly
half of all vectors in {0, 1}™.

To show this, take an i for which y; = 1 and split the m-cube {0,1}™ into 2™!
pairs x,x’ that differ only in the ith coordinate. Since the vector y is orthogonal to
exactly one vector from each pair, it follws that y is orthogonal to exactly a half of all
vectors in {0, 1}™. O

If p and q are polynomials representing two functions, then p - g is the polynomial
corresponding to their AND, and (p ® 1)(¢ ® 1) ® 1 is the polynomial corresponding to
their OR. But since we have unbounded degree gates, the degree of AND and OR gates
can greatly increase. We will therefore approximate these gates so that approximating
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polynomial will have fairly low degree. In this section, all polynomials are polynomials
over the field GF(2).

LEMMA 11.8 (Approximation Lemma). Let f be an OR of polynomials g;,...,&m of
degree < h. Then, for every integer r > 1, there exists a polynomial p of degree < rh such
that

#{x | p(x) # f(x)} <2777,
By the duality, the same hold also for conjunctions (products) of polynomials.

ProoE To construct the desired polynomial, approximating f = VI", g;, randomly

select r subsets Sy,...,S, of {1,...,m}, where each i is included in S ; with probability
1/2. Let
fi=De
€S;
and consider
=\ £=\Ds:
j=1 j=11ies;

We claim that the probability that f’ satisfies the requirements of the lemma is non-
zero. Since f is an OR of r polynomials of degree at most h, f” itself can be written as
a polynomial of degree at most rh using therule f Vg=(f®1)A(g® 1)@ 1.

Hence, it remains to show that f’ differs from f in at most 2"~ inputs. To show
this, take an arbitrary input a € {0, 1}". We claim that the probability that f'(a) # f(a)
is at most 27". To see this consider two cases.

If g;(a) = 0O for every i, then both f(a) = 0 and f’(a) = 0. On the other hand, if
there exists an i for which g;(a) = 1, then f(a) = 1 and (by Proposition 11.7 applied
with y; := g;(a)) for each j, f;(a) = 0 independently with probability at most 1/2.
Therefore, f’(a) = 0 with probability at most 27", and the expected number of inputs
on which f’ # f is at most 2"~". Hence for at least one particular choice of the sets S;,
the polynomial f’ differs from f on at most 2"~ inputs. O

LEMMA 11.9. If a boolean function f in n variables can be computed by an unbounded
fanin circuit of depth d over the basis {A,V,®}, then for any integer r > 1, there exists a
polynomial g of degree at most r¢ such that g differs from f on at most £ - 2"~" inputs.

ProOF. Apply Lemma 11.8 to approximate the OR and AND gates in the circuit.
The functions computed by the gates at the ith level will be approximated by polyno-
mials of degree at most ri. Since we have only d levels, the function f computed at
the top gate will be approximated by a polynomial f’ of degree at most r¢. Since, by
Lemma 11.8, at each of ¢ gates we have introduced at most 2"~ errors, f’ can differ
from f on at most £2"" inputs. (]

THEOREM 11.10. Every unbounded fanin depth-d circuit over {A,V,®} computing
Maj, requires 2%""*") gates.

PrOOF. By the remark above, it is enough to prove such a lower bound for a depth-
d circuit computing a k-threshold function Thj for some n/2 < k < n (to be specified
later). Take such a circuit of size £ computing Th}.. Lemmas 11.5 and 11.9 imply that

€> n 2r—n
(1)
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Taking r = [n"/®® | and k = [(n+ r? +1)/2] = [(n + v+ 1)/2], the right hand side
turns to 2%, and we are done. ([

11.4. An algebraic lower bound for parity

A modular function MOD,, is the boolean function which is 1 iff the number of 1’s
in the input vector is divisible by p. Hence, MOD, is the parity function. We have seen
that MOD, cannot be computed by a constant depth circuit with polynomial number
of NOT, AND and OR gates. But what if, besides NOT, AND and OR gates, we allow
some modular gates MOD,, with p > 3 be used as gates—can then MOD, be easier
computed?

It turns out that the use of gates MOD,,, where p > 3 is a prime power, does not
help to compute the Parity MOD, more efficiently.> We will show this for the special
case p = 3.

Under a modular circuit we will understand an unbounded fanin circuit with AND,
OR, NOT and MOD; gates. The general proof idea will be again the same: show
that functions, computable by small circuits with MOD gates, can be approximated
by low degree polynomials over GF(3), and prove that the parity function is hard to
approximate by such polynomials.

DEerINITION 11.11. A b-approximator is a polynomial on the input variables x4, ..., x,
of degree at most b over GF(3), the three element field {—1,0,1}, where on inputs
from {0, 1} it takes values from {0, 1}.

The following lemma states that, if a boolean function can be computed by a
modular circuit of small depth using a small number of gates, then this function can
be approximated well enough by a small degree polynomial over GF(3).

LEMMA 11.12. If a boolean function f can be computed by a modular depth-d circuit
of size { then, for every integer r > 1, there is a (2r)?-approximator which differs from f
on at most £ - 2"~" inputs.

Proor. Take such a circuit C computing f. We inductively assign to each gate
of the circuit a particular approximator working up from inputs to the output. Each
assignment introduces some error which is the number of output deviations between
it and the result of applying the true operator at that gate to the approximators of the
gates feeding into it, looking only at inputs drown from {0, 1}".

Approximators of input variables are variables themselves. If the gate g is a NOT
gate and the unique gate feeding into it has b-approximator f, then we assign the b-
approximator 1 — f to g. This approximator introduces no errors. If g is a MOD; gate
and its inputs have b-approximators f,,..., f, then we assign the 2b-approximator’
(Zi{:l fi)? to g. Since 0> = 0 and (—1)? = 1 this introduces no new errors, as well.

It remains to consider the case when g is an OR gate (the case of an AND gate
is similar). So, let g(x) be the function computed at an OR gate whose inputs have
b-approximators f,..., f,.

Craim 11.13. For every integer r > 1, there exists a 2r b-approximator p of g such
that the number of inputs x € {0,1}" on which p(x) differs from OR(f3, ..., f,,,) does
not exceed 2"".

2For other values of p, the smallest being p = 6, no explicit boolean function requiring a super-
polynomial number of gates is known (Research Problem!).
SThe only reason to take a square is to ensure that the resulting function takes boolean values 0 and 1.
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Proor. For every integer r > 1, we construct a 2rb-approximator for g(x) as
follows. Randomly select r subsets S;,...,S, of {1,...,m}, where each i is included in

S; with probability 1/2. Let
2
fe = (3 H00)
JjeSs;

and consider a random polynomial
-
p(x):=1—] [ —£/x)).
i=1

The degree of p(x) is at most 2rb, as the degree of each f;" is at most 2b. Moreover, if
OR(fi,...,fn) outputs O, then p(x) = 0. So, take an input x on which OR(f,..., fi,)
outputs 1, that is f;(x) = 1 for at least one i. By Proposition 11.7, applied with
¥1:=f1(x), ..., ¥m := fn(x), we obtain that

1
P/ =0) <
foreachi=1,...,r. Hence,
Pr[p(x)=0] =Pr[f/(x)=0foralli=1,...,r] <27".

By an averaging argument there must be a collection of the sets S; so that the number
of input settings, on which the OR of f;(x),..., f,(x) is 1 and p(x) = 0, is at most
2mr, O

Now we can finish the proof of Lemma 11.12 as follows. The inputs of our circuit
computing f are assigned the corresponding 1-approximators. By Claim 11.13, each
layer increases the degree of the approximators by a factor of at most 2r, and each
assignment of approximators contributes at most 2"~" error. Since we only have d
layers and only £ gates in total, the last gate will receive a (2r)¢-approximator which
differs from f on at most £ - 2"~" input vectors. O

To apply Lemma 11.12 to the parity function, we have to show that parity(x)
cannot be approximated well enough by small degree polynomials over GF(3).

LEmMMA 11.14. Any +/n-approximator must differ from parity(x) on at least
0.15 - 2" input vectors.

ProoF. For this proof, we represent boolean values by 1 and —1 rather than 0 and
1. Namely, we replace each boolean variable x; by a new variable y; = 1 — 2x;. Hence,
y; =1if x; =0, and y; = —1 if x; = 1. The parity function then turns to the product

of the y;:
n n
@xi:]. iff l_[yi:_]..
i=1 i=1
Suppose that p(y) is a polynomial over GF(3) of degree at most 4/n. We need to show
that this polynomial differs from ]—[?zl y; on at least 0.15 fraction of the vectors in
{1: -1 }n'

Let A={y | ply) = H?:] ¥;}. We wish to show that A is small (has size at most
0.85 - 2™) and will do this by upper bounding the number |F| functions in the set F of
all functions f : A— {—1,0,1}: since |F| = 3" we may bound the size of A by showing
that |F| is small.
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We claim that every function in F can be represented as a multilinear polynomial
over GF(3) of degree at most (n+ +/n)/2. Suppose f € F, and M = [[..qy; is a
monomial in the representation of f. If |S| > (n+ +/n)/2, we replace the monomial by

M’ =l_[yi p(y).
i¢s
Since
[T T=11x11v2=1]»
i¢S i=1 ieS i¢S ieS
we have that M’(y) = M(y) for all y €A, and

n—+/n n++/n
++v/n= .
2
Thus, every function in F can be represented as a multilinear polynomial over GF(3)

of degree at most (n + /n)/2.
The number of multilinear monomials of degree at most (n + 4/n)/2 is

degree(M’) <

J— : n < n
N—ZO: .| =o085-2
i=

for large n. Since, |F| < 3V, we conclude that
|Al =log, |[F| <logs N <0.85-2". O
Combining the two lemmas above we obtain the following

THEOREM 11.15. Any modular depth-d circuit computing the parity function requires
22" gqtes.

ProOE. Let ¢ be the minimum size of a modular depth-d circuit computing parity(x).
Taking r = n'/21/2 in Lemma 11.12, we obtain that then there must exist a /-
approximator p(x) such that

#{x | p(x) # parity(x)} < ¢ Lon—n' /2
But Lemma 11.14 implies that
#{x | p(x) # parity(x)} > 0.15- 2",

and the desired lower bound on ¢ follows. O

11.5. Rigid matrices require large circuits

We now consider boolean circuits computing (0, 1) matrices of some fixed in ad-
vance dimension. Inputs are rectangular matrices, that is, matrices of rank 1. Each of
these matrices can be described by a Cartesian product I X J corresponding to its all-1
submatrix. Boolean operation on matrices are computed component-wise. Thus, each
such circuit computes some matrix. As before, the depth of a circuit is the length of a
longest path from an input to an output gate. The size is the number of gates.

Let C;(M) denote the smallest size of an unbounded fanin circuit of depth d over
the basis {&, V,—, ®} computing the matrix M.

What matrices require large constant-depth circuits? We will show that such are
matrices of high “rigidity”.
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The rigidity %,,(r) of a (0,1) matrix M over GF(2) is the smallest number of
entries of A that must be changed in order to reduce its rank over GF(2) until r. That
is,

Ry (r) =min{|B| : k(M @ B) <r},
where |B| is the total number of 1s in B.

THEOREM 11.16. Let M be an n x n (0, 1) matrix, and d > 2 an integer. If

2
n
Ry (1) > ———— 11.3
M( ) eXp((ln]")l/d) ( )
then
Cyq (M) > 22", (11.4)

Proor. We will again use the approximation method. This time we will approx-
imate matrices, computed at intermediate gates of the circuit, by matrices of small
rank. Set

¢:=12(Inr)V4].
Note that for r = O(1) the theorem is obvious, so we assume that r and ¢ are large
enough.

Suppose we have an unbounded fanin circuit over {&, V, -, ®} of depth at most d
and size s computing the matrix M. We have to show that (11.3) implies

s > 2N (11.5)

At each gate v of the circuit some (0, 1) matrix A is computed. We inductively assign
to each gate on the ith layer an approximator, which is a (0, 1) matrix A of rank

rk(A) < (s +1)°¢). (11.6)

As before, the assignments are done inductively, first to the inputs, then working up
to the output. Each assignment introduces some errors which are the positions the ap-
proximator A differs from the matrix obtained by applying the true operator at that gate
to the approximators of the gates feeding into it. Our goal is to assign approximators
in such a way that:

At each gate at most n?/ 2¢ errors are introduced. (11.7)

We first show that (11.6) and (11.7) already imply the theorem. To see this, let M be
the approximator of the matrix computed at the last gate.

If rk(M) > r then (11.6) implies that r < (s+1)o(€d71), and since (47! = Q((Inr) /%))
(by the choice of £), the desired lower bound (11.5) on the size s follows.

If rk(M) < r then our assumption (11.3) implies that

2
~ n

M-M|>Ry(r)> ————.

| | = Ry (1) exp((n )0
On the other hand, (11.7) implies that

- n?
IM-M|<s-n?/2l =g ——MM—.
exp(2(Inr)1/d)

Comparing these two estimates, we again obtain the desired lower bound (11.5) on
the size s. It remains, therefore, to show how to assign approximators satisfying (11.6)
and (11.7).
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Approximators of input matrices are matrices themselves. Recall that these matri-
ces have rank < 1.

If the gate v is a NOT gate and the unique gate feeding into it has an approximator
A, then we assign the approximator —A to v. Since rk(-A) < rk(A) + 1, the rank
condition (11.6) is fulfilled.

If the gate v is a parity gate, then let the approximator of v be just the sum modulo
2 of the approximators of all its m < s inputs gates. The rank condition (11.6) is
fulfilled by the subadditivity of rank:

rk(A) < m- (s +1)°¢) < (s + 1)),

So far we have introduced no errors at all. The source of errors are, however, AND and
OR gates. For these gates we use the following lemma whose proof is similar to that of
the Approximation Lemma for multivariate polynomials (Lemma 11.8).

LEmmA 11.17 (Approximation Lemma for Matrices). Let £ > 1 be an integer. If
A= \/LlAi is an OR of n x n (0, 1) matrices, each of rank at most r, then there is a (0,1)
matrix C such that

tk(C) <1+ (1+hr)' and |A®C|<n?/2°.

ProOOE Let & be the linear space of (0,1) matrices over GF(2) generated by
Aj,...,Ap. Then rk(B) < hr for every B € . Take a matrix B = (b;;) in £ at random.
That is, B = EB?:l AiA;, where Pr[A; = 0] = Pr[A; = 1] = 1/2 for all coefficients A,
uniformly and independently. Let A = (q;;). Each time when q;; = 1, the (i, j)-th en-
try of at least one of the matrices A,...,A,, is 1, and the corresponding scalar product
b;j = @?:1 Ai+A;[i, j] equals 0 with probability 1/2. That is, Pr[b;; = 0[a;; = 1] =1/2.

Hence, if we let C = (¢;;) to be an OR of ¢ independent copies of B, then Pr[c;; =
0] =1 if a;; =0, and Pr[¢;; = 0] < 270 if a;; = 1. That is, the expected number of
positions, where C deviates from A, does not exceed n?- 27,

It therefore exists a matrix C of the form C = \/i:1 By, such that |JA® C| < n?/2°
and rk(B;) < hr for each i. Using therule x Vy = (x ® 1) A(y @ 1) @ 1, this OR can be
written as an all-1 matrix plus an AND of { matrices, each of which has rank at most
14 hr. Since the AND of matrices is a component-wise product of their entries, and
component-wise product is bilinear in the space of rows of matrices, this implies that
rk(A A B) < rk(A) - rk(B). Since we have an AND of { matrices each of rank at most
1+ hr, this give the desired upper bound rk(C) < 1+ (1 + hr)" on the rank of C. [

Now, if v is an OR gate at the ith layer of our circuit, and if it has h inputs then
Lemma 11.17, applied with r = (s + 1)°“"), yields the desired approximator for v
satisfying (11.6). The case of an AND gate reduces to that of OR gates by DeMorgan
rules. O

Theorem 11.16 has several interesting consequence. Let us mention two of them.

1. Babai, Frankl and Simon (1986) introduced the communication complexity
analogon PH of the complexity class PH, and proved that PH coincides with the
class of n x n (0,1) matrices M whose constant depth circuit complexity over the basis
{&, v} does not exceed < exp ((Inln n)o(l)). Theorem 11.16 immediately implies that,
if

2
Ry (1) > & for r>exp((Inlnn)°™),

exp(In r)°M)
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then M & PH*C. That is, the class PH® does not contain highly rigid matrices.

2. Razborov (1988) used probabilistic arguments to show that unbounded fanin
circuits over {&,®,1} of small depth can efficiently compute some combinatorially
“complicated” matrices, sharing many extremal properties of random matrices. To-
gether with Theorem 11.16 this implies that also matrices of low rigidity may share
many properties of random matrices.

Exercises

Ex. 11.1. LetX = {x4,..., x,} be a set of boolean variables. Consider the following
random restriction p : X — {0, 1,x*}: foreachi =1,...,n set p(x;) = * with probability
p =1/+/n, and set x; to 0 or 1 with equal probability (1 — p)/2. Assume that n is large
enough.

a. Let F be an OR of literals, and ¢ > 0 a constant. Show that F [, will depend on

more than ¢ variables with probability at most n~</3.

Hint: Consider two cases depending on whether: (i) the clause is “large”, that is, contains more than

m := clog, n literals, or (ii) is “small”, that is, contains at most m literals. Show that in the first case F [Q

will be non-constant with probability at most ((1 4+ p)/2)™, whereas in the second case F [, will contain

at least ¢ variables with probability at most (':) p°. Show that both these bounds are at most n=</3 if n is
large enough.

b. Weaker version of the Switching Lemma. Prove that for every integer constants
¢,k > 1 there is a constant b = b(c, k) with the following property: If F is a c-CNF
on n variables, then

Pr[F[, depends on > b variables] < nk.

Hint: Argue by induction on k. Use the previous exercise for the base case b(1, k) = 3k. For the induction
step, take a maximal set of clauses in F whose sets of variables are pairwise disjoint, and let Y be the
union of these variable sets. Hence, each clause of F has at least one variable in Y. Consider two cases
depending on whether |Y| > k2°logn or not. If |Y| > k2°logn, then use the disjointness of clauses
determining Y to show that then F [, becomes constant with probability at least 1 — n~k. In the case
when |Y| < k2¢logn show that, for every i, the probability that more than i variables in Y will remain
-i/3

unassigned is at most n (cf. the previous exercise). Take i = 4k (why?), set these 4k free variables of

Y to constants in all possible ways to obtain a (c — 1)-CNF F’, and apply induction hypothesis to F’.
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CHAPTER 12

Depth-2 Circuits With Arbitrary Gates

In this chapter we consider unbonded fanin circuits of depth 2. If we would only al-
low AND, OR and NOT gates, then each such circuit would be just a DNF or a CNE, and
large (exponential) lower bounds here are easy to show: already the Parity function
has then exponential complexity. But what if we allow arbitrary(!) boolean functions
be used as gates?

Of course, then every single boolean function f : {0,1}" — {0, 1} can be computed
by a circuit with just one gate—the function f itself. The problem, however, becomes
non-trivial if instead of one function, we want to simultaneously compute n boolean
functions f,..., f, on the same set of n variables xg,...,x,, that is, to compute an
n-operator f : {0,1}" — {0,1}". Note that in this case the phenomenon which causes
complexity of circuits is information transfer instead of information processing as in the
case of single functions.

As before, a circuit computing a given n-operator can be imagined as a directed
acyclic graph with n input nodes corresponding to the variables x,,...,x,, n output
nodes corresponding to the boolean functions fi, ..., f, to be computed, and each non-
input node computing an arbitrary boolean function of its inputs. The size of the circuit
is then the total number of wires in it.

Note that also for operators we cannot expect larger than n? lower bounds: every
operator can be computed using at most n?> wires, even in depth 1. In this chapter
we will concentrate on general circuits of depth 2—the first non-trivial case. Super-
linear lower bounds of the form Q(nlogn) for such circuits were proved using graph
theoretic arguments—so-called “superconcentrators”—and algebraic arguments—the
matrix rigidity. The advantage of these arguments is that they actually say more: they
give us a structural information about how the circuits for a given operator look like.
The disadvantage is purely numerical: these arguments cannot (provably!) lead to
larger than Q(nlog®n) lower bounds on the number of wires.

Larger lower bounds €(n®?) were recently proved using a much simper informa-
tion theoretic argument, and we present it below. The argument itself is reminiscent of
Nechiporuk’s argument for formulas: an operator requires many wires if the number
of its sub-operators is large.

12.1. Lower bounds for depth-2 circuits

Using counting arguments, it can be shown (Exercise 12.1) that most operators
f :{0,1}" — {0, 1}" require about n? wires in any circuit. But where are these “hard”
operators? The disadvantage of any counting or probabilistic argument is that it usu-
ally gives no hint on what the hard objects actually are. In particular, what is the
complexity of often used operators like cyclic convolution (corresponding to product
of polynomials) or matrix product? That is, what we need are lower bounds for explicit
operators.

170
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In this section we prove such lower bounds in the class of depth-2 circuits. We
will assume that there are no direct wires from input to output nodes: this can be
easily achieved by adding n new nodes of fanin 2 on the middle layer labeled by input
variables. The increase of the size by an additive factor of n will not hurt us, because
the bounds we are going to prove will be super-linear in n.

Let size,(f) denote the smallest number of wires in a depth-2 circuit with arbitrary
gates computing the operator f. In this section we will first show that it is the entropy
of an operator f that forces large number of wires in depth-2 circuits. We will then
use this to show that the operator f corresponding to the product two n x n boolean
matrices over GF(2) has size,(f) = @(n®).

12.1.1. Entropy and the number of wires. An operator f : {0,1}" — {0,1}"
maps binary strings of length n to binary strings of length m. Each such operator can
be looked at as a sequence f = (fi,...,f,) of m (not necessarily distinct) boolean
functions f; : {0,1}" — {0, 1}, each on the same set of n variables. The range of f is
the set

Range(f) = {f(a)|a €{0,1}"} < {0, 1}"
of distinct values taken by f. Define the entropy, E(f), of an operator f as the
logarithms to the basis 2 of the number of distinct values taken by f. That is,

E(f) = log, [Range(f)].

ReEMARK 12.1. It is clear that, for any operator f = (f3,..., f,,): {0,1}* — {0,1}™,
we have that E(f) < min{n, m}, just because |Range(f)| < min{2",2™}. For our pur-
poses, however, more important will be the following three properties of entropy:

a. E(f) < {f1,---,fm}l. That is, E(f) cannot exceed the number of distinct
boolean functions in f. This holds because only different functions can pro-
duce different values.

b. E(f) = r if we have r distinct single variables among the functions f,..., fi,
just because then f must take at least 2" distinct values.

c. E(f) < E(g) if every function f; of f can be computed as some boolean func-
tion applied to the functions of operator g. Indeed, in this case g(a) = g(b)
implies f(a) = f(b). Hence, f cannot take more distinct values than g.

The next important concept is that of a “suboperator”. Given a set I C [n] of
inputs and a set J € [m] of outputs, define the suboperator f; ; of f as an operator

frg =(fjl liel,jeJ)

consisting of |I| - |J| (not necessarily distinct) boolean functions fji with i € I and
j € J, where fji is a subfunction of f; obtained by setting the ith variable to 1 and
all remaining variables in I to 0. Thus, f; ; maps binary strings of length n — [I| (||
variables are fixed) to binary strings of length |I| - |J| (so many functions fji we have).

Take now an arbitrary depth-2 circuit computing a given operator f. Let I be a
subset of input nodes and J a subset of output nodes. Let also Wires(I,J) denote the
number of wires leaving I plus the number of wires entering J.

The following lemma is our main technical tool relating the number of wires to
the entropy of the computed operator.

LEMMA 12.2. For any subset I of inputs and any subset J of outputs, we have:
Wires(I,J) > E(f; ;).



172 12. DEPTH-2 CIRCUITS WITH ARBITRARY GATES

PrOOF. Let V be the set of all nodes on the middle layer from which there is a wire
to a node in J. (Note that V only depends on the choice of J.) For v € V, let g, be
a boolean function computed at this node, and let I(v) be the set of inputs i € I from
which there is a wire to v. Fori € I, let gi be the subfunction of g, obtained by setting
x; =1and x; =0 for all j € I — {i}. Let also gS be obtained from g, by setting all
variables x; with i € I to 0. Consider the operator h = (gf/ |veV,iel). Asimple (but
crucial) observation is:

If i & I(v), then the function g, cannot depend on the ith input variable x;
(since then we have no wire from x; to g,), implying that g‘i, = gff .
Hence, for each node v € V, the function g, constitutes at most 1 + |I(v)| distinct
functions to the operator h: the function gg and at most |I(v)| distinct functions gi
with i € I(v). Since we have only |V| possible functions g,, the total number of
distinct boolean functions in h and, by Remark 12.1(1), the entropy E(h) of h, cannot
not exceed [V|+ 3 o, I(V)].

On the other hand, we have that Wires(I,J) > [V|+, ., [I(v)|. Indeed, Y, _, [I(v)|
is the number of wires going from I to V and, since (by the definition of V) from every
node in V there must be at least one wire to a node in J, |V| is at most the total number
of wires from V to J.

To finish the proof, observe that all output functions f; with j € J must be com-
putable from the set of functions g, with v € V: only these functions have an influence
(have a wire) to the outputs in J. Hence, the suboperator f; ; must be computable
from h, as well. Remark 12.1(3) implies that

E(fi) SEM < VI+ Y IO,

vev

as desired. U

REMARK 12.3. Note that our lower bound on the number of wires going from V
to J is very “pessimistic”: we lower bound this number just by the number |V| of the
starting nodes of these wires, as if these nodes had fanout 1. Here, apparently, is some
space for an improvement.

THEOREM 12.4. Let f be an operator. Then, for every partition I, ..., I, of inputs,
and every partition Jy, ..., J, of outputs, we have that

size,(f) = E(f7,4,) + E(fr, )+ + E(fIP,Jp)-

ProoE. No wire can leave two input nodes, and no wire can enter two output
nodes. Hence, the result follows directly from Theorem 12.2. O

12.1.2. Application: Matrix product. Let n = m?. The operator f = mult,(X,Y)
of matrix product takes two m-by-m matrices X and Y as inputs, and produces their
product Z = X - Y. Since Z is just a sequence of m? scalar products in 2m variables
(row of X times a column of Y), all these scalar products can be computed by depth-1
circuit using 2m - m? = 2n°/? wires.

3/2

THEOREM 12.5. Any depth-2 circuit for mult,(X,Y) requires at least n>’= wires.

ProoF. Observe that if we take I to be the ith row of X and J to be the ith row
of Z, then the suboperator f;; contains all m? = n single variables of Y among its
boolean functions. Indeed, if we set x;; = 1 and all other entries of X to O, then the
product E;; - Y of Y with the resulting (0, 1) matrix E;; is just the jth row of Y (see
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ilolooo0o0o0 | [ ———

Eij Y z
FIGURE 1. As j ranges from 1 to m, the values of E; ;Y range through
all m single variables y; ,,...,y; , of the ith row of Y.

Fig. 1). When doing this for j = 1,...,m, we obtain all m? variables Y = {y; i} among
the functions in f; ;. By Remark 12.1(2), we then have that E(f; ;) > n.

Since we have m = n'/? rows, we have m sets I,...,I, of inputs and m sets
Ji,...,J, of outputs. Since the I;’s as well as J;’s are disjoint, Theorem 12.4 implies
that every depth-2 circuit computing f(X,Y) = X -Y must have at least Zznzl E(f,,) =

3/2 wires. O

mn=n

REMARK 12.6. Note that the entropy of the matrix product operator f(X,Y) =X-Y
is large only for this special “row-wise” partition of inputs and outputs. In particular,
E(fli’Jj) <l=m= v/n for i # j, because in this case the assignments of constants to
the ith row of X does not affect the results computed at the jth row of Z, which are m
scalar products of m columns of Y with the jth row of X.

There are, however, “more complicated” operators, whose entropy remains large
under any partitions of inputs and outputs. Such is, for example, the operator of
cyclic convolution f = conv,(x,y). This operator takes vectors x = (x,...,Xx,_;) and
¥y =(¥p,.-->Yn_1) as inputs and outputs the vector 2 = (2, ..., 2,_1), where

;= Z x;¥r (mod 2).

k=i+j (mod n)

This operator can also represented as a matrix-vector product. Namely, associate with
a vector of variables x = (x, ..., x,_;) the following n x n matrix of variables:

Xo Xp—1 o Xg Xy
Xl XO e X3 XZ
Circe(x) =
Xp—2 Xp—3 *°° Xo Xp
Xp—1 Xp—2 7 X1 Xp

Then conv,(x,y) = Circ(x) -y over GF(2).

ExERCISE 12.7. Let n = k-1. Show that, if we partite input vector x into p =n/k =1
consecutive intervals Iy,...,I, of length n/p = k, then there exists a partition of the
output vector z into q = n/p = k disjoint sets J, ..., J, such that E(Convn(x,y)li,Jj) >n
for any i and j. Hint: Consider residue classes modulo p.



174 12. DEPTH-2 CIRCUITS WITH ARBITRARY GATES

12.2. Depth-2 circuits for linear operators

Every m-by-n (0,1)-matrix A defines a linear transformation f,(x) = Ax over
GF(2), where x € GF(2)" is an input. If A is an n X n matrix, then we call f, a
linear n-operator. Each such operator is just a set of n linear forms over GF(2).

We are interested in computing such forms by general circuits using as few wires
as possible. We are particularly interested in circuits of depth 2, the first nontrivial
case. Recall that such a circuit is a directed acyclic graph of depth 2 with n input nodes
X1,...,X,, n output nodes yi,...,¥, and every non-input node v assigned a gate g,
computing an arbitrary boolean function of its inputs; there is no bound on the fanin
or on the fanout of the nodes. A circuit is linear if all gates are linear functions over
GF(2), that is, parities or their negations.

PROPOSITION 12.8. Some linear n-operators require at least Q(n?/log n) wires in any
linear circuits, and any such operator can be computed by a linear depth-2 circuits using
0(n?%/logn) wires.

ProOOF. Simple counting argument shows that at most (nL)°®) different linear n-
operators can be computed by linear circuits with at most L wires. Since the total
number of such operators is 2”2, the lower bound L = Q(n?/log n) follows.

For the proof of the upper bound, we use a well-known fact, due to Erdos, that, if
a graph G has n vertices and e edges, and k satisfies

()= ()

then G contains a complete k X k subgraph. By removing these subgraphs one-by-one,
we will decompose the graph into its edge-disjoint complete bipartite subgraphs so that
the sum of sizes (=number of vertices) of these subgraphs does not exceed O(n?/Inn).
This decomposition then can be used to construct a linear depth-2 circuit for the matrix
A with the same number of wires: the set of input nodes and output nodes, incident to
fixed node on the middle layer, forms a bipartite graph. Since, due to the linearity, this
circuit must also compute the whole operator f,, we are done. U

Nothing similar, however, is known for general (non-linear) circuits computing
linear operators. Here even the case of depth-2 circuits remains unclear. The largest
lower bound for general depth-2 circuits computing a linear n-operator has the form
Q(nlogn). This bound was proved by Pudlak (1994) and is achieved by a triangular
matrix A.

To show the difference between linear and general circuits for linear operators, we
relax the problem and only require that a circuit correctly computes the operator on
the standard basis e;,...,e,, where e; = (0,...,0,1,0,...,0) with precisely one 1 in
the jth position.

Namely, say that a circuit represents a boolean matrix A = (a;;) if it correctly
computes the linear operator Ax over GF(2) on all n unit vectors ey, ...,e,; on other
input vectors x the circuit can output arbitrary values. Hence, if f = (fi,...,f,) is
the operator computed by a circuit representing A, then the only requirement is that
fi(e;) = a;; must hold for all i and j.

It is clear that any circuit computing the whole operator f,x) = Ax must also rep-
resent the matrix. Moreover, in the class of linear circuits we also have an inverse: a
linear circuit represents a matrix A if and only if it computes the entire linear transfor-
mation Ax. This holds, because the behavior of a linear circuit on all 2" input vectors x
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is completely determined by its behavior on n unit vectors: just write each input vector
x =(xq,...,x,) as the sum x = x,e; ®--- ® x,e, and use the linearity of gates.

We will now show that in the class of general circuits the situation is entirely
different. Recall that, by Proposition 12.8 and the remark in the previous paragraph,
in the class of linear circuits some matrices A require Q(n?/logn) wires to represent
them.

THEOREM 12.9. Every n x n (0, 1) matrix A can be represented by a depth-2 circuit
with O(nlogn) wires.

ProOE. We construct the desired depth-2 circuit representing A = (a;;) as follows.
Let m be the smallest even integer such that (m"/lz) > n; hence m = O(Inn). Take m
middle nodes V = {vy,...,v,}. To each input variable x; assign its own subset S; C V
of |S;| = m/2 middle nodes; hence, S; < S;, iff j; = j,. Join x; with all nodes in S;.
Finally, connect each v € V with all output nodes. The total number of wires is then
n(m/2)+nm = O(nlnn).

Now we assign gates to the nodes. If v is a node on the middle layer connected to
inputs x;j ,...,X;,, then assign to v the gate g, = x; @--- ® x;,. To the ith output node
we assign the gate

¢; = a;1h; ® a;hy @ -+ ® a;,h,, where by, = l_[ gy -
VES)
Then
hi(e;) = 1iff g,(e;) =1 forall v € S

iff x; is connected to all nodes in Sy

iff S € S;

iff k =j.
Hence, h;(e;) =1 and hy(e;) = 0 for all k # j. Thus, if f;(x) is the function computed
at the ith output gate then, for all j =1,...,n, we have that

file;)=¢i(e;))=a;y- 0@ ®a;-1®-Da, - 0=aq;,

as desired. O

We now show that the upper bound nlogn in Theorem 12.9 is almost optimal. We
will use the following so-called “sunflower lemma” of Erdés and Rado (1960) which
has found many applications in circuit complexity. !

A sunflower with k petals is a family S, ..., S of k finite sets, each two of which

share precisely the same set of common elements, called the core of the sunflower (see
Fig. 2). That is, there is a set C (the core of the sunflower) such that

§;ns;=C forall1<i<j<k.

In other words, each element belongs either to none, or to exactly one, to all of the S;.
In particular, all sets S; — C are mutually disjoint.

LEMMA 12.10 (Sunflower Lemma). Every family of more than s!(k — 1)° sets, each
of which has cardinality at most s, contains a sunflower with k petals.

1Interestingly, without knowing this lemma, Razborov in his seminal result on monotone circuits re-
discovered and essentially used this phenomenon—Ilarge structures have some regular patterns.



176 12. DEPTH-2 CIRCUITS WITH ARBITRARY GATES

FIGURE 2. A sunflower with 8 petals

ProoF. We proceed by induction on s. For s = 1, we have more than k — 1 points
(disjoint 1-element sets), so any k of them form a sunflower with k petals (and an
empty core). Now let s > 2, and & be a family of |Z| > s!(k — 1)° sets, each of
cardinality at most s. Take a maximal family .o/ = {A;,...,A,} of pairwise disjoint
members of Z.

If t > k, these sets form a sunflower with t > k petals (and empty core), and we
are done.

Assume that t < k— 1, and let B =A; U---UA,. Then |B| < s(k — 1). By the
maximality of .«/, the set B intersects every member of & . By the pigeonhole principle,
some point x € B must be contained in at least

7| _stk=1y gyl

members of &. Let us delete x from these sets and consider the family
Z, ={S—{x}|SeZ, xeS}.

By the induction hypothesis, this family contains a sunflower with k petals. Adding x to
the members of this sunflower, we get the desired sunflower in the original family % .
O

For a matrix A, let dist(A) denote the smallest Hamming distance between the
columns of A.

THEOREM 12.11. Every depth-2 circuit representing an n by n (0, 1)-matrix requires
at least

o(dist(4)- Inn )

Inlnn
wires.

Proor. Fix a minimal depth-2 circuit with arbitrary gates representing a given
matrix A. Without loss of generality, we may assume that there are no direct wires
from inputs to outputs: this can be easily achieved by adding at most n new wires. Let
X1,...,X, be its input nodes, and S, ...,S, be sets of their neighbors on the middle
layer. Let fi,...,f, be the functions computed at the output nodes. Since the circuit
represents A, we must have that fi(e;) = q;; forall 1 <1i,j <n.

Let L, be the number of wires leaving the input nodes, and L, the number of wires
entering the output nodes. Hence, L; = Z?:l |S;|, and L; + L, is the total number of
wires. Set

m:=clnn/Inlnn (12.1)
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for a sufficiently small absolute constant ¢ > 0. If we have L, > mn wires leaving the
input nodes, then we are done. So, assume that L; < mn. Our goal is to show that
then we must have L, > m - dist(A) wires entering the output nodes.

Our assumption 2?21 |S;| < mn implies that at least n/2 of the sets S; must be of
size at most s = 2m. Hence, if the constant ¢ in (12.1) is small enough then, by Sun-
flower Lemma, these sets must contain a sunflower with k = 2m petals. Having such
a sunflower with a core C, we can pair its members arbitrarily (S, ,S; ),...,(S, ,Sq J;
hence, S, NS, = C foralli=1,...,m. Important for us will only be that the symmetric
differences

SPi ® SQi = (SPi - SQi) U (SPi - SQi) = (SPi U SQi) -C
of these pairs of sets are mutually disjoint. Hence, we have m mutually disjoint subsets
S,, @S, of nodes on the middle layer, and we only have to show that each of these sets
has at least d = dist(A) outgoing wires: then L, > m - dist(A).

Fix one of the pairs (S,,S,). Since the circuit represents the matrix A, the value
f(e;) of the computed operator f = (fy,..., f,) on the jth unit vector must be the jth
column of A. Since the Hamming distance between the pth and the gth columns of A
must be at least d, there must exist a set I of |I| > dist(A) rows such that

fie,) # fi(ey) foralli € 1. (12.2)

CraiM 12.12. Every output f; with i € I must be adjacent to at least one node in
S,®S,.
p ¥ q

ProOF. Let V be the set of all nodes on the middle layer. For a node v € V, let
g,(xq,...,x,) be the boolean function computed at this node. Claim 12.12 is a direct
consequence of the following two observations about the behavior of the gates g, on
unit vectors. Let 0 denote the all-0 vector.

OBSERVATION 12.13. For every input node j € {1,...,n}, we have that g,(e;) =
g,(0) iff the wire (j, v) is not present.

PrOOE. («): If the wire (j, V) is not present, then g, cannot depend on jth input
variable x;, and this is the only variable set to 1 by e;.

(=): Suppose that the wire (j,v) is present. To show that then g,(e;) # g,(0),
assume that g,(e;) = g,(0). Then we can remove the wire (j,v) and replace g, by a
new boolean function g, obtained from g, by fixing the jth variable x; of g, to 0. By
our assumption g,(e;) = g,(0), we have that g;(ej) = g,(0) = g,(e;), as e; has only
one 1 in position j and the jth variable x; is already set to 0 in g;. For the remaining
unit vectors e, with k # j, we also have that g/(e;) = g,(e;), just because the jth
position of e, is 0. Hence, we have removed one wire (j,v), and the resulting circuit
still represents A. This contradicts the minimality of our original circuit. t

OBSERVATION 12.14. Forall v ¢ S, ®S,, we have that g,(e,) = g,(e,).

Prook If v € S, US,, then neither the wire (p,v) nor the wire (q,v) is present.
Observation 12.13 implies that then g, (e,) = g,(0) = g(e,).

Ifv€S,NS,, then both wires (p,v) and (g, v) must be present. Observation 12.13
implies that then g, (e,) # g,(0) as well as g, (e,) # g,(0). Hence, in this case we also
have that g,(e,) = g, (e,), just because g, can take only two values. O

To finish the proof of Claim 12.12, take the boolean function f; computed at the
ith output gate with i € I. The value of f; only depends on the values of gates g,
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computed at the nodes on the middle layer. Hence, if there would be no wire from a
node in S, ® S, to the ith output f;, then Observation 12.14 would imply that all gates
on the middle layer, connected to f;, would output the same values on input vectors e,
and e,. But this would imply f;(e,) = fi(e,), a contradiction with (12.2).

This completes the proof of Claim 12.12. t

By Claim 12.12, for each of m pairs (S, ,S, ) of subsets of nodes on the middle
layer, there must be at least |I| > dist(A) wires going from the vertices in S, & S,
to the output layer. Since the sets S, & S, , i = 1,...,m, are mutually disjoint, the
total number of wires going from the middle layer to the output layer must be at least
m - dist(A), as desired.

This completes the proof of Theorem 12.11. t

There are explicit nxn (0, 1) matrices H, (so-called Sylvester-Hadamard matrices)
such that dist(H,,) > n/2 but, still, the entire linear transformation y = H,x can be
computed by a linear depth-2 circuit with nlog, n wires (Exercise 12.3). Thus, the
lower bound in Theorem 12.11 is almost tight. But only “almost.”

RESEARCH PrROBLEM 12.15. Can the factor 1/Inlnn in Theorem 12.11 be removed?

12.3. Relation to circuits of logarithmic depth

A depth-2 circuit of width w has n boolean variables x,,...,x, as input nodes,
w arbitrary boolean functions h,...,h, as gates on the middle layer, and arbitrary
boolean functions gi,..., g, as gates on the output layer. Direct input-output wires,
connecting input variables with output gates, are now allowed! Such a circuit com-
putes an operator f = (fy,...,f,): GF(2)" —» GF(2)" if, foreveryi =1,...,n,

filx) = gi(x, hy (%), ..., by, (x)).

The degree of such a circuit is the maximum, over all output gates g;, of the number of
wires going directly from input variables x,,...,x, to the gate g;. That is, we ignore
the wires incident with the gates on the middle layer. Let deg,, (f) denote the smallest
degree of a depth-2 circuit of width w computing f.

It is clear that deg,(f) = 0: just put the functions fi,..., f, on the middle layer.
Hence, this parameter is only nontrivial for w < n. Especially interesting is the case
when w = O(n/Inlnn):

LEmMma 12.16. If deg,, (f) = n®® for w = O(n/Inlnn), then f cannot be computed
by a circuit of depth O(In n) using O(n) fanin-2 gates.

PrOOE. Suppose that f = (f,...,f,) can be computed by a circuit ¢ of depth
O(Inn) using O(n) fanin-2 gates. By Lemma 10.2, for an arbitrary small constant
€ > 0, any such circuit can be reduced to a circuit of depth at most ¢ logn by removing
at most w = O(n/loglogn) edges. Put on the middle layer all the w boolean functions
computed at these edges, and connect each middle node with all inputs as well as
with all outputs. Since a subcircuit of & computing each f; has depth at most ¢logn,
each such subcircuit can depend on at most 2°1°8™ = n® input variables. Hence, the
obtained depth-2 circuit has degree at most n°. Since this holds for arbitrary small
constant ¢ > 0, we are done. t

The highest known lower bound for an explicit operator f, proved by Pudlak, Rodl
and Sgall (1997) has the form deg,,(f) = Q((n/w)In(n/w)), and is too weak to have
a consequence for log-depth circuits.
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A natural question therefore was to improve the lower bound on the degree at
least for linear circuits, that is, for depth-2 circuits whose middle gates as well as
output gates are linear boolean functions over some field F. Such circuits compute
linear operators f,(x) = Ax for some matrix A over F. By Lemma 12.16, this would
give a super-linear lower bound for log-depth circuits over {®, 1}. (Even over this basis
no super-linear lower bound is known so far!)

This last question attracted attention of many researchers because of its relation
to a purely algebraic characteristic of the underlying matrix A—its rigidity. Recall that
the rigidity %, (r) of a matrix A is the smallest number of entries of A that must be
changed in order to reduce its rank over [ until r. That is,

R, (r)=min{|B| : tk(A—B) <r}.

It is not difficult to show that any linear depth-2 circuit ® of width r computing Ax
must have degree at least 2, (1) /n: If we set all direct input-output wires to 0, then the
resulting degree-0 circuit will compute some linear transformation A’x. The operator
y = A'x takes 2% different values. Hence, the operator H : GF(2)" — GF(2)"
computed by w boolean functions on the middle layer of ® must take at least so many
different values, as well. This implies that the width r must be large enough to fulfill
2" > 24 from which rk(A’) < r follows. On the other hand, A’ differs from A in at
most dn entries, where d is the degree of the original circuit ®. Hence, Z,(r) < dn
from which d > 2, (r) /n follows. Thus an explicit n x n (0, 1) matrix A with

R, (r)>n't® for r=0(n/Inlnm)

would give us a linear operator f,(x) = Ax which cannot be computed by log-depth
circuit over {®, 1} using a linear number of parity gates. To prove such a lower bound
even over this basis remains an open problem!

Motivated by its connection to proving lower bounds for log-depth circuits, matrix
rigidity (over different fields) was considered by many authors.

It is clear that %, (r) < (n—r)? for any n X n matrix A: just take an arbitrary r x r
submatrix A’ of A and set to O all entries outside A. Valiant (1977) has proved that
n x n matrices A with %, (r) = (n — r)? exist if the underlying field is infinite. For finite
fields the lower bound is only slightly worse.

LEMMA 12.17. There exist n X n matrices A over GF(2) such that
n—r)>—2n—1log,n
Ry (r) > ( 1) ) 82 forall r<n—+/2n+log,n. (12.3)
0g,(2n

ProoE. Direct counting. Recall that the rigidity 2, (r) of A over GF(2) is the
smallest number |B| of nonzero entries in a (0, 1) matrix B such that rk(A@® B) < r. For

2
|B| = s there are at most (ns ) < n% possibilities to chose s nonzero entries of B, and at

most (2)2 < 227 possibilities to chose a nonsingular r x r minor of A®B. Assuming that
s is strictly smaller than the lower bound on %, (r), given in (12.3), it can be easily
verified that the number of possible matrices A is upper bounded by 2”2/ n, which is
smaller than the total number 2" of such matrices. O

The problem, however, is to exhibit an explicit matrix A of large rigidity. The
problem is particularly difficult if we require A be a (0, 1) matrix or at least a matrix
with relatively few different entries.

Explicit n X n £1 matrices A of rigidity 2, (r) = Q(n?/r) over the reals is easy to
present.
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Let n = 2™. The n X n Sylvester 1-matrix S, = (s;;) by labeling the rows and
columns by m-bit vectors x, y € GF(2)™ and letting s;; = (—=1)%¥). Hence,

+1 41 +1 41
C[+1 +1 [ S S RS R | s, s,
SZ_[H —1}’ $4= |41 41 -1 -1| and SZ"_{SH S, |’
+1 -1 -1 41

where S, is the matrix obtained from S, by flipping all +1’s to —1’s and all —1’s to
+1’s. The rigidity of these matrices over the reals is n/4r.

THEOREM 12.18. If r < n/2 is a power of 2 then s (r) > n*/4r.

ProoE. Divide S,, uniformly into (n/2r)? submatrices of size 2r X 2r. One can
easily verify that these submatrices each have full rank over the reals. So we need
to change at least r elements of each submatrix to reduce each of their ranks to r, a
necessary condition to reducing the rank of S, to r. The total number of changes is
then at least r - (n/2r)? = n%/4r. O

This proof works for any matrix whose submatrices have full rank. Consider the
n X n matrix B = (b;;) where b;; = 1 if i = j mod 2r, and b;; = 0 otherwise. By the
same proof Zj () > n?/4r even though the rank of B is only 2r.

The same argument also yields a lower bound n?/2r on the rigidity of the follow-
ing (0, 1) matrix D, over GF(2). The matrix D, is defined for all n of the form n = 2™
by the following recursion:

1111

11 1010 D, D,

DZ_[1 0}’ Ds=11 10 0 andDZﬂ‘[Dn 0]'
100

These bounds on rigidity are, however, still too weak to have consequences for log-
depth circuits over {®, 1}.

Exercises

Ex. 12.1. Consider circuits of arbitrary depth with all boolean functions allowed as
gates. Prove that operators f : {0,1}" — {0, 1}" requiring Q(n?) gates in such circuits
exist.

Hint: Let u(L) be the number of different n-operators f : {0,1}* — {0,1}" computable by boolean
circuits with at most L wires. Since we have 22" different n-operators, each of which requires a different
circuit, it is enough to show that L must be large in order to fulfill the inequality u(L) > 272" Hence, what
we need is a good enough upper bound on u(L) in terms of n and L.

The first instinct—just count, as Shannon did—will not work (directly). If the ith gate has d; inputs,
then there is a huge number 22% of possibilities to assign a boolean function ¢; to this gate. If d; is larger
than n + log, n, then the number of these possibilities alone exceeds the total number (22" = 2m2" of all
n-operators! Shannon hasn’t faced this situation, since d; < 2 in his model.

This unpleasant situation can, however, be avoided by an amazingly simple idea: just turn the power
of the circuit against itself in order to ensure that d; < n must hold in any optimal circuit.

Show that we can assume that we have m < n? gates, and that no gate in circuit has fanin larger than
n. Use this to show that, if dq,...,d,, is a sequence of fanins of the gates in an optimal circuit with < L
wires, then

m
log, w(L) < ZZdl’ +0(n%logn).
i=1
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Show that at most n/2 gates can have fanin d; larger than 2L /n, and use this to give an estimate

m

D 2% <o(n?4tmy 2mt,

i=1

Ex. 12.2. Recall that the rank rk(A) of an n X n matrix A over some field is the

smallest number r such that A can be written as a product A= B - C of an n X r matrix
B and an r x n matrix C. We now introduce a “weighted” version of rank and show
that it coincides with the number of wires in linear depth-2 circuits computing Ax. For
a (0,1) matrix A, let |A| be the number of 1’s in A. Define

Rk(A) = min{|B|+|C|:A=B-C}.

That is, now we are interested not in the dimension of the matrices B and C but rather
in the total number of 1’s in them.
Prove that Rk(A) is precisely the smallest number of wires in a linear depth-2 circuit
computing f,(x) = Ax.

Hint: Take as B and C the adjacency matrices of the bipartite graphs formed by the first and the second
level of wires.

Ex. 12.3. Let n = 2" and consider a bipartite n x n (0,1) matrix H,, whose rows
and columns are indexed by vectors in GF(2)", and H,[x, y] = 1 iff (x,y) =1, where
(x,y) is the scalar product over GF(2). Such matrices are known as (0, 1)-Sylvester
matrices.

a. Show that H, can be defined inductively by
0 0 O

0 O 0 H, H
H2= [O 1} N H4= 0 al‘ld H2n= { " n} 5
0

Hn ﬁn

—_ O
O~ =) O

0
1
1

where H,, is the matrix obtained from H,, by flipping all its entries.

b. Show that y = H,x can be computed by a linear depth-2 circuit using O(nlogn)
wires. Hint: Exercise 12.2.

c. Show that dist(H,,) > n/2.

Ex. 12.4. Research problem. For an n x n (0,1) matrix A, let size,(A) denote
the minimum number of wires in a depth-2 circuit with arbitrary boolean functions as
gates computing the linear transformation y = Ax for all vectors x € GF(2)".

Does matrices A with size,(A) = Q(n?/logn) exist?

Ex. 12.5. LetAbe an n x n (0,1) matrix, and a = a(n) > 2. Prove that then

) 1 n n®
size,(Ax) > —4/n- %, (—) -—,
a a a

where %, (r) = min {|B| : tk(A® B) < r} is the rigidity of A over GF(2).

Hint: Take a depth-2 circuit computing Ax and let L be the number of wires in it. Say that a node v is

large if d(v) > aL/n, and small otherwise. Show that the total number of large nodes in the circuit must be
smaller than n/a. Set all large outputs y; to constant 0, and remove all wires incident to such inputs. The
resulting circuit computes a linear operator A’x for an n’ x n submatrix A” < A of A obtained by setting to 0’s
all its entries in the rows corresponding to large outputs y; of the original circuit. What is |A — A’|? Remove
now all small nodes on the middle layer. The resulting circuit still computes some linear operator Bx. How
is B obtained from A’? How large is |A" — B|? In a resulting circuit for Bx, every path from an input node
to an output node must go through some large node on the middle layer. But there are at most n/a such
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nodes. Show that therefore, rk(B) < n/a. Now use the definition of rigidity to give the desired lower bound
on the number L of wires in the original circuit for Ax.

Ex. 12.6. Use Lemma 12.17 and the previous exercise to show that some boolean

n X n matrices A require
. n \3/2
size,(Ax) =Q ) .
logn

Ex. 12.7. Research Problem. Prove or disprove: If a linear operator f,(x) = Ax
can be computed by a depth-2 circuit of degree d and width w, then f, can also be
computed by a linear depth-2 circuit of degree O(d) and width O(w).

Comment: Some partial results towards the positive answer are given in [87].

Ex. 12.8. Show that the only “sorrow” with the previous problem is the possible
non-linearity of the gates on the last (output) layer: If a depth-2 circuit & computes
a linear operator f,(x) = Ax and has linear gates on the output layer, then & can be
transformed into an equivalent linear circuit of the same size and width.

Hint: Replace the operator h : {0,1}" — {0, 1}, computed at the middle layer, by a linear operator H’(x) :=

>, x;H(e;) mod 2.

Ex. 12.9. A boolean function f if symmetric if there is a set L of natural numbers
(called the type of f) such that f accepts a binary vector x iff the number of 1’s in x
belongs to L. A symmetric depth-2 circuit is a depth-2 circuit with parity gates on the
middle layer, and symmetric boolean functions of the same type on the output layer.
Let sym; (A) denote the smallest number of nodes on the middle layer of a symmetric
depth-2 circuit of type L representing a (0, 1) matrix A = (q;;). Let also sym(A) be the
minimum of sym, (A) over all types L < {0,1,...}.

(a) Show that sym;(A) = smallest number r for which it is possible to assign each
row/column i a subset S; € {1,...,r} such that a;; =1 if and only if |S; N S;| € L.
(b) Show that sym(A) = Q(n) for almost all n X n matrices A.

Ex. 12.10. Let n = 2™, and consider an n X n Sylvester matrix H,. Its rows
and columns are labeled by vectors in GF(2)™, and the entries of H, are the scalar
products of these vectors over GF(2). A type L € {0,1,...} is a threshold-k type if
L={k,k+1,...}. Prove that

sym; (H,) = Q(+/n) for any threshold type L.

Hint: Let r = sym;(H,), and consider an assignment i — S; of subsets S C {1,...,r} to rows/columns
of H, = (h;;) such that h;; = 1iff [S; NS;| = k. Take E = {(i,j) | h;; = 1} and consider the family
F ={F,...,F.} with F, = {(i,j) | k € ;N S;}. Show that r > thrgz(E), where thrg(E) is the threshold
cover number of E dealt with in the Discriminator Lemma (Lemma 10.24). Then use Lindsey’s Lemma
(Lemma 10.25) to show that Disc4(E) = O(n’l/z).

Ex. 12.11. Research Problem. Exhibit an explicit n x n (0, 1) matrix A such that
sym(A) > 20081ogn)* for some a(n) — oo.

Comment: By results of Yao (1990) and Beigel and Tarui (1994) (combined with the Mag-
nification Lemma for graphs), this would yield a super-polynomial lower bound for ACC circuits,
and thus, resolve an old problem in circuit complexity. Actually, as shown by Green et al. (1995),
it would be enough to prove such a lower bound on sym, for a special kind of types L consisting
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of all natural numbers whose binary representations have bit 1 in the middle. Such types (called
also middle-bit types) consist of disjoint intervals of consecutive numbers.

Ex. 12.12. Research Problem. Say that L € {0,1,...} is an interval type if
L =1{a,a+1,...,b} for some nonnegative integers a < b. Let sym;,,(A) denote the
minimum of sym; (A) over all interval types L.
Exhibit an explicit n x n (0, 1) matrix A such that sym,,(A) is larger than 2(oglogn)” fop
any constant c.

Comment: This would be a major step towards resolving the previous problem.

Ex. 12.13. Let F be a depth-2 circuit computing a linear operator f,(x) = Ax
where A is an n x n (0,1) matrix. Assume that all output gates are linear boolean
functions; the gates on the middle layer may be arbitrary boolean functions. Assume
also that there are no direct wires from inputs to outputs.

Show that F can be transformed into a linear depth-2 circuit with the same number of
wires computing f,.

Hint: Let h be the operator computed by the gates on the middle layer. Write each vector x = (x1,...,x,)
as the linear combination x = Z?:l x;e; of unit vectors eq,...,e,, and replace the operator h by a linear
operator h'(x) := Z?:l x;h(e;) mod 2. Show that the obtained linear circuit computes f, and that the
number of wires has not increased.
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CHAPTER 13

Decision Trees

A decision tree is an algorithm for computing a function of an unknown input.
Each vertex of the tree is labeled by a variable and the branches from that node are
labeled by the possible values of the variable. The leaves are labeled by the output of
the function. The process starts at the root, knowing nothing, works down the tree,
choosing to learn the values of some of the variables based on those already known
and eventually reaches a decision. The decision tree complexity of a function is the
minimum depth of a decision tree that computes that function.

To be a bit more precise, let f : {0,1}" — {0,1} be a boolean function. A de-
terministic decision tree for f is a binary tree whose internal nodes have labels from
x1,...,X, and whose leaves have labels from {0, 1}. If a node has label x; then the test
performed at that node is to examine the ith bit of the input. If the result is O, one
descends into the left subtree, whereas if the result is 1, one descends into the right
subtree. The label of the leaf so reached is the value of the function (on that particular
input).

13.1. P = NP N co-NP for the tree depth

The depth of a decision tree is the number of edges in a longest path from the root
to a leaf, or equivalently, the maximum number of bits tested on such a path.

Let Depth(f) denote the minimum depth of a decision tree computing f.

Given an input a = (ay,...,qa,) from {0,1}", we would like to know whether
f(a) =1 or f(a) = 0. How many bits of a must we see in order to answer this
question? It is clear that seeing Depth(f) bits is always enough: just look at those bits
of a which are tested along the (unique!) path from the root to a leaf.

In a deterministic decision tree all the tests are made in a prescribed order inde-
pendent of individual inputs. Can we do better if we relax this and allow for each input
a to choose its own smallest set of bits to be tested? This question leads to a notion of
“nondeterministic” decision tree.

A nondeterministic decision tree for a boolean function f(xy,...,x,) is a (not nec-
essarily binary) tree each whose edge is labeled by a literal (a variable or a negated
variable). One literal can label several edges leaving one and the same node. Such
a tree T computes f in a nondeterministic manner: T(a) = 1 iff there exists a path
from a root to a leaf such that all literals along this path are consistent with the input
a, that is, are evaluated to 1 by this input. Let D;(f) denote the smallest depth of a
nondeterministic tree computing f, and define the dual measure by Dy(f) = D,(—f).
It is not difficult to verify that

D,(f)=min{k | f can be written as a k-DNF}

and
Dy(f)=min{k | f can be written as a k-CNF}.

186
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FIGURE 1. A decision tree of depth 3; on input (0, 1,0) it outputs 1.

It is clear that max{D,(f),D;(f)} < Depth(f), that is, for every input a, seeing its
Depth(f) bits is enough to determine the value f(a), be it 0 or 1. Is this upper bound
optimal? The following example shows that this may be not the case: there are boolean
functions f for which

max{Dy(f),D,(f)} < v/Depth(f).

Such is, for example, the monotone boolean function f(X) on n = m? boolean vari-

ables defined by:
f= /\ \/ Xij -
i=1j=1
For this function we have Dy(f) = D;(f) = m but Depth(f) = m? (see Exercise 13.1),
implying that Depth(f) = Dy(f) - D1(f).
It turns out that the example given above is, in fact, the worst case: if a boolean
function f can be written as an s-CNF as well as a t-DNF then Depth(f) <s-t.

THEOREM 13.1. For every boolean function f,
Depth(f) < Do(f)-D1(f).

Proor. Induction on the number of variables n. If n = 1 then the inequality is
trivial.

Let (say) f(0,...,0) = 0; then some set Y of k < D,(f) variables can be cho-
sen such that by fixing their value to 0, the function is 0 independently of the other
variables. We can assume w.l.0.g. that the set

Y:{xl;"':xk}

of the first k variables has this property.

Take a complete deterministic decision tree T, of depth k on these k variables.
Each of its leaves corresponds to a unique input a = (aj,...,a;) € {0,1}* reaching
this leaf. Replace such a leaf by a minimal depth deterministic decision tree T, for the
sub-function

far=f(ay, o s Qe Xpq1s -5 X0)
Obviously, Dy(f,) < Do(f) and D,(f,) < D;(f). We claim that the latter inequality can
be strengthened:
Dy(fJ) =Dy(f) -1 (13.1)

To prove this, take an arbitrary input (ay,,...,a,) of f, which is accepted by f,.
Together with the bits (ay,...,a;), this gives an input of the whole function f with
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f(ay,...,a,) = 1. According to the definition of the quantity D, (f), there must be a set
Z = {x;,...,x; } of m < D,(f) variables such that fixing them to the corresponding
values x; = a;,...,Xx; = q; , the value of f becomes 1 independently of the other
variables. A simple (but crucial) observation is that

YNnZ#0. (13.2)

Indeed, if Y N Z = 0 then the value of f(0,...,0,a,,1,...,a,) should be 0 because
fixing the variables in Y to O forces f to be 0, but should be 1, because fixing the
variables in Z to the corresponding values of a; forces f to be 1, a contradiction.

By (13.2), only |Z — Y| < m — 1 of the bits of (a;,,...,a,) must be fixed to force
the sub-function f, to obtain the constant function 1. This completes the proof of
(13.1).

Applying the induction hypothesis to each of the sub-functions f, with a € {0, 1},
we obtain

Depth(f,) < Do(f,) - D1(fo) < Do(f)(D1(f) — 1).
Altogether,

Depth(f) <k +m§1XDePth(fa) < Do(f) +Do(f)D1(f) — 1) =Do(f)D:1(f). 0

13.1.1. Block sensitivity. Let f : {0,1}" — {0,1} be a boolean function, and
a € {0,1}". A certificate of a is a subset S C {1,...,n} such that f(b) = f(a) for
all vectors b € {0,1}" such that b; = q; for all i € S. That is, the value f(a) can be
determined by looking at only bits of a in the set S. By C(f, a) we denote the minimum
size of a certificate for a. The certificate complexity of f is C(f) = max, C(f,a).

It is not difficult to see that C(f) = max{D;(f), Dy(f)}. Theorem 13.1 gives the
following relation between the decision tree depth of boolean functions and their cer-
tificate complexity:

C(f) < Depth(f) < C(f)*.
A similar relation also exists between certificate complexity and another important
measure of boolean functions — their “block sensitivity.”

For a vector a € {0,1}" and a subset of indices S C {1,...,n}, let a[S] denote the
vector a, with all bits in S flipped. That is, a[S] differs from a exactly on the bits in
S. For example, if a =(0,1,1,0,1) and S = {1, 3,4}, then a[S] =(1,1,0,1,1). We say
that f is sensitive to S on a if

flalsD# f(a).
The block sensitivity of f on a, denoted B(f, a), is the largest number t for which there
exist t disjoint sets Si,...,S, such that f is sensitive on a to each of these sets, i.e.,
f(a[S;]) # f(a) for all i = 1,...,t. The block sensitivity of a boolean function f is
B(f) = max, B(f,a).

THEOREM 13.2. For every boolean function f,
B(f) < C(f) <B(f)*.

Proor. The upper bound B(f) < C(f) follows from the fact that for any input a,
any certificate of a must include at least one variable from each set which f is sensitive
to on this input a.

The lower bound: B(f) > 4/C(f). Take an input a € {0, 1}" achieving certificate
complexity, i.e., every certificate for a has size at least C(f). Let S; be a minimal set
of indices for which f(a[S;]) # f(a), let S, be another minimal set disjoint from S,
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and such that f(a[S,]) # f(a), etc. Continue until no such set exists. We have, say, t
disjoint sets Sy,...,S, to each of which the function f is sensitive on a.

The union I = S; U---US, must be a certificate of a since otherwise we could pick
yet another set S, for which f(a[S,,;]) # f(a). Thus

Dlisid=111=c(f).

i=1

If t > 4/C(f) then we are done since B(f) > t. If not, then,
IS| = Il/t = C(f)/t = v/ C(f)

for at least one set S € {S;,...,S,}. Since S is a minimal set for which f (a[S]) # f(a),
this means that f(a[S — {i}]) = f(a) for every i € S. Thus, on the vector b := a[S],
the function f is sensitive to each single coordinate i € S; hence

B(f) = B(f,b) 2 S| = v/ C(f). 0

13.2. Depth lower bounds

To prove that some boolean function f requires decision trees of large depth, it is
useful to imagine the situation as a game between Alice and Bob. This time, however,
the players are not cooperative: Alice acts as an “adversary.” Bob knows the function
f :{0,1}"* — {0, 1} but does not know the actual input vector x € {0, 1}". He can ask
Alice what the ith bit of x is. Then what the jth bit is, and so on. He stops when he
definitely knows the answer “f (x) = 0” or “f(x) = 1.” Alice’s goal is to inductively
construct (depending on what bits Bob has already asked about) an input x on which
Bob is forced to make many queries. That is, Alice tries to construct an “evasive” path
forcing Bob to make his tree deep.

We demonstrate this on symmetric functions. Recall that a boolean function is
symmetric if every permutation of its variables leaves its value unchanged. That is, a
boolean function is symmetric if and only if its value depends only on how many of its
variables (not on which of them) are 0 or 1.

A boolean function f in n variables is called evasive if it has maximal possible
depth, that is, if Depth(f) = n.

LEMMA 13.3. Every non-constant symmetric boolean function is evasive.

Proor Let f : {0,1}" — {0, 1} be a symmetric boolean function in question. Since
f is not constant, there is a k with 1 < k < n such that if k — 1 variables have value 1
then the function has value 0 but if k variables are 1 then the function’s value is 1 (or
the other way round).

Using this, we can propose the following strategy for Alice. She thinks of a 0-1
sequence of length n and Bob can ask the values of each bit. Alice answers 1 on the
first k — 1 questions and O on every following question. Thus, after n — 1 questions,
Bob cannot know whether the number of 1’s is k — 1 or k, that is, he cannot know the
value of the function. (I

Every boolean function f in n variables splits the n-cube {0, 1}" into two disjoint
blocks f~1(0) and f~'(1). Since the number 2" of vectors in the n-cube is even, the
sizes of these blocks must be both even or both must be odd. It turns out that all
boolean function with odd block size are evasive.
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LEmMA 13.4. If |f ~1(0)| is odd then f is evasive.

Proor. Consider an arbitrary deterministic decision tree that computes the func-
tion f. Let v be an arbitrary node in this tree. If the depth of v is d, then exactly 274
of the possible inputs lead to v. In particular, any node whose depth is at most n — 1 is
reached by an even number of possible inputs. On the other hand, each input reaches
exactly one leaf. Thus, if |f ~1(0)| is odd, there must be a leaf that is reached by a
single input x with f(x) = 0; this leaf has depth n. O

Symmetric functions are very special; the following class is significantly more gen-
eral. Call a boolean function in n variables weakly symmetric if for all pairs x;, x; of
variables, there is a permutation of the variables that takes x; into x; but does not

change the value of the function. For example, the function
(g Ax) V (xg Axg) VeV (o Axp) V (00, A Xq)
is weakly symmetric but not symmetric (check this!).

THEOREM 13.5. Let n be a prime power. If f : {0,1}* — {0, 1} is weakly symmetric,
and f(0) # f (1), then f is evasive.

Proor. Every permutation 7 : [n] — [n] on input coordinates induces a permuta-
tion 7 : {0,1}" — {0, 1}" on the set of possible input vectors:

(X155 X0) = (Xr(1)s e e o5 Xp(m)) -

Let I" be the set of all permutation 7 that leave the value of the function unchanged,
that is,

F={n|f(@(x))=f(x)}.
It can be easily verified that I" forms a group. Moreover, since the function f is weakly
symmetric, this group is transitive, that is, for any pair of ground elements i and j,
there is a permutation 7t € I" such that (i) = j.

We define the orbit of a vector x € {0,1}" to be the set of images of x under

permutations in I":

orbit(x) = {7(x) | ® €T}.

CraiM 13.6. For any vector x except 0 or 1, the size |orbit(x)| is divisible by n.

ProoOF. Since x # 0 and x # 1, the orbit of x has more than one element. Let |x|
denote the number of 1’s in x. Then

Yo=Y Yn=Y Yo

yeorbit(x) yeorbit(x) i=1 i=1 yeorbit(x)

Since T is transitive, for every i, there must be a permutation 7t € I" such that 7(i) = 1.
Thus the last summand does not actually depend on i, implying that

D1 yl=n- D xn.
yeorbit(x) y<orbit(x)
Since all vectors in the orbit have the same number of 1s, we have
D7 Iyl =lorbit(x)| - |x|.
yeorbit(x)

Thus, |orbit(x)| - |x]| is divisible by n. On the other hand, 0 < |x| < n implies that |x|
is not divisible by n. Since n is prime power, Euclid’s theorem implies that |orbit(x)|
must be divisible by n. O



13.3. DECISION TREES FOR GRAPH PROPERTIES 191

By Lemma 13.4, the function f is evasive if

S:= Z (-1l #£0.

x€f1(0)

If f(x) = 0, then the orbit of x contributes

Z (=)' = |orbit(x)| - (= 1)

ye<orbit(x)

to this sum, since all vectors in orbit(x) have the same number of 1s. By Claim 13.6,
this is a multiple of n, except for the cases x = 0 and x = 1. Since exactly one of the
vectors 0 and 1 is in f ~1(0), the sum S is either one more or one less than a multiple
of n. In either case, S # 0, so f must be evasive. O

13.3. Decision trees for graph properties

We will now consider decision problems for graphs, like “is a given graph con-
nected?” or “does a given graph has a Hamiltonian cycle?” We will only consider
properties of graphs that are “label independent:”

(x) If a graph has this property then every graph isomorphic to it has that property.

In order to represent such a property as a boolean function, we have first fix a labeling
of vertices, say, 1,2,...,v. Then we introduce a boolean variable x; ; for each pair i # j
of vertices with value 1 if i and j are adjacent and O if they are not. Thus, each vector
x € {0,1}" with n = (;) gives us a (labeled) graph on v vertices. In particular, the
connectivity property for graphs corresponds then to a boolean function f such that
f(x) =1 iff the graph encoded by x is connected.

Due to (), the boolean function f corresponding to a graph property is weakly
symmetric: for every two pairs of vertices, say, {i, j} and {k,}, there is a permutation
of the vertices taking i into k and j into [. This permutation also induces a permutation
on the set of point pairs that takes the first pair into the second one and does not change
the value of f. In other words, a graph property f must be invariant under relabelings
of the vertices, or equivalently, under any permutation of the edges that is induced by
a permutation of the vertices.

A graph property is monotone if either (1) every subgraph of a graph with the
property also has the property, or (2) no subgraph of a graph without the property
has the property. For example, both properties “to have a k-clique” and “to be discon-
nected” are monotone: the first is preserved by adding edges, the second is preserved
by removing edges. A graph property is trivial if either every graph has it or no one
has it.

It turns out that every monotone non-trivial property of graphs on v vertices re-
quires decision trees of depth Q(v?). This is almost maximal since depth (;) is always

enough: just take a complete tree whose paths correspond to all 2() possible graphs.

Theorem 13.5 is not immediately useful for graph properties, since the number
n = (;) of possible edges is only a power of a prime when v = 2 or v = 3. Still, when
properly applied, the theorem works at least in the case when the number of vertices
v is a power of two. For this we will make use of the following simple principle, which
we already used several times without explicitly mentioning it:

The Little Birdie Principle:
Extra information cannot increase the complexity of the problem.
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Thus, in order to prove that it is hard to compute a function f on all inputs, it is enough
to show that it is hard to compute f on some subset of inputs.

THEOREM 13.7. Let v = 2™, and let f be a nontrivial monotone graph property of
v-vertex graphs. Then Depth(f) > v?/4.

PrROOE Let n = (;) and let f : {0,1}" — {0,1} be a nontrivial monotone graph
property. Let G, be the graph consisting of v/2k disjoint copies of the clique Ky« on 2*
vertices. In particular, G is the empty graph on v vertices (no edges at all), and G,,, is
the complete graph K, on v vertices. Since the property is non-trivial, we can assume
wlo.g. that f(Gy) =1 and f(G,,) = 0. By monotonicity, there is a unique index k
such that f(G;) =1 but f(G4,) =0.

Split the vertices into two equal sized parts, and suppose a little bird tells us that
the induced subgraph on each of the two parts consists of v/2"*1 disjoint copies of Kyx.
Now only v2/4 of the (;) bits actually matter, namely pairs i, j with i and j from dif-

ferent parts of the bipartition. Let f’: {0, 1}"2/ * - {0, 1} denote the induced (bipartite
graph) property on these bits; the remaining variables of f are fixed according to the
little bird’s information.

Since v is a power of two, v2/4 is a power of a prime. Moreover, f'(0) # f'(1),
since f/(0) = f(G) =1 and f'(1) = f(Gy4q+ some edges) = 0. Finally, f’ is invariant
under a transitive automorphism group induced by the vertex permutations that leave
the little birdie information fixed, that is, permute the vertices with the two parts of
the bipartition. This implies that f’ is weakly symmetric, and Theorem 13.5 yields
Depth(f) > Depth(f’) = v?/4, as desired. O

13.4. P # NP N co-NP for the tree size

The size of a decision tree is the number of all its leaves. Let Size(f) denote the
minimum size of a deterministic decision tree computing f. The minimum size of a
nondeterministic decision tree for f is denoted by dnf(f). Note that dnf(f) is just the
minimal number of monomials in a DNF of f. That is, dnf(f) is the minimal number t
such that f can be written as an Or of t monomials.

We already know that P = NP N co-NP for decision trees if we consider their depth
as complexity measure. In this section we will show that the situation changes drasti-
cally if we consider their size instead of the depth: in this case we have P # NP N co-NP.
Namely, there are explicit boolean functions f such that both f and its negation —f
have nondeterministic decision trees of small size, whereas the size of any determinis-
tic decision tree for f is super-polynomial.

Let f be a boolean function, and suppose we know that dnf(f) is small. Is then
the decision tree also small? The following examples show that it may be not the case:

m m
F=V A
i=1j=1

It can be shown that Size(f) > Zdnf(f ) (Exercise 13.4). Well, this function has very
small DNF (of size m) but the DNF of its negation
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is huge—it has m™ monomials. It is therefore natural to ask what happens if both the
function f and its negation —f have small DNFs? Put otherwise, does P = NP N co-NP
for decision trees if we consider the size as their complexity measure? Below we answer
this question negatively.

The sum N(f) := dnf(f) + dnf(—f) will be called the weight of f. It is clear that
N(f) < Size(f) (just because every decision tree represents both the function and its
negation). It was long unknown if Size(f) is polynomial in N(f), i.e. if Size(f) <
N(f)° for some absolute constant c.

It was however known that the decision tree size of any boolean function is quasi-
polynomial in its weight. In the next section we will show that this upper bound is
almost optimal: there are explicit functions f for which Size(f) = 2900g"N) Here and
throughout, log x stands for log, x.

We have seen (Theorem 13.1) that, if a boolean function f as well as its negation
—f can be written as a DNE, all whose monomial have length at most m, then f has
a deterministic decision tree of depth at most m?. For the size of trees we have the
following analogon:

THEOREM 13.8 (Upper bound). Let f be a boolean function in n variables and N =
dnf(f) + dnf(—f) be its weight. Then

< nO(log2 N) .

. . O(log®N)
size(f) < (27

ProoE. The idea is to apply the following simple “greedy” strategy: given DNFs for
f and —f, let the decision tree always test the “most popular” literal first.

Assume, we have DNFs for both f and —f, and let N be the total number of
monomials in these two DNFs. Since the disjunction of these two DNFs is a tautology
(i.e., outputs 1 on all inputs), there must exist a monomial of length at most log, N,
just because monomial of length k accepts only 2" of the inputs.

Select one of such monomials and denote its length by k. The selected monomial
belongs to one of the two DNFs. By the cross-intersection property of monomials (see
Exercise 13.3), every monomial in the other DNF contains at least one literal which
is contradictory to at least one literal in the selected monomial. Hence, there is a
literal in the selected monomial, which is contradictory to at least a 1/k-portion of
the monomials in the other DNE Thus, if we evaluate this literal to 1, then all these
monomials will get the value 0 and so will disappear from the DNE,

Test this variable first and apply this strategy recursively to both restrictions which
arise. By the observation we just made, for each node v, at least one of its two succes-
sors is such that at least one of the two DNFs in it decreases by a factor of 1 — 1/k. Let
us call the corresponding outgoing edge(s) decreasing. Now, if v is a node (not a leaf)
such that the path from the source to v contains s decreasing edges, at least one of the
two initial DNFs was decreased at least s/2 times, and each time it was decreased by
a factor of 1 —1/k > 1—1/log, N. If s would be at least 2log® N then at least one of
the DNFs at v would have only

s/2
N(l _ ) <N- e—s/(zlogzN) <N- e—logzN =N1—log2e <1
log, N -
monomials, which is impossible (because v is not a leaf). Thus, every path to a leaf
has at most n edges, and among them at most s := 2log®> N can be decreasing. Recall
that for every node at least one of the out-going edges was decreasing. Assume w.l.o.g.
that every node has exactly one decreasing edge (if there were two, we simply ignore
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one of them). Mark decreasing edges by 1 and the remaining edges by 0. Then every
leaf corresponds to a 0-1 string of length at most n with at most s ones. The number of
such strings (and hence, the total number of leaves) does not exceed L(n,s/2), where
L(n,t) denotes the maximal possible number of leaves in a decision tree of depth n
such that every path from the root to a leaf has at most t 1-edges.

It remains to estimate L(n,t) for t = s/2. Clearly, we have the following recur-
rence:

L(n,t)<L(n—1,t)+L(n—1,t —1) with L(0,t) = L(n,0) = 1. (13.3)

By induction on n and ¢, it can be shown that

o)< (%)

Indeed, using the identity ("') + (;_}) = (}), the induction hypothesis together with
the recurrence (13.3) yields:

t _ t—1 _
L(n,t)SL(n—l,t)+L(n—1,t—1)SZ(n ; 1)+Z(n i 1)

i=0 i=0
n
; .

t n_]. t—1 n_]. t n t
=1+Z( i )+. (i_1)=”.2(i)=z
i=1 i=1 i=1 i=0

Thus,

Size(f) < L(n,s/2) = L(n,10g’>N) < ( . )O(IOgZN) ‘

log2 N

O

RESEARCH PROBLEM 13.9. Is it possible to improve the upper bound Size(f) < nOlog"N)
in Theorem 13.8 to Size(f) < 20008"N)»

In the next section we will exhibit explicit boolean functions f requiring deter-
ministic decision trees of size N*(v196N) (jterated majority function) and even N?°8N)

(iterated NAND function), where N = dnf(f) + dnf(—f) its the weight of f.

THEOREM 13.10. There are explicit boolean functions f such that both f and —f
have DNFs of size N, but any deterministic decision tree for f has size N1°8N),

That is, for the size of decision trees we have that P #2 NP N co-NP. The rest of
this section is devoted to the proof of this theorem. For this purpose we will use an
argument which has many applications in engineering. The argument is based on
harmonic analysis of boolean functions, and is known as the “spectral argument.”

13.4.1. Spectral lower bound for decision tree size. Roughly speaking, the
main idea of what is known as “spectral argument” is to estimate how far is a given
boolean function apart from the parity function. For this it will be convenient to switch
to (—1,+1)-notation, i.e., to consider boolean functions as mappings from {—1,+1}"
to {—1,+1}, where the correspondence 1 — —1 and 0 — +1 is assumed. Explicitly,
this correspondence is given by the transformation x’ = 1 — 2x which transforms the
value x € {0,1} into the value x’ € {+1,—1}; hence, x’ = (—1)*. For a boolean
function f : {0,1}"* — {0, 1}, its transformed %1 version f’ is then

f’(xl,...,xn)zl—z-f(

1—x; 1—x, 1—xn)
S Ty T .
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Indeed, if the value of the ith variable x; in f’ is +1, then the value of the ith variable
of fis (1—1)/2=0, and if x; has value —1 in f’ then it has value (1+1)/2=1in f.
Given a function f : {—1,1}" — {—1, 1}, we can interpret the domain {—1,1}" as
2" points lying in R", and think of f as giving a £1 labeling to each of these points.
There is a familiar method for interpolating such data points with a polynomial.

ExampLE 13.11. Suppose n =3 and f is the Majority function Majs. So, in the £1
notation we have that Maj,;(1,1,1) = 1, Maj,;(1,1,-1) =1, ..., Maj;(—-1,-1,-1) =
—1. Denoting x = (x;, X5, X3), We can write

Majs () = (o) (222 (22 4y

)52 e
+
+(1—2x1)(1—2x2)(1—2x3) (=1).

If we actually expand out all of the products, tremendous cancellation occurs and we
get

Maj;(x) = %xl + %xz + %xg - %xlxzxg. (13.4)

We could do a similar interpolate-expand-simplify procedure even for a function

f :{0,1}" — R, just by multiplying each x-interpolator by the desired value f(x).

Note that after expanding and simplifying, the resulting polynomial will always be

multilinear, that is, have no variables squared, cubed, etc. In general, a multilinear
polynomial over variables x;,...,x, has 2" terms, one for each monomial

Xs = | |xi:
i€S

where S C [n] := {1,...,n}; for S = 0 this monomial is constant 1. Hence, every
function f : {—1,+1}" — R can be expressed (in fact, even uniquely) as a multilinear

polynomial
FE= D0 e [xi= D0 esas(), (13.5)
]

SCn i€s SC(n]
where each cg is a real number. This expression is of f as a linear combination of the
monomials yg is also known as Fourier transform or Fourier expansion of f.
We can also treat the functions f : {—1,+1}" — R as elements of 2"-dimensional
vector space with an inner product defined by

(fg) =27 > F(x)g(x).
xe{—1,4+1}"

A convenient way to look at this inner product as a mean value. Let x = (xy,...,X,)
be a random vector uniformly distributed in {—1,1}". We can think of generating
such an x by choosing each bit x; independently and uniformly from {—1,1}. Hence,

E, [f(x)] =272 f(x), and
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Important observation is that the set of all monomials y¢ forms an orthonormal basis
for the space of functions f : {—1,+1}" — R. That s,
1 ifS=T,

(s, xr) = {o ifS£T.

Indeed,
(xs> x1) = Ex [l_[xi 'l_[xj] =E, [ l_[ xi] >
ies jeT ieSeT

because xl.2 =1;here S®T = (S—T)U(T —S) is the symmetric difference of sets S and
T. Thus, if S and T are identical, then (yg, ¥7) = 1. If, however, S # T then S® T # 0,
and we obtain:

1 1
sxn) =E [ x]=[1Elx]=[] [3-GD+5 1] =o0.
ieSeT ieSeT ieSeT
Since the ys form an orthonormal basis, the Sth Fourier coefficient cg of f in the
expression (13.5)—which is usually denoted by f (S)—is found via (cf. Exercise 13.6):
F8)={f,x5)
=27 F)xs(x)

=E, [f()- xs(x)] -

In particular, each coefficient f(S) lies in the interval [—1,1]. If f : {0,1}" — {0, 1} is
a boolean function, then j?(S) is defined to be the Sth Fourier coefficient f’(S) of its
+1 version f’. Hence, for a boolean function f, f((?)) is equal to the probability that
the function takes value 1, and for S # 0, the coefficients

F(8)=Pr[f (x) = Biesx;] = Prlf (x) # ®ies ]

measure the correlation between the function and the parities of subsets of its argu-
ments.

OBSERVATION 13.12. If the value of f does not depend on the ith variable, that is,
fOe, e Xic, L, X500, X)) = f (0, e X1, = L, X, -5 X)),
then f(S) =0 for every S withi € S.

ProoE For a vector x € {—1,1}" and a coordinate i € [n], let x¥ denote the
vector x with its ith coordinate x; replaced by —x;. If i € S, then we have that f (x®) =

£ () but xg(xV) = —yg(x), implying that Y. f(x)xs(x)=0. O

This observation allows to compute Fourier coefficients of arithmetic combination
of some functions with disjoint sets of variables.

ProrosiTiON 13.13. Let S = S; US, be a partition of S into two disjoint nonempty
blocks. Let g,h : {—1,1}5 — {—1,1} be functions such that g only depends on variables
x; with i € S;, and h only depends on variables x; with i € S,. Then

0 ff=g+th

f8)= {’grsl)-ﬂ(sz) Ff=g-h



13.4. P # NP N co-NP FOR THE TREE SIZE 197

We leave the proof of this as an exercise.

Fourier coefficient can be used to prove lower bounds on the circuit complexity of
boolean functions. So, for example, Linial, Mansour and Nisan (1989) have proved
the following lower bound for unbounded fanin DeMorgan {A, V, —}-circuits.

THEOREM 13.14. Let f be a boolean function in n variables computable by a DeMor-
gan circuit of depth d and size M, and t be any integer. Then

D IFsP <Moo

|S|>t
In the case of decision trees we have the following lower bound.

LEmMMA 13.15 (Spectral Lower Bound). For every boolean function f in n variables
and every subset of indices S C {1,...,n} we have the bound

size(f) > 251 > (1) (13.6)

TS

Proor. Take a decision tree for f of size Size(f ). For aleaf £, let val({) € {—1,+1}
be its label (recall that we are in 1-notation), and let I, be the set of indices of those
variables, which are tested on the path to £. Let B, € {—1,+1}" be the set of all the
inputs that reach leaf ¢; hence, |B,| = 2" !,

Since each input reaches a unique leaf, the sets B, are mutually disjoint. Hence,
forevery T C [n],

Fmy=27"Y f () () =273 D () xp(x) = Y val(0)- AT, 0),
x 4

X€EB, 4

where

A(T, L) :=27" Z xr(x).

XE€B,

Now, if T & I, that is, if some variable x; with i € T is not tested along the path from
the root to the leaf ¢, then y(x) = +1 for exactly half of the inputs x € B,, and hence,
A(T,£)=0. If T € I, then the value of y; is fixed on B, to either +1 or —1, and so,

|ACT, 0)] =27+ |B,| =27,

Thus, in both cases, |A(T,£)| < 27!, Since for any S C [n] there are only 275! sets
T satisfying S € T C I,, we conclude that

DSUIFMI < DI IA@OI=Y] > IAT0)
l l

T:T2S T:T2S T:T2S
< D 27l=27Bl. size(f),
¢

and the desired bound (13.6) follows. O

We are going to apply Lemma 13.15 for S = [n] to the Iterated Majority function
and for S = 0 to the Iterated NAND function.
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13.4.2. Iterated Majority. Recall that our goal is to exhibit a boolean function
f which requires decision tree of size super-polynomial in its weight N = dnf(f) +
dnf(—f). For this purpose we take the Iterated Majority function which is defined as
follows.

The majority of three boolean variables is given by

MajB(Xl,xZ,X3) = xle Vv XIX3 Vv XZX3 .

In Example 13.11 we have shown that in the (—1,+1)-representation (i.e., when
the correspondence 1 — —1 and 0 — +1 is assumed) we have that

, 101 1 1
Maj3(X1,X2,X3) = Exl + EXZ + 5){3 — EXIXZXB .

Consider now the monotone function F,, in n = 3" variables which is defined by the
balanced read-once formula of height h in which every gate is Maj,, the majority of 3
variables. That is, Fy = x, F; = Maj;(x;, X4, x3) and for h > 2,

Fj, = Maj,(F.",F  F®) )y (13.7)
where F,Ez)l are three copies of F,_; with disjoint(!) sets of variables.

THEOREM 13.16. Let Fy, be the iterated majority function and N = dnf(f )+ dnf(—f)
be its weight. Then

Size(F,) > N¥vbeN)
Proor. It can be shown (Exercise 13.10) that the function F,(xq, x5,...,X,) has
n=3"=2°"
variables, where ¢ =log, 3 > 3/2, and has weight
N =2-3%1= 20 = 200"
Since 2%W > 200g"*N) — NUy/log, N ) it is enough to prove the lower bound
Size(Fy) > 2%,
To prove this, we will apply Lemma 13.15 with S = [n] = {1,...,n}. Letting
ay == |Fy([n])|
to denote the absolute value of the leading Fourier coefficient of Fj, this lemma yields
Size(Fy) > a, - 2".

It remains therefore to prove an appropriate lower bound on a;. We proceed by induc-
tion on h.

Clearly, a, = 1, since F, is a variable (cf. Exercise 13.7), and a; = 1/2 by the
above representation of Majs.

For the inductive step recall that in the (—1,41)-representation,

173 3
Majs(x1, x5, X3) = 3 (in - l_[xi) .
i=1 i=1

Thus,
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X1 XX XX X4 Xg

Gy

FiGURE 2. Iterated NAND functions G;, G, and Gj.

By Proposition 13.13, the first summand does not contribute to l?h([n]) and we obtain
that

ap = Eah_l .

Together with the condition a, = 1, this recursion resolves to

_ -3 3 _5-3°-3" 3 _ 530332 3 _ _ o—A

ap=2"7" -qy_,; =2 g, =2 Ay =... =270,

where
0 1 2 h-1 3" -1 h
A=3"+4+3"+3+---+3""'=——=3"-1)/2=(n—-1)/2.
3—-1
Thus
Size(Fy) > @y, - 2" > 27 (=172 gn — o+ 1)/2

as desired. U

13.4.3. Iterated NAND. Consider the function in n = 2" variables which is com-
puted by the balanced read-once formula of height h in which every gate is NAND, the
negated AND operation NAND(x,y) = ~(xAy) = —xV-y. Up to complementation of
the inputs this is equivalent to a monotone read-once formula with alternating levels
of AND and OR gates (see Fig. 2). Let us denote this function by G,.

THEOREM 13.17. Size(Gy) = exp (Q(log2 Nh)), where Ny, := N(Gp,).

Prook dnf(G,) = dnf(—=G,) = 1 (since G is a single variable), and it is easy to see
that for every h > 1 we have dnf(G,) < 2 - dnf(—=G,_;) and dnf(—=G;) < dnf(G,_;)?. By
221 and dnf(—Gy) < 227"

(h/2)+1 . . .
have N, < 22 . Since n = 2", our statement boils down to showing

Size(Gy) > 2%,

induction on h one obtains dnf(G,) < 2 ~2. Hence, we

Let us say that a Fourier coefficient @h(S ) is dense if for every subtree of height
2, S contains the index of at least one of the four variables in that subtree. We are
going to calculate exactly the sum of absolute values of dense coefficients. Denote
this sum by ¢,. Note that in the (—1,+1)-representation, we have NAND(x,y) =
(xy —x —y —1)/2. Hence,

1
_ (1) (2) €)) (2)
Cn = 2 (Gh—l G665 - 1) ) (13.8)

€]

where G, G,(lz_)1 are two copies of G,_; with disjoint sets of variables.
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In order to compute c,, we use the following transformation. Let f; = Ggl) +1/2
and f, = ng) + 1/2. Then it follows from (13.8) that

1 3 3 1
Gy = Eflfz - Zfl - Zfz"‘ 3

Since each monomial in f; and f, contains at least one variable and the sets of variables
of f; and f, are disjoint, there are no common monomials in the four terms in the above
expression of G,. Hence, it is easy to calculate the sum of the absolute values of the
coefficients in the non-constant monomials, whichis ¢, =1/2-1r; -1y +3/4-(r;+1,) =
27/8 = 3.375, where r; = r, = 3/2 is the sum of the absolute values of the coefficients
in f; and f,.

In order to compute ¢, for h > 2, we use (13.8) directly. Only the first term
G}(ll_)1 . G}(lz_)1 in this equation can contribute to dense coefficients, and its individual
contributions do not cancel each other. Hence, we have the recursion

Cp = Ech—l .

This resolves to ¢, = 2(c,/ 2)2""* which is 2% since ¢y > 2. The proof is now completed
by applying Lemma 13.15 (this time with S = 0). (]

13.5. Decision trees for search problems

So far we considered decision trees solving decision problems. That is, for each
input the decision tree must give an answer “yes” (1) or “no” (0). For example, if
n= (;) then each input x € {0,1}" can be interpreted as a graph G on v vertices,
where x, = 1 means that the edge e is present in G, and x, = 0 means that the edge
e is not present in G. There are a lot of decision problem for graphs. Is the graph
connected? Has the graph a clique of size k? Is the graph colorable by k colors?

But decision alone is often not that what we actually need. Knowing the answer
“the graph has a triangle”, we would like to find any of these triangles. Given an
unsatisfiable CNF and an assignment to its variables, we would like to find a clause
which is not satisfied.

In general, a search problem is specified by n boolean variables and a collection
W of “witnesses.” In addition, this collection must have the property that every assign-
ment to the n variables is associated with at least one witness.

That is, a search problem is specified by a relation F C {0,1}" x W such that, for
every x € {0,1}" the exists at least one w € W such that (x,w) € F. The problem itself
is:

Given an input string x € {0, 1}", find a witness w € W such that (x,w) € F.

With every boolean function f : {0,1}" — {0,1} we can associate the relation F C
{0,1}" x W, where W = {0, 1} and (x,w) € F iff f(x) = w. Hence, decision problems
(=boolean functions) are special case of search problems.

ExampLE 13.18. Consider the graphs G, on v vertices, encoded by binary strings
x € {0,1}" of length n = (;), one bit for each potential edge. As a set W of witnesses
we can take some special element A and the set of all triangles. Define the relation F
by: (x,w) € F if w = A and graph G, is triangle-free, or w # A and w is a triangle
in G,. Then the search problem is, given an input x € {0,1}", either to answer “no
triangle” if G, is triangle-free, or to find a triangle in G, .
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Given a bipartite graph G = (U UV, E), define the search problem Degree(G) in
the following way. We have |E| variables x,, one for each edge e € E. Each assignment
x € {0,1}F to these variables is interpreted as a subgraph G, of G, defined by those
edges e for which x, =1, that is, G, = {e € E | x, = 1}. The search problem Degree(G)
is:

Given an input vector X, find a vertex whose degree in G, is not one.

It is clear that such a vertex always exist, as long as the sides of the graph are not
equal. Thus, as long as |U| # |V|, Degree(G) is a valid search problem. Note also that
Degree(G) can be solved by a nondeterministic decision tree of depth at most d, where
d is the maximum degree of G. For this it is enough to guess a vertex of degree # 1
and check the incident edges of this vertex.

We will now show that deterministic decision trees must have much larger depth.
For this we take a bipartite (2n) x n graph G = (U U V,E) of maximum degree d.
Suppose that G has the following expansion property: every subset S C U of |S| < n/4
vertices has at least 2|S| neighbors in V. Such graphs exist for d = O(1) and infinitely
many n’s, and can be efficiently constructed using known expander graphs.

TueorREM 13.19. If G has an expansion property then every deterministic decision
tree for Degree(G) requires depth Q(n).

PrOOF. At each step, Bob (a deterministic decision tree) queries some edge e € E.
Based on what edges Bob has queried so far, Alice (the adversary) answers either
“x, = 17 (the edge e is present) or “x, = 0” (the edge e is not present) in the subgraph.
We will show that Alice can cause Bob to probe €(n) edges of G. The adversary will be
limited to produce, in each step, a subgraph in which all vertices in U have degree at
most 1 and all vertices in V have degree exactly 1. Hence, the answer in a vertex in U.

To describe the adversary strategy we need some definitions. For step i (after i
edges were already probed), let G; be the subgraph of G obtained by removing all
edges e € E such that:

- X, = 0, that is, the edge e was already probed and was not included in the
subgraph;
- x, # * (edge e was not probed yet) but e N e’ # 0 for some e’ with x,, = 1.
That is, G; contains all the edges that are still possible for the adversary to use in her
final subgraph without violating the above limitations.

A set S € U cannot be matched to V in G; if it has fewer than |S| neighbors in V,
that is, if |N;(S)| < |S| where N;(S) = {v € V | (u,v) € G, for some u € S}. Let S(G;)
denote a minimum cardinality unmatchable set in G;.

By the above limitation on the adversary, at step i the subgraph G; is a (partial)
matching from U to V. Bob cannot know the answer as long as there is no isolated
vertex in G;. Such a vertex itself is a minimum unmatchable set of size 1.

Initially, since the graph G has an expansion property, we have that |[S(G)| > n/4.
Thus, Alice’s strategy is to make sure that the minimum unmatchable set size does not
decrease too fast.

To describe her strategy, suppose that an edge e € E is probed in step i (after i
edges were already probed). In order to give an answer “x, = 1” or “x, = 0” Alice first
constructs two sets of vertices:

- 89e) := S(G; — e), that is, the minimum unmatchable set that would occur if
Alice would answer “x, = 0”.
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- Sl(e):==5(G;—{e’ | e’ #e,x, =, v €¢’}), that is, the minimum unmatchable
set that would occur if Alice would answer “x, = 1”.

Alice than chooses the answer on e so as to make S(G;,) the larger of S°(e) and S'(e).
The heart of the argument is the following claim

Cramv 13.20. [S(Gyyp)l = 31S(G)).
ProOOFE. Assume e is asked in step i + 1. By the above strategy,
S(Gi1)l = max{[S°(e)], 1S (e)l} -

Consider the set S = S%e) U S'(e). This set cannot be matched into V in G;, for
otherwise either S°(e) or S'(e) would be matchable after the decision about e is made.
Thus, S contains an unmatchable set for step i of cardinality no more than

S°(e)u st (e)] < 2-max{|S°(e)l, IS* (&)} = 2+ IS(Giyr)l. O

We can now complete the proof of the theorem by the following argument. During
the game between Alice and Bob, a sequence S, S, ...,S; of minimum unmatchable
sets S; = S(G;) of vertices in U is constructed. At the beginning |S,| > n/4, and
IS;| = 1 at the end. Moreover, by Claim 13.20, we have that the cardinality of the S;
does not decrease by more than a factor of 2. It must therefore be a step i at which
n/16 <|S;| < n/8 and |N;(S;)| < |S;|. That is, S; has fewer than |S;| neighbors in the ith
subgraph G; of G. However, by the expansion property of G, the set S; has had at least
2|S;| neighbors in the original graph G. Since at each step and for any set, the number
of its neighbors can drop down by at most a factor of 1/d, at least |S;|/d = Q(n) edges
were probed up to step i. O

Exercises
Ex. 13.1. Consider the following function f (X) on n = m? boolean variables:

m m
F= AV x (13.9)

i=1j=1
Show that for this function f we have that Dy(f) = D;(f) = m but Depth(f) = m?.
Hint: Take an arbitrary deterministic decision tree for f and construct a path from the root by the following

“adversary” rule. Suppose we have reached a node v labeled by x;;. Then follow the outgoing edge marked
by 1 if and only if all the variables x;; with [ # j were already tested before we reached the node v.

Ex. 13.2. Let f : {0,1}" — {0, 1} be a boolean function, and let k = k(f) be the
largest natural number such that |f ~1(0)| is divisible by 2*. Show that Depth(f) >
n-— k(f) Hint: The number of inputs x € f ~(0) leading to a given leaf of depth d is either 0 or 2",

Ex. 13.3. Let D, be a DNF of a boolean function f, and D, be a DNF of its negation
—f. Show the following cross-intersection property: if K is a monomial in D, then every
monomial in D, contains at least one literal which is contradictory to at least one literal
inK.

Ex. 13.4. Show that, for the boolean function f defined by (13.9), we have that
Size(f) > 24nftn),

Hint: Observe that all the minterms and maxterms of f have length m. Show that every such function
requires a decision tree of size at least 2™.
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Ex. 13.5. Show that in (—1,41) notation the AND(x, y) turns to the function
AND(x,y) = (x +y —x -y + 1)/2. What about OR(x,y)? What about the parity
function x @ y?

Ex. 13.6. Show that the Sth Fourier coefficient f(S ) a function f : {—1,+1}" —
{—1,+1} is found via:

FS)i=(foxs) =27 Y F(x)xs(x).

Hint: Suppose that f =Yg F(S)- xs. To find f(T), take the scalar product of f with yy.
Ex. 13.7. Let f = x; be a single variable. Show that then f({i}) =1.

Ex. 13.8. What is the leading Fourier coefficient j?([n]) of the parity function
f =X1 @Xz@"'@xn?

Ex. 13.9. The most basic result in Fourier analysis is the following fact, known as
Perseval’s Theorem. Let x = (xy,...,X,) be a random vector uniformly distributed in
{—1,1}". We can think of generating such an x by choosing each bit x; independently
and uniformly from {—1,1}. Hence, E, [f(x)] =27, f(x).

Prove that, for every f : {—1,1}" —» R,

D RSP =E [fx)] .

SC(n]

In particular, for f : {—1,1}* — {—1, 1}, we have that

> fisy=1.
]

Scln

Hint: Just compute E, [f (x)z] using: (1) linearity of expectation, (2) the fact that E[X - Y] =E[X]-E[Y],
if random variables X and Y are independent, (3) ys(x) - y7(x) = yser(x), where S @ T is the symmetric
difference of sets S and T, (4) E, [ xs(x)] =0, unless S = 0, in which case its is 1.

Ex. 13.10. Show that the iterated majority function F}, defined by (13.7), has
n = 3" variables and its weight is 2 - 3271,
Hint: Observe that: (1) dnf(Fy) = 1 and dnf(F),) = 3 - dnf(Fj,_;)?, and (2) the minimal DNF of the negation
—F}, coincides with the DNF of F;, with all the variables negated.

Ex. 13.11. A V-decision tree is a generalization of a deterministic decision tree,
where at each node an OR g(x) = \/,_s x; of some subset of variables can be tested.
Hence, decision trees correspond to the case when |S| = 1. Consider the threshold-k
function Thy(xy,...,x,) =1iff x; +--- +x, > k.

Show that any V-decision tree for Thj; requires at least (| ") leaves.

Hint: Look at Thy as accepting/rejecting subsets of [n]. Suppose that some two different (k — 1)-
element subsets A,B C [n] reach the same leaf. Show that then also the set C = AU B will reach that
leaf.

Bibliographic Notes

Theorem 13.1 has been re-discovered by many authors in different contexts: Blum
and Impagliazzo (1987), Hartmanis and Hemachandra (1991), and Tardos (1989).
Theorem 13.2 is due to Nisan (1989). Theorem 13.8 is due to Ehrenfeucht and Haus-
sler (1989). Theorem 13.5 is due to Rivest and Vuillemin (1976). The term “little



204 13. DECISION TREES

birdie principle” as well as the proof of Theorem 13.7 are borrowed from Jeff Erickson.
That P # NP N co-NP for the size of decision trees (Section 13.4) was proved in [86].
Lemma 13.15 is a combination of Lemma 4 in Linial et al. (1989) with Lemma 5.1 of
Kushilevitz and Mansour (1991). Theorem 13.19 is from Lovasz et al. (1995).



CHAPTER 14

General Branching Programs

A branching program is a generalization of a decision tree, where instead of a
tree, the underlying graph can be an arbitrary directed acyclic graph. The model of
branching programs is one of the most fundamental sequential (in contrast to parallel,
like circuits or formulas) model of computations. This model captures in a natural way
the deterministic space whereas nondeterministic branching programs do the same for
the nondeterministic mode of computation.

14.1. Nechiporuk’s bounds for branching programs

The best we can do so far for unrestricted programs is a quadratic lower bound
Q(n?/log?n) for deterministic programs, and Q(n*/?/logn) for nondeterministic pro-
grams. These bounds can be shown by counting arguments due to Nechiporuk (1966):
just compare the number of subfunctions with the number of distinct subprograms.

Recall that a deterministic branching program is a directed acyclic graph with one
source node and two sinks, i.e., nodes of out-degree 0. The sinks are labeled by 1
(accept) and by O (reject). Each non-sink node has out-degree 2, and the two outgoing
edges are labeled by the tests x; = 0 and x; = 1 for some i € {1,...,n}. Such a
program computes a boolean function f : {0,1}" — {0, 1} in a natural way: given an
input vector a € {0, 1}", we start in the source node and follow the unique path whose
tests are consistent with the corresponding bits of a; this path is the computation on a.
This way we reach a sink, and the input a is accepted iff this is the 1-sink.

A nondeterministic branching program (or a switching-and-rectifier network) is a
directed acyclic graph G = (V, E) with two specified vertices s,t € V, some of whose
edges are labeled by variables x; or their negations X;. The size of G is defined as the
number of labeled edges (not vertices!).

Each input a = (ay,...,a,) € {0,1}" defines a subgraph G(a) of G obtained by
deleting all edges whose labels are evaluated by a to 0, and removing the labels from
the remaining edges. Let |G(a)| denote the number of s-t paths in G(a). A network
G computes a boolean function in a natural way: it accepts the input a if and only if
|G(a)| > 0. This is a nondeterministic mode of computation: we accept the input if and
only if the labels of at least one s-t path in G are consistent with it.

A parity branching program is a network with a counting mode of computation: we
accept the input a if and only if the number of s-t paths consistent with a is odd, i.e.,
iff |G(a)| =1 mod 2.

Let BP(f), NBP(f) and ®BP(f ) denote, respectively, the minimal size of determin-
istic, nondeterministic and parity branching program computing f .

Let f(X) be a boolean function. Fix a partition of the variable set X into m disjoint
subsets Y3,...,Y,,. For every i € [m], let ¢;(f) be the number of distinct subfunctions
of f on the variables Y; obtained by fixing the remaining variables to constants in all
possible ways.

205
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THEOREM 14.1. There exist a constant € > 0 such that for every boolean function f
and for every partition of its variables into m > 1 sets,

8 m
BP(f) > logzn;bgci(f) (14.1)
and
min{NBP(f), ®BP(f)} > SZ V1og, c;(f). (14.2)
=1

ProOE. Take a partition Y3,...,Y,, of variables of f. For each i € [m], each setting
of constants to variables outside Y; yields an induced branching program on the nodes
labeled by variables from Y; plus an accept and a reject node. Say there are h; such
nodes. The number of deterministic branching programs on h; nodes is at most nhfhl.Zh":
there are at most n' ways to assign n variables to h; nodes, and at most hl.Zh" ways to
chose the two successors for each of h; nodes. Thus nhfhfh" > ¢;(f). Since BP(f) >
2?1:1 h;, the desired lower bound (14.1) on BP(f) follows.

To prove the lower bounds on NBP(f) and @BP(f), let G(V, E) be the given pro-
gram, using nondeterministic or parity accepting mode, to compute f. Any fixing of
the variables outside Y; to constants results in a reduced branching program for the
resulting subfunction. Let E; be the edges of E whose labels are literals of variables
from Y;, and let V; be the set of vertices touched by these edges. Then without loss
of generality the reduced program uses only the vertices V;, on which we have the
edges E; and perhaps some extra edges labeled 1 that resulted from fixing values. But
there are at most 2/VI” different possible programs, and as |V;| < 2|E;| and the size
of our program is Zi;l |E;|, the desired lower bounds (14.2) on NBP(f) and @BP(f)
follow. O

The element distinctness function takes a string s;,...,s, of m elements of the set
[m?] = {1,...,m?} and outputs 1 iff all the s; are distinct. If we encode the elements
of [m?] by binary strings of length 2logm, then we obtain a boolean version of this
function in n = 2mlogm variables. Consider the input vector in {0, 1}" to represent m
strings s, ...,S,, each of length 2logm where n = 2mlogm. Define the function ED,
so that it is 1 iff all the s; are distinct.

TueEOREM 14.2 (Nechiporuk 1966). The element distinctness function ED,, requires
deterministic branching programs of size Q(n?/log®n), and nondeterministic as well as
parity branching programs of size Q(n*?/logn).

ProoE. Take a partition Y;,...,Y,, of variables according to the blocks s;,...,S,.
We already know (see the proof of Theorem 2.11) that for each of these m blocks

2
s; there are (mm_l) ways of setting the remaining s;’s distinctly and each way gives a
different subfunction. Hence,

m2 m2 m—1
Ci(EDn) > > :ze(mlogm)_
m—1 m—1

Since m = Q(n/logn), Theorem 14.1 yields the desired lower bounds on the size of
branching program size of ED,,. t
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14.2. Nondeterministic versus counting programs

Our goal is to show that, at the cost of a slight increase of size, every (nonde-
terministic) network can be simulated by a parity network. That is, in the model of
switching networks nondeterminism is not much more powerful than counting. But
perhaps more interesting, than the result itself, is its proof: it uses in a non-trivial
manner an interesting fact that random weighting of elements will almost surely iso-
late exactly one member of a family.

14.2.1. The isolation lemma. Let X be some set of n points, and # be a family
of subsets of X. Let us assign a weight w(x) to each point x € X and let us define the
weight of a set E to be w(E) = ), _, w(x). It may happen that several sets of Z will
have the minimal weight. If this is not the case, i.e., if ming., w(E) is achieved by a
unique E € &, then we say that w is isolating for Z.

LEmMMA 14.3. Let & be a family of subsets of an n-element set X. Let w : X —
{1,...,N} be a random function, each w(x) independently and uniformly chosen over
the range. Then

n
Pr[w is isolating for 1> 1 — N

Proor. For a point x € X, set

= i E)— i E— .
20 = min, w(E)~  mpin_ w(E ~ {x)

A crucial observation is that evaluation of a(x) does not require knowledge of w(x).
As w(x) is selected uniformly from {1,...,N},

Priw(x)=a(x)] <1/N,
so that
Pr[w(x) = a(x) for some x € X] < n/N.
But if w had two sets A,B € & of minimal weight w(A) = w(B) and x € A— B, then

i E)=w(B
EE@}&EW( )=w(B),

Ee%f?eEW(E —{x)=w) —w(x),

so w(x) = a(x). Thus, if w is not isolating for & then w(x) = a(x) for some x € X,
and we have already established that the last event can happen with probability at
most n/N. O

14.2.2. Counting is powerful. Using the isolation lemma we can now show that
every (nondeterministic) network may be simulated by a parity network.

THEOREM 14.4. There is a constant ¢ such that for every boolean function f in n
variables,
@®BP(f) <cn-NBP(f)°.

Proor. Let G = (V,E) be a directed graph and w : E — {1,...,2-|E|} a weight
function on its edges. The weight of an s-t path is the sum of weights of its edges; a
path is lightest if its weight is minimal. Let d,,(G) denote the weight of the shortest s-t
path in G; hence,

d,(G) <M :=2|V|-|E|.
Having a weight function w and an integer [, define the (unweighted, layered) version
G‘l” = (V,E’) of G as follows. Replace every vertex u € V by [ + 1 new vertices
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FiGure 1. [ =4, w(e;) =2 and w(e,) =1

Ug,Uy,...,u; in V' (i.e., V' consists of [ + 1 copies of V, arranged in layers). For every
edge e = (u,v) in E and every 0 < i <! —w(e) we put an edge (ui,viw(e)) in E’ (see
Fig. 1); hence, |V'| < (1+1)|V] and |E’'| < (1 + 1)|E|.

Craim 14.5. The graphs G‘l” have the following properties:

(i) if G has no s-t path, then for every w and [, G‘l” has no s,-t; path;
(ii) if G has an s-t path and [ = d,,(G), then Gllm has an s,-t; path. Moreover, the
later path is unique if the lightest s-t path in G is unique.

PrROOE. Let P =(ey,e,,...,€;) be an s-t path in G. The first node of this path is s.
In the new graph Gllm the first node is s, and, following the path P in this new graph, at
the ith edge e; we move by w(e;) vertices down (in the next, (i + 1)th layer of nodes).

Hence, P can produce an s,-t; path in G‘l” iff Zi;l w(e;) < L. That is, a graph Gllm has

an s,-t; iff G has an s-t path and Z;;l w(e;) < 1. For | =d,(G), only lightest paths can
fulfill this last condition. O

Now let G = (V, E) be a network computing a given boolean function f (x,...,x,).
Say that a weight function w is good for an input a € {0,1}" if either G(a) has no s-t
paths or the lightest s-t path in G(a) is unique.

For each input a € {0,1}", taking the family %, to be all s-t paths in the graph
G(a), the isolation lemma (Lemma 14.3) implies that at least one-half of all weight
functions w are good for a. By a standard counting argument, there exists a set W of
[W| < 1+1og,(2") = n+ 1 weight functions such that at least one w € W is good for
every input a. If w is good for a, then the graph G‘l”(a) with | = d,, (G(a)) has the
properties (i) and (ii). For different inputs a, the corresponding values of [ may be
different, but they all lie in the interval 1,...,M. Thus, there exist m < (n+1)-M
networks Hyq,...,H, (with each H; = G‘ZM for some w € W and 1 <[ < M) such that,
for every input a € {0,1}", the following holds:

(iii) if |G(a)| =0, then |[H;(a)| = O for all j;
(iv) if |G(a)| > O, then |H;(a)| =1 for at least one j.

Let s;,t; be the specified vertices in H;, j = 1,...,m. We construct the desired

parity network H as follows: to each H; add the unlabeled edge (s, t;), identify t; and
sj41 for every j <'m, and add the unlabeled edge (s, t,,) (see Fig. 2).

It is easy to see that, for every input a € {0,1}", |[H(a)| = 1 mod 2 if and only if
|G(a)| > 0. Indeed, if |G(a)| = O, then by (iii), H(a) has precisely two s,-t,, paths
(formed by added unlabeled edges). On the other hand, if |G(a)| > 0, then by (iv),
at least one H;(a) has precisely one s;-t; path, implying that the total number of s;-t,

paths in H(a) is odd. Thus, H is a parity network computing the same boolean function
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RV AR CA
FiGURE 2. Construction of the parity network H

f. Since I < M and m < nM with M = 2|V| - |E| < 2|E|?, the size of (the number of
edges in) H is at most m(I + 1)|E| = O(n|E|?). O
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CHAPTER 15

Bounded Width

To define the width of a branching program, divide the nodes of the underlying
graph into levels such that all edges out of nodes in the ith level go to nodes in the
(i 4 1)th level. We can make a graph leveled by adding more nodes, possibly squaring
the size but keeping the length (that is, the number of edges in a longest path) the
same. The width is then the number of nodes of the largest level in an optimal division
into levels. A leveled program is oblivious if in each level all its nodes are labeled by
the same variable. It is not difficult to see that every leveled branching program of
length ¢ and width w can be transformed into an oblivious program of length w{ and
width w.

15.1. Width versus length

Every boolean function in n variables can be computed by a trivial branching pro-
gram of length { = n and width w = 2": just take a decision tree. But what if we
restrict the width w—how long then the program must be? To answer this question
we use communication complexity arguments.

An s-mixed protocol for a boolean function f : {0,1}" — {0, 1} is a communication
protocol between two players, Alice and Bob, whose access to input variables fulfills
the following conditions:

a. Alice cannot see at least s variables seen by Bob, and
b. Bob cannot see at least s variables seen by Alice.

The remaining n — 2s variables are seen by both players!

Let D,(f) denote the minimum number of bits communicated by a best determin-
istic s-mixed protocol for f. The larger the number n — 2s of common variables is, the
easier is the game. Hence, s < t implies that D,(f) < D.(f).

TueoreEM 15.1. If a boolean function f : {0,1}" — {0,1} can be computed by an
oblivious branching program of width w and length { < 0.1nlogn, then

D,(f)= O(“ng) for s>n%%/4.

Proor. Because the branching program is oblivious, we can think of its labels as
forming a string z of length £ over the alphabet [n]. To obtain a communication
protocol from the program, we need the following combinatorial result.

Let z be a string over an alphabet X = {xi,...,x,}. Given two sets S,T C X
of letters, say that a string z has an (r,S,R)-partition if z can be partitioned into r
substrings z = 2,2, - - - 2, such that none of the substrings z; contains letters from both
sets S and T.

CLaiM 15.2. Let A, B C X be two disjoint sets of size |A| = |B| = m. Let z be a string
over X such that each a € A appears in z at most k, times and each b € B appears in

210
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z at most kj times. Then there are A’ C A and B’ C B of size at least m/2 such that z
has a (k,A’, B")-partition, where k = k, + k5.

ProoF. Induction on k. If k = 1, then either k4 of kg is 0, and we can take A’ = A
and B’ = B. For the induction step, assume w.l.o.g. that each letter appears in z at
least once (otherwise, extend z with the missing letters in an arbitrary way). Examine
the letters of z one by one until we reach a location where we already have seen m/2
letters of one of A and B but less than m/2 of the other; such a location must exist
since ANB = . Denote the prefix by 2z’ and the rest of z by z”. Let it was A whose m/2
letters appear in 2z’ (the case when it is B is dual). Let A* = {a € A| a € 2’} be those
letters of A that appear in 2/, and B* = {b € B | b & 2’} be those letters of B that do not
appear in z’. It follows that |A*|, |B*| > m/2.

Consider now the suffix z”. Each letter of A* appears in z” at most k, — 1 times,
since each of them already appeared in z’ at least once. Hence, we can apply the
induction hypothesis to the string 2’ for sets A* and B*, and obtain subsets A’ € A* and
B’ € B* such that z” has a (k — 1,A’, B')-partition with |A'| > |A*|/25"1 > m/2* and
|B| > |B*|/2~' > m/2*. Since the prefix 2z’ can only contain letters of A’ but none of
B’, the entire string z = z’z” also has a (k — 1,A’, B’)-partition. O

Let now z be the string over X = {xy,...,x,} of length £ corresponding to the la-
bels of our branching program. Observe that at least n/2 variables must appear at most
2{ /n times, for otherwise the length of the string would be larger than (n/2)(2¢/n) =
{. Partition these variables into two sets A and B each of size n/4 in an arbitrary way.
By Claim 15.2 with m = n/4, k, = kg = 2{/n and k = 4{/n, there are disjoint sets
of variables A’ and B’ such that |A’|,|B’| > n/(4-2*) and 2z is a (k,A’, B’)-partition.
Moreover, since £ < 0.1nlogn, we have that

_ ﬂ < 0.4nlogn

k =0.4logn.

n
Hence,
IA'L,IB'| > n/(4-25) > n"5/4.

Since the sequence z of variables, tested along the { levels of the program, has a
(k,A’, B")-partition, its is possible to split z into k substrings z = 2, - -- 2 such that
no substring z; contains variables from both subsets A’ and B’. Hence, if we give all
variables in A’ to Alice, all variables in B’ to Bob and the rest to both players, the
players can determine the value of our function by communicating according to the
underlying branching program. To carry out the simulation, the players need to tell
each other, at the end of each of k blocks, the name of the node in the next level
from which the simulation should proceed; for this logw bits are sufficient. Hence,
the obtained protocol communicates O(k - logw) = O((£logw)/n) bits in total. The
protocol is s-mixed for s > min{|A’|,|B’|} > n®®/4. O

Thus, to obtain a large tradeoff between the width and the length of oblivious
branching programs, we need boolean functions of large mixed communication com-
plexity. We will now show that such are characteristic functions of good codes.

A linear (n,m,d)-code is a linear subspace C € GF(2)" of dimension n — m such
that the Hamming distance between any two vectors in C is at least 2d+1. An (n, m,d)-
code function is the characteristic function f- of a linear (n,m,d)-code C, that is,
fe(x)=1iffxecC.
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LEMMA 15.3. For every (n,m,d)-code function f, we have that

D,(fc) = 2dlog, (;) —m.

ProoE. Take an arbitrary s-mixed protocol for f(X). Let A C X be the set of vari-
ables seen only by Alice, and B € X be the set of variables seen only by Bob. Hence,
|A],|B| > s, and at most r = n — 2s variables are seen by both players. We can assume
w.l.o.g. that |A| = |B| =s. Since there are only 2" possible settings a of constants to
these (common) variables, at least one of these settings gives us a subfunction f, of f
in 2s variables which is the characteristic function of some linear (n—r, m—r, d)-code C.

After this setting, our protocol turns to a usual communication protocol for the
truth matrix M = {f,(x, y)} of f,. From Section 7.1.3 we know that this last proto-
col must communicate at least log, Cov(M) bits, where Cov(M) is the smallest num-
ber of (not necessarily disjoint) all-1 submatrices of M covering all its 1s. (In fact,
log, Cov(M) is a lower bound even for nondeterministic communication complexity of
M, but we will not need this now.) Since the matrix has |M| = 2""™"" = 2%~ ones,
the desired lower bound on log, Cov(M), and hence, on D,(f.) follows from:

CLAM 15.4. Every all-1 submatrix of M has at most 2% (2)_2 ones.

To show this, look at one row x € {0,1} of M. Since the Hamming distance
between any two vectors in C is at least 2d 4+ 1, we have that any two columns y #
y" €1{0,1}° of M such that M[x,y] = M[x,y’] = 1 must also be at Hamming distance
at least 2d + 1. Hence, no Hamming ball of radius d over a column y with M[x,y] =1

can contain another column y’ with M[x,y’] = 1. Since each such ball has 3¢ ¢) >

() vectors, this implies that each row and each column of M can have at most 2° () -
ones.
This completes the proof of the claim, and thus, of Lemma 15.3. O

Since the parity-check matrix of any linear (n, m,d)-code C has m rows, the char-
acteristic function f of C is just an AND of m negations of parity functions. This AND
can be computed by an oblivious branching program of width w = m = O(d logn) and
length £ = mn = O(dnlogn).

If, however, we would require the length be smaller than nlogn, then some linear
codes would require exponential width. To see this, consider Bose-Chaudhury codes
(BCH-codes). These are linear (n,m,d)-codes C with m < dlog,(n + 1). Such codes
can be constructed for any n such that n+ 1 is a power of 2, and for every d < n/2.

COROLLARY 15.5. Let C be a BCH-code of minimal distance 2d + 1 where d = | n®! .
Then any oblivious branching program for f. must either have width exponential in n®°*
or have length £ = Q(nlogn).

ProoF Since m < dlog,(n+ 1), Lemma 15.3 implies that, for s = Q(n*/%),
D,(fc) = 2dlog,(s/d) —m > 0.59 - 2d log,n —dlog,(n+ 1) — 0(1) = Q(d logn).
Hence, Theorem 15.1 implies that £ logw = Q(dnlogn) = Q(n*!logn). O
Recall that the Majority function Maj is defined by:
Maj(xq,...,x,) =1 iff x;4+:--+x,=>n/2.

EXERCISE 15.6. Show that any constant-width branching program for Maj must
have length £ = Q(nlogn). Hint: Show that D;(Maj) = Q(logs) and use Theorem 15.1.
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X3 Xy X2

FiGure 1. A width-3 permuting branching program on three vari-
ables. On input vector x = (0,1, 1) this program outputs the permu-

tation P(x) = (; f 2

the remaining ones to tests x; = 0.

). Bold arrows correspond to tests x; = 1,

15.2. Width-5 programs and formulas

We now consider branching programs of constant(!) width. At first glance, it
seems that such a drastical width restriction might be very crucial: if the width is
bounded by some constant then, when going from one level to the next, we can keep
only a constant amount of information about what we have done before. It was there-
fore conjectured by many researchers that, due to this “information bottleneck,” even
such function as the Majority function Maj(x,, ..., x,,) should require very long branch-
ing programs, if their width is constant. Trivial constant-width branching program
would try to remember the number of 1’s among the bits, which were already read;
but this would require non-constant width of about log, n.

With a surprisingly simple construction, Barrington (1986) disproved this conjec-
ture. He showed that constant-width branching programs are unexpectedly powerful:
every function with a polynomial size DeMorgan formula, including the Majority func-
tion, can be computed by a width-5 branching program of polynomial length.

The intuition behind his construction is an observation that, when working on a
given input vector a € {0,1}", a branching program collects the information about
a not necessarily gradually: if a passed a test x; = 1 it knows the ith bit of a. But
this is also the way in which information is collected by decision trees, a very special
kind of branching programs! Most important aspect of general branching programs is
the possibility to re-test the bits. If a passed also the second test at some node v, the
information “a; = 1” is at this point useless. But in this case the additional information
about a is encoded in the underlying graph of the program, namely, by the fact that
a reached this particular node v, and not the other one. That is, a way in which a
program collects an information about an input is not gradual but rather global. It is
encoded by the structure of the underlying graph.

15.2.1. Permutation branching programs. An arbitrary graph of width w and
length [ can be converted into a w x [ array of nodes by adding dummy nodes, possibly
multiplying the size by w. So, we may assume that our programs have this form. That
is, the program has [ levels. All levels have w nodes and all nodes at a given level
are labeled by the same variable. Moreover, at leach level the 0-edges and the 1-edges
going to the next level form two mappings from [w] = {1,...,w} to [w] (see Fig. 1).
Additionally, we will require these mappings be permutations, that is, are bijective
mappings. Then any input vector yields a permutation which is the composition of the
selected permutations at each level.

Call such a branching program P a permuting branching program, and let P(x)
be the resulting permutation on input x € {0,1}". For a boolean function f and a
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permutation o, say that branching program P o-computes f if for every input x,
if =1
pr)={9 =1
e iff(x)=0,

where e is the identity permutation. A permutation is cyclic if it is composed of a single
cycle on all its elements. For example,

02(1 2 3 4 5)=(1 3 5 42)
315 2 4 354 21
is a cyclic permutation, which we will denote as
1-3—>5—-4—2—1 orshortlyas o =(13542).
15.2.2. Barrington’s theorem. The following simple properties of permuting branch-

ing programs give a key for the whole Barrington’s argument. Let o and T be cyclic
permutations, f and g boolean functions, P and Q permuting branching programs.

LEmMa 15.7 (Changing output). If P o-computes f then there is a permuting branch-
ing program of the same size T-computing f .

PrROOE. Since o and 7 are both cyclic permutations, we may write T = 8o 0~! for
some permutation 8. Then simply reorder the left and right nodes of P according to 6
to obtain the T-computing branching program P’:

if P(x)=0,0,---0, =0 then P/(x)=00,0,---0,0 ' =000 =1.

That is, we replace the permutation o; computed at the first layer by the permutation
0o, and the permutation o, computed at the last layer by the permutation o,0~. [0

LEMMA 15.8 (Negation). If P o-computes f then there is a permuting branching
program of the same size o-computing —f .

Prook. Use the previous lemma to obtain a branching program P’ o~ !-computing
f. Hence, P'(x) =o' if f(x) =1, and P'(x) = e if f(x) = 0. Then reorder the final
level by o so that the resulting program P” o-computes —f :
if P'(x)=0,0,---0, then P’(x) = 0,0, 0,0.
This way, P”(x) outputs e if P’(x) = o™}, and hence, if f(x) = 1; otherwise, P”(x)
outputs o. 0

LEmMMA 15.9 (Computing AND). If P o-computes f and Q T-computes g, then there
is a permuting branching program oo 11~ -computing f A g of size

2(size(P) + size(Q)).
ProoFE. Use Lemma 15.7 to get a program o !-computing f and 7~ !-computing

g. Then compose these four programs in the order o, v,o 1,771, This has the desired
effect because replacing either o or T by e in oro 177! yields e. O

The next lemma is the only place where the value w = 5 is important; neither
w = 3 nor w = 4 suites for this purpose.

LEMMA 15.10. There are cyclic permutations o and 7 of {1,2,3,4,5} such that their

commutator o = oto 171 is cyclic.

ProOFE. See Fig. 2. [
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FIGURE 2. Cyclic permutations o = (12345), T = (13542) of
{1,2,3,4,5} and their commutator p = oto '7 7! = (13254).

THEOREM 15.11. Suppose that a boolean function f be computed by a DeMorgan
circuit of depth d. Then f is also computable by a width-5 branching program of length
at most 4%.

In particular, if a boolean function f can be computed by a DeMorgan formula
of polynomial leafsize, then f can be computed by a width-5 branching program of
polynomial size. That is, width-5 branching programs are not weaker than DeMorgan
formulas!

Proor. We will prove a somewhat stronger claim: If f can be computed by a
DeMorgan circuit of depth d, then there exists a cyclic permutation o of {1,2,3,4,5}
and a permutation branching program P of width 5 such that P o-computes f and has
size at most 4%. We prove this claim by the induction on the depth d.

If d = 0, the whole circuit for f is either a variable x; or its negation —x;, and f
can be easily computed by one-instruction program.

Suppose now that d > 1. By Lemma 15.8, we can assume that f = g A h, where
g and h have formulas of depth d — 1, and thus (by induction hypothesis) width-5
permuting branching programs G and H of length at most 4971

Let o and 7 be the permutations from Lemma 15.10. By Lemma 15.7, we may
assume that G o-computes g and H t-computes h. By Lemma 15.9, there is a permut-

ing program of size at most 2(size(G) + size(H)) < 4¢ which oo 17 !-computes f.
Since, by Lemma 15.10, the permutation cto~ 7! is cyclic, we are done. O
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CHAPTER 16

Bounded Replication

We have already seen that restricting the width of a branching program to a con-
stant does not reduce their power too much: the resulting model is at least as powerful
as boolean formulas. But what if we restrict the length of a program—can we then
show that some explicit boolean functions require exponential width?

Restricting the length means restricting the number of repeated tests along a com-
putation. In this chapter we consider branching programs in which we restrict the
number of variables that are allowed to be tested more than once.

Namely, define the replication number of a program as the minimal number R such
that along every computation path, at most R variables are tested more than once.
The sets of variables re-tested along different computations may be different! Also,
the (up to R) re-tested variables may be re-tested an arbitrary number of times! Thus,
restricted replication does not mean restricted length of computations—they may be
arbitrarily long. Branching programs with replication number R are also called in the
literature branching (1,+R)-programs, meaning that we have a read-one branching
program with up to R exceptions along each computation.

Note that for every branching program in n variables we have 0 < R < n. Moreover,
every boolean function f in n variables can be computed by a branching program with
R = 0: just take a decision tree. However, the size S of such (trivial) branching pro-
grams is then exponential for most functions. It is therefore interesting to understand
whether S can be substantially reduced by allowing larger values of R.

The goal is to prove exponential lower bounds on the size of branching programs
of as large replication number R as possible. An ultimate goal would be to do this for
R = n: then we would have an exponential lower bound for unrestricted branching
programs.

In this chapter we will come quite “close” to this goal by exhibiting boolean func-
tions f (based on expander graphs) with the following property: there is an absolute
constant € > 0 such that every branching program computing f must either have repli-
cation number R > en or must have exponential size.

16.1. Read-once programs: R =0

To “warm up”, we start with read-once branching programs (1-b.p.), that is, pro-
grams along each path of which no variable can be tested more than once.

It is not difficult to see that read-once programs are just a small generalization of
decision trees. The only difference is that now we count not the total number of nodes
(=total number of subtrees) but only the total number of non-isomorphic subtrees: if
we glue up isomorphic subtrees of a decision tree, then what we obtain is a read-once
program. Similarly, if we envelope a read-once program to a tree, then what we obtain
is a decision tree.

216
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Since subtrees correspond to subfunctions, the number of non-isomorphic subtrees
in T (and hence, the size of P) must be large, if f has many different subfunctions.
This motivates the following definition.

Let f(X) be a boolean function in variables X = {x;,...,x,}, and let Y € X. An
assignment to Y is a mapping a : Y — {0, 1}, and its length is the size |Y| of its domain.
The subfunction of f, induced by such an assignment, is a boolean function f,(X —Y)
obtained from f by setting the variables x; € Y to constants a(x;) € {0, 1}. Hence, f,
is a boolean function £, : {0,1}" "I — {0, 1}.

DErINITION 16.1. A boolean function f(X) is m-mixed if for every Y C X of size
|Y| = m and any two different assignments a, b : Y — {0, 1}, the obtained subfunctions
f, and f, are different, that is, take different values on at least one input vector.

LEMMA 16.2. If f is an m-mixed boolean function, then every deterministic read-once
branching program computing f must have at least 2™ — 1 nodes.

PrROOF. Let P be a deterministic read-once branching program computing f. Our
goal is to show that the initial part of P must be a complete binary tree of depth m —1.
For this, it is enough to show that no two initial paths (starting in the source node)
of length m — 1 can meet in a node. For the sake of contradiction, assume that some
two paths p; and p, of length m — 1 meet in some node v, and let f, be a boolean
function computed by a subprogram P, of P with the source node v. Let Y; be the set
of variables tested along the path p;, and q; : Y; — {0, 1} be the assignment consistent
with this path.

Cramm 16.3. Y; =Y.

PrOOE. Suppose there is a variable x; € Y, such that x; ¢ ;. Then we can extend
the assignment a; to two assignments a;,a; : Y U {x;} — {0, 1} by setting a{(x;) =0
and aj'(x;) = 1. Since the variable x; belongs to Y,, it was tested along the path
po. Since our program is read-once, this means that x; cannot be re-tested in the
subprogram P,. Hence, f, = fos. But the assignments a; and af’ are different and
both have length |Y;| + 1 = m, a contradiction with the m-mixness of f. O

By Claim 16.3, both assignments a; and a, have the same domain Y =Y; =Y,.
Moreover, these assignments are different since the computations on them split before
they meet. Since, due to the read-once constrain, none of the variables in Y can be
tested after the node v, we have that f, = f,,, a contradiction with the m-mixness
of f. O

16.1.1. P # NP N co-NP for read-once programs. We now consider nondetermin-
istic branching programs. Call such a program read-once (or a 1-n.b.p. ) if along any
path from the source node to the target node every variable appears at most once. Note
that this is a “syntactic” restriction: such a program cannot contain any inconsistent
paths, that is, paths along which a variable x; and its negation —x; is tested.

Just like we have done for the size of decision trees, we can ask the P versus
NP N co-NP question for their (slight) generalization—read-once programs. We will
show that here P # NP N co-NP.

Namely, we will exhibit a boolean function f in n variables (a “pointer function”)
such that both f and —f have nondeterministic read-once branching programs of poly-
nomial size but any deterministic read-once program for f must have exponential size.
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Block 1 Block 2 Blocks 'y

Row 1

Row k "

Ficure 1. The pointer function.

The pointer function f,(x,...,x,) is defined as follows. Let s and k be such that
ks> = n and k > logn. Arrange the n indices 1,...,n of the variables into a k x s2
matrix, split the i-th row (1 <i < k) into s blocks B;;, Bis, - . ., B;; of size s each, and let
y; be the OR of ANDs of variables in these blocks:

yi=\s/(/\x) i=1,...,k (16.1)

j=1 \xeBy;
Then define the function by

fulxq, s x) = Xbin(y) »
where bin(y) = Zle ¥;271 is the number whose binary code is y = (¥4, ..., ¥i)-

THEOREM 16.4. Both f, and —f, have 1-n.b.p. of size O(n) whereas any 1-b.p. com-
puting f, must have size at least 2°~! = exp (Q(n/log n)l/z).

ProoE. Upper bound. On input vector x = (xy,...,x,) in {0,1}", the desired 1-
n.b.p. first guesses a binary string a = (ay,...,a;) € {0,1}*, after which it remains
to test if the values y; = a;,..., Y, = a; satisfy the equalities (16.1) and if the cor-
responding (to the string a) variable x, = Xy;(,) has the value 1 (or 0 in the case of
—f,). It is clear that the resulting program is read-once, except that the variable x,
could be tested two times: once — in the program P; making that of the tests (16.1) for
which v € B;; U...UB;,, and then once more at the end of a computation. Simple (but
crucial) observation is that we can safely replace the variable x,, in that program P; by
the constant 1 (or by 0, in the case of —f,), so that the whole program is read-once.

Lower bound. By Lemma 16.2 it is enough to show that the function f, is m-mixed
for m =s — 1. To show this take any two different assignments a and b of constants to
a set of m variables in X. Since m is strictly less than s, we have that: (i) every block B;;
has at least one unspecified variable, and (ii) in every row, at least one block consists
entirely of unspecified variables. This means that (independent of actual values of a
and b) we can arrange the rest so that the resulting string (y;, ..., ) points to a bit
x, where the assignments a and b differ. O

Theorem 16.4 shows that 1-n.b.p. may be exponentially more powerful than their
deterministic counterparts, 1-b.p. Thus, it is harder to prove good lower bounds for
1-n.b.p. Still, also here we have a general lower bounds criterion.

For a set of inputs A C {0, 1}" and an integer 0 < k < n, we define the k-th degree
di(A) as the maximum number of inputs in A, all of which have 1’s on some fixed set
of k coordinates. That is,

dk(A)zmgi( #{acA|la;=1foralliel}.
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An input a is a lower one of a boolean function f if f(a) =1 and f(b) = O for all inputs
b # a such that b < a. Lowest ones are lower ones with the smallest number of 1’s.

THEOREM 16.5. Let f be a boolean function, A C f ~1(1) be the set of its lowest ones
and { be the number of 1’s in them. Then, for every 0 <s < {, every 1-n.b.p. computing
f has size at least

Al
d(A) - dy_(A)

PrOOE. Let P be a 1-n.b.p. computing f. For each input a € A, fix an accepting
path p, consistent with a. Since a has ¢ 1-bits, and no vector with a smaller number
of 1-bits can be accepted (a is a lowest one), all the £ 1-bits of a must be tested along
Po- Split this path into two segments p, = (p/p.), where p! is an initial segment of p,
along which exactly s 1-bits of a are tested. We denote the corresponding set of bits
by I,, and let J, denote the set of remaining ¢ — s 1-bits of a. For a node v of P, let A,
denote the set of all inputs a € A such that v is the terminal node of p/. We are going
to finish the proof by showing that |A, | < d,(A)d,_,(A) for every node v.

Fix some node v of P, and let # = {I, :a €A,}, ¢ ={J, : b € A}. Since our
program is read-once, we have that INJ =@ for all I € .# and J € _¢. Take now an
arbitrary pair I € .4, J € ¢, and denote by c;; the input defined by ¢, ;(i) = 1 iff
ielulJ.

CLAIM 16.6. For every I € .# and J € _#, the combined input c; ; belongs to A.

Proor. Choose some a,b € A, such that I =1,, J =J,. Since I and J are disjoint,
the path p = (p/p;) is consistent with the input ¢; ;. Hence, this input is accepted
because p leads to an accepting sink. But since |I| + |[J| = £ and £ is the smallest
number of 1’s in an accepted input, this is possible only when this combined input c; ;

belongs to A. O

With this claim in mind, we fix an arbitrary J € ¢ and notice that {c; ; | I € #}isa
set of different inputs from A, all of which have 1’s on J. Hence, |.#| < d|;(A) < d;_,(A)
(provided _¢ # 0). Similarly, | #| < d,;(A) which implies

|71 121 < dy(A)d,—s(A) -

Finally, every a € A, is uniquely determined by the pair (I,,J,), therefore |A,| < |.#]-
|#|. This completes the proof of the desired inequality |A,| < d,(A)d,_,(A), and thus,
the proof of the theorem. O

The exact perfect matching function is a boolean function EPM,, in n? variables,

encoding the edges of a bipartite graph with parts of size n; the function computes 1
iff the input graph is a perfect matching. That is, EPM,, takes an n x n (0, 1) matrix as
an input, and outputs 1 iff each row and each column has exactly one 1.

COROLLARY 16.7. Every 1-n.b.p. computing EP M, must have size 2.

ProoE. Lowest ones for EPM,, are perfect matchings. Hence, we have n! lowest
ones. Since, for every 1 <s < n, only (n —s)! perfect matchings can share s edges in
common, we have that d,,/5(A) < (n/2)!. By Theorem 16.5, any 1-n.b.p. computing
EPM, must have size at least

n! . n —oam
(n/2)!-(n/2)! _(n/z)_zﬂ ' -
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What makes the analysis of branching programs difficult is the fact, that they can
contain a lot of “redundant” paths, that is, paths containing a contact x; as well as
—x;, for some i. These paths (called also “null-chains”) are consistent with no input
vector, but it is known that there presence can exponentially reduce the total size of a
program: these paths enable one to merge non-isomorphic subprograms.

Say that a nondeterministic branching program is weakly read-once if along any
consistent s-t path no variable is tested more than once. That is, we now put no
restrictions on inconsistent paths.

The following problem is one of the “easiest” questions about branching programs,
but it still remains open!

RESEARCH PROBLEM 16.8. Prove an exponential lower bound for nondeterministic
weakly read-once branching program.

That such programs may be much more powerful than 1-n.b.p.’s shows the follow-
ing

PropOSITION 16.9. The function EPM,, can be computed by a nondeterministic weakly
read-once branching program of size O(n®).

Proor. To test that a given square (0,1) matrix is a permutation matrix, it is
enough to test whether:

a. every row has at least one 1, and
b. every column has at least n — 1 0’s.

These two tests can be made by two nondeterministic branching programs P; and P,
designed using the formulas

n n

Pl(X)=/\\/xl-’j and Py(X)= /\ \//\ﬁxi’j.

i=1j=1 j=lk=1 =1

Let P = P; A P, be the AND of these two programs, that is, the sink-node of P, is the
source-node of P,. The entire program has size O(n®). It remains to verify that P
is read-once. But this is obvious because all the contacts in P; are positive whereas
all contacts in P, are negative; so every s-t path in the whole program P is either
inconsistent or is read-once. (]

16.1.2. Parity branching programs. The highest lower bound for parity branch-
ing programs remains the Nechiporuk’s bound of ©(n%/2/log) shown in Section 14.1
(see Theorem 14.2). Curiously enough, no such lower bound is known even for read-
once parity branching programs, where along any s-t path (be it consistent or not)
every variable appears at most once! This is quite different from deterministic and
nondeterministic read-once branching programs were exponential lower bounds are
known (we have shown this in previous sections).

RESEARCH PROBLEM 16.10. Prove an exponential lower bound for read-once parity
branching programs.

So far, exponential lower bounds for such programs are only known under the
additional restriction that the program is oblivious. The nodes are partitioned into at
most n levels so that edges go only from one level to the next, all the edges of one level
are labeled by contacts of one and the same variable, and different levels have different
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variables. Let us refer to read-once parity branching programs with this restriction as
1-p.b.p.

To prove exponential lower bounds for 1-p.b.p.’s, we will employ one specific prop-
erty of linear codes — their “universality”.

Recall that a linear code is just a set of vectors C € {0,1}" which forms a linear
subspace of GF(2)". The minimal distance of a code C is a minimal Hamming distance
between any pair of distinct vectors in C. It is well known (and easy to show) that
minimal distance of C coincides with the minimum weight of (i.e. the number of 1’s
in) a non-zero vector form C. The dual of C is the set C* of all those vectors x € {0, 1},
which are orthogonal to all the vectors from C, i.e., 2?21 x;¥; =0mod 2 for all y € C.

A set of vectors C C {0,1}" is k-universal if for any subset of k coordinates I <
{1,...,n} the projection of vectors from C onto this set I gives the whole cube {0, 1} .
A nice property of linear codes is that their duals are universal.

PROPOSITION 16.11. If C is a linear code of minimal distance k + 1 then its dual C*
is k-universal.

ProOF. Take a set I C {1,...,n} with |I| < k. The set of all projections of strings
in C onto I is a linear subspace in {0,1}!, and this subspace is proper if and only if
all strings a € C satisfy a non-trivial linear relation Zi &;a; = 0 mod 2 whose support
{i : £ = 1} is contained in I. But, by definition, C* consists exactly of all relations &
satisfied by C, and its minimal distance is exactly the minimal possible cardinality of a
set I for which the projection of C onto {0, 1} is proper. O

A characteristic function of a set C € {0,1}" is a boolean function f, such that
fe(x)=1iffx ecC.

THEOREM 16.12. Let C € {0,1}" be a linear code with minimal distance d;, and
let d, be the minimal distance of the dual code C_L. Then every 1-p.b.p. computing the
characteristic function f. of C has size at least 2™ {d1.d2}—1,

Proor. Let P be a 1-p.b.p. computing f, k = min{d;,d,} —1 and letI C {1,...,n}
be the set of bits tested on the first k = |I| levels of P. Every assignment a : [ —
{0, 1} (treated for this purpose as a restriction) defines a subfunction f, of f in n — |I|
variables which is obtained from f by setting x; to a(i) for all i € I. Let & be the
subspace of the 2" -dimensional space of all boolean functions on n — k variables,
generated by the subfunctions f, of f with a : I — {0,1}. It is not difficult to see
that size(P) > dim (&). Indeed, if v4,..., v, are the nodes at the k-th level of P, then
for every assignment a : I — {0,1}, the subfunction f, is a linear combination of
the functions computed by a 1-p.b.p.’s with source-nodes v,...,v,: f,(b) = 1 iff the
number of accepting paths in P(a, b) is odd. Hence, we need at least r > dim (&) such
functions to get all the subfunctions in &.

Now we can finish the proof as follows. Since the dual of C has distance d, > k+1,
we have by Proposition 16.11, that the code C itself is k-universal. This, in particular,
means that for every assignment a : I — {0, 1} there is an assignment x, : I — {0,1}
such that (a,x,) € C. Moreover, since C has distance d; > k = |I|, we have that
(b,x,) & C for every other assignment b : [ — {0,1}, b # a. Thus, if we describe the
subfunctions f,, a : I — {0, 1}, as rows of a 2 x 2"~ matrix, then this matrix contains a
diagonal 2% x 2K submatrix with entries f (a, x) such that f (a, x) = 1 iff x = x,. So, the
matrix has full row-rank equal 2%, which means that the subfunctions in .# are linearly
independent (over any field, including GF(2)). Thus, size(P) > dim (%) = |Z| > 2k,
as desired. O
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To give an explicit lower bound, recall that the r-th order binary Reed—Muller code
R(r,t) of length n = 2* is the set of graphs of all polynomials in t variables over FF, of
degree at most r. This code is linear and has minimal distance 27",

COROLLARY 16.13. Let n = 2f and r = |t/2]|. Then every 1-p.b.p. computing the
characteristic function of the Reed-Muller code R(r, t) has size at least 22V™),

Proor. Itis known (see, e.g., [107, p. 374]) that the dual of R(r, t)is R(t—r—1,t).
Hence, in the notation of Theorem 16.12 we have that d; = 2™" > Q(y/n) and d, =
21 > Q(4/n). The desired bound follows. O

16.2. Linear codes require large replication

Recall that the replication number of a program is the minimal number R such
that along every computation path, at most R variables are tested more than once.
The sets of variables re-tested along different computations may be different. We will
now prove an exponential lower bound for deterministic branching programs with
replication number R about n/logn and even about en for a constant £ > 0. Recall that
R = n is the maximal possible value corresponding to unrestricted branching programs.

But before we start, let us first show that testing just one bit twice can help much.
For this, let us again consider the pointer function f,, introduced in Section 16.1.1.
We already know (see Theorem 16.4) that any deterministic branching program of
replication number R = 0 (read-once program) for this function must have exponential
size. We now show that allowing to re-test just one bit along each path reduces the
size drastically.

PropPOSITION 16.14. The pointer function f, can be computed by a deterministic
branching program of size O(n?/logn) and replication number R = 1.

PrOOE. For eachi=1,...,s, let P; be an obvious 1-b.p. of size s> =n/k <n/logn
computing the function y; = \/;:1 ( /\XGBU x). Arrange these programs into a bi-
ij

nary tree of height k. This way we obtain a read-once program of size 0(2¢n/k) =
0(n?/logn). This program has 2F = n leaves, each labeled by the corresponding string
a=(ay,...,a;), and hence, by the corresponding index v = bin(a). Replace each such
leaf by a size-1 branching program testing the corresponding variable x,.. The resulting
program has replication number R = 1, computes f,, and has the desired size. t

Thus, even when going from programs with R = 0 to programs with R = 1, the
size may decrease drastically (from exponential to quadratic size).

We are now going to show that some explicit boolean functions require large repli-
cations number R, growing with the number n of variables. We will present two entirely
different lower bounds arguments for (1, 4+R)-branching programs. The first one, pre-
sented in this section, is numerically weaker—works only for R = o(n/logn)—but is
(apparently) more instructive. Moreover, it works for important objects—characteristic
functions of linear codes. A different argument, presented in the next section, gives
exponential lower bounds for programs of almost maximal replication R = Q(n), but
the functions for which it works are no more as “simple”—they are quadratic functions
of good expander graphs.

A partial input is a mapping a : [n] — {0, 1,*} where [n] = {1,...,n}. If a(i) = *
we say that the ith bit in a is unspecified (or undefined). The support S(a) of a is the set
of all specified bits, that is, bits i for which a(i) # *. A composition b = a;a,---a, of
(partial) inputs ay, a,,...,a,, whose supports are pairwise disjoint, is a (partial) input
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& a=b & & =b 2=b a
<’ N
by b, by

FIGURE 2. Forgetting pairs a; and b,, a, b, and a, b,, a,a,as and a;a,b;.

defined by b(i) = a;(i) for i € S(a;). The length |a| of a is the number of bits in S(a).
For two partial inputs a and b, let D(a, b) be the set of all bits where they both are
defined and have different values.

Given a boolean function f (xy,...,x,), every partial input a (treated for this pur-
pose as a restriction) defines the subfunction f [, of f in n — |a| variables in a usual
manner. A partial input a is a O-term of f if f[,= 0, and 1-term if f[,= 1. We say that:

o f is d-rare if |D(a, b)| > d for every two different totally defined inputs a, b
such that f(a) = f(b)=1;
o f is m-dense if |a| > m for every O-term a of f.
That is, f is d-rare if the Hamming distance between any two vectors in f ~!(1) is at
least d, and is m-dense, if it is not possible to make the function be constant 0 by fixing
fever that m variables.

THEOREM 16.15. Let 0 < d,m,R < n be arbitrary integers. Every (1,+R)-branching
program computing a d-rare and m-dense function must have size at least
o(min{d, m/(R+1)}-1)/2

The idea behind the proof of this fact is the following. If all computations are long
(of length at least m) and the program is not too large, a lot of computation paths must
split and join again. At that node were they join again, some information about the
inputs leading to this node is lost. If too much information is lost and not too many (at
most R) variables may be re-tested once again, it is not possible to compute the correct
value of the function.

The intuition about the “loss of information” is captured by the following notion
of “forgetting pairs” of inputs.

DEFINITION 16.16. Let a, b be (partial) inputs with S(a) = S(b). Given a branching
program P, the pair a, b is called a forgetting pair (for P) if there exists a node w such
that w belongs to both comp(a) and comp(b), and both computations read all the
variables with indices in D(a, b) at least once before reaching w.

LEMMA 16.17. Let P be a branching program in which every computation reads at

least m different variables. Let s be a natural number in the interval
m

s —m——.

2log, |P|+ 1
Then there exist pairwise disjoint subsets I, ..., I of [n] and partial inputs a; # b; with
S(a;) =S(b;) =I; such that for all j =1,2,...,s we have:

@ |I;| <2log, |P|+1,

(ii) theinputs a;---a;_qa; and a, ---a;_, b; form a forgetting pair.

1<

ProOOFE. Given a b.p. P, one can get a forgetting pair by following all the com-
putations until r := [log, |P|] + 1 different bits are tested along each of them. Since
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|P| < 27, at least two of these paths must first split and then stick in some node. Take
the corresponding partial inputs a; and b} and extend them to a; and b, such that
S(a;) = S(by) = S(a}) US(b)) and D(ay, b;) € S(aj) NS(b}). This way we get a for-
getting pair of inputs a; # b; both of which are defined on the same set of at most
[S(aj)US(b7)| < 2r —1 bits. We can now repeat the argument for P ¢, and obtain next
forgetting pair of inputs a,a, and a, b, etc. We can continue this procedure for s steps
until s(2r — 1) <s(2log, |P|+ 1) does not exceed the minimum number m of different
variables tested on a computation of P. O

PrOOF oF THEOREM 16.15. Suppose the contrary, that some (1,4+R)-b.p. P com-
putes a d-rare and m-dense function and has size less than 2 m/R+DI-1/2 - we
can assume w.l.o.g. that d > 2 (otherwise the bound becomes trivial), and this implies
that every 1-term of f has size n > m. Hence, in order to force f to either 0 or 1 we
must specify at least m positions, therefore every computation of P must read at least

m different variables. Since
IP| < 2m/R+D-1/2

we can apply Lemma 16.17 (with s := R+ 1) and find R+ 1 sets I; and partial inputs
a;, b; : [n] — {0,1,*} with properties (i) and (ii). From (i) and the bound on |P|
we have |I;| < min{d, m/(R + 1)}, and this implies that the partial input a; ---ag4,
specifies strictly less than m variables. Since f is m-dense, a; ---ag,; can be extended
to a totally defined input a such that f(a) = 1.

As thesetsI,...,Ip,, are pairwise disjoint and at most R variables can be re-tested
along any computation, there must exist j such that all variables with indices from I;
are tested at most once along comp(a). Now, let w be the node that corresponds to the
forgetting pair

a---aj_qa; and ap---a;_1b;;
w is on comp(a). All variables with indices from D(a;, b;) € I; are already tested along
comp(a) before w, hence no such variable is tested after w, and the computation on
the input ¢ obtained from a by replacing a; with b; can not diverge from comp(a) after
the node w. Therefore, f(c) = f(a) = 1. But this, along with |I;| < d, contradicts the
d-rareness of f, and the proof of Theorem 16.15 is completed. O

This theorem is especially useful for (characteristic functions of) linear codes, that
is, for linear subspaces of GF(2)".

OBSERVATION 16.18. The characteristic function of a linear code C is d-rare if and
only if the minimal distance of C is at least d, and is m-dense if and only if the minimal
distance of its dual C* is at least m.

ProoF. The first claim is obvious, the second follows from Proposition 16.11. [
Hence, Theorem 16.15 implies:

THEOREM 16.19. Let C be a linear code with minimal distance d,, and let d, be the
minimal distance of the dual code C*. Then every (1,+R)-branching program computing
the characteristic function of C has size exponential in min{d,, d,/R}.

This theorem yields exponential lower bounds on the size of (1,+R)-branching
programs computing characteristic functions of many linear codes. The largest allowed
replication number R = O(n/logn) is achieved by Bose-Chaudhury-Hocquenghem
codes, known as BCH-codes.
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Letn =2‘—1, and let C C {0, 1}" be a BCH-code with designed distance § = 2t+1,
where t < /n/4, and let f. be its characteristic function. Let d, be the minimal
distance of its dual C*. The Carliz—Uchiyama bound (see, e.g., [107, p. 280]) says
that d, > 271 — (t — 1)2%2 which is Q(n) due to our assumption on t. Since the
minimal distance d; of a BCH-code is always at least its designed distance 6, we get
from Theorem 16.19

COROLLARY 16.20. Every (1,+R)-branching program computing f. has size exponen-
tial in min{t, n/R}.

In particular, if t = w(logn) then every such program must have super-polynomial
size as long as R = o(n/logn).

16.3. Replication of rectangle-free functions

We are now going to prove exponential lower bound on the size of branching
programs with almost maximal replication number R = Q(n). The functions for which
we prove such a bound will have the form

fn(xl...,xn)=(x1€B---€an691)/\( \/ xi/\xj),

{i.j}eE

where E is the set of edges of a specially chosen graph G = ([n],E), so called, Ra-
manujan graph. That is, given an input vector a € {0,1}", we remove all vertices i
with a; = 0, and let f,(a) = 1 iff the number of 1’s in a is even and the number of
survived edges is odd.

It is clear that f,, can be computed by an unrestricted (R = n) branching program
of size O(n?). We will show that good expanding properties of the graph G imply that
every branching program computing f,, with replication number R = o(n) must already
have exponential size.

But first we will prove a general theorem telling us what properties boolean func-
tion force the replication number of their branching programs be large.

A boolean function r(xy,...,x,) is a rectangular function if there is a balanced
partition of its variables into two parts such that r can be written as an AND of two
boolean functions, each depending on variables in only one part of the partition. A set
R C {0,1}" of vectors is a combinatorial rectangle (or just a rectangle) if R = r (1) for
some rectangular function r. So, each combinatorial rectangle has a form R =R, X R,
where R, C {0,1}0 and R; € {0, 1}" for some partition [n] = I,UI, of [n] = {1,...,n}
into two disjoint parts I, and I; whose sizes differ by at most 1.

The rectangle number, o(f), of a boolean function f is the maximum size |R| of a
rectangle R such that f(a) = 1 for all a € R. Finally, we say that a boolean function f
in n variables is:

a. sensitive if any two accepted vectors differ in at least two bits;
b. dense if |[f ~1(1)| > 2"°™ and
c. rectangle-free if p(f) < 2"%n),

THEOREM 16.21. There is a constant € > 0 with the following property: If f is a
sensitive, dense and rectangle-free boolean function in n variables, than any deterministic

branching program computing f with the replication number R < en must have size S =
20,
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ProOOF. Let f be a sensitive and dense boolean function in n variables. Suppose
also that the function f is rectangle-free, that is, f ~!(1) does not contain a rectangle
of size larger than 2"~°", for some constant 5§ > 0. Take an arbitrary deterministic
branching program computing f with replication number R < en, where € > 0 is a
sufficiently small constant to be specified later; this constant will only depend on the
constant §. Our goal is to prove that then the program must have at least 20" nodes.

For an input a € {0, 1}" accepted by f, let comp(a) denote the (accepting) com-
putation path on a. Since the function f is sensitive, all n bits are tested at least once
along each of these paths. Split each of the paths comp(a) into two parts comp(a) =
(Pe»>4qq), where p, is an initial segment of comp(a) along which n/2 different bits are
tested. Hence, the remaining part q, can test at most n/2+R different bits.! Looking at
segments p, and g, as monomials (ANDs of literals), we obtain that f can be written
as an OR of ANDs P A Q of two DNFs satisfying the following three conditions:

(i) All monomials have length at least n/2 and at most n/2 + R. This holds by the
choice of segments p, and q,.

(i) Any two monomials in each DNF are inconsistent, that is, one contains a vari-
able and the other contains its negation. This holds because the program is
deterministic: the paths must split before they meet.

(iii) For all monomials p € P and g € Q, either pg = 0 (the monomials are incon-
sistent) or |X(p) NX(q)| <R and |X(p) UX(q)| = n, where X(p) is the set of
variables in a monomial p. This holds because the program has replication
number R and the function f is sensitive.

Fix now one AND P A Q for which the set B of accepted vectors is the largest one;
hence, the program must have at least |f ~'(1)|/|B| > 2"~°™/|B| nodes, and it remains
to show that the set B cannot be too large, namely, that

|B| < 2m—9m

We do this by showing that otherwise the set B, and hence, also the set f ~1(1), would
contain a large rectangle in contradiction with the rectangle-freeness of f. When doing
this we only use the fact that all vectors of B must be accepted by an AND of DNFs
satisfying the properties (i)-(iii) above.

By (iii) we know that every vector a € B must be accepted by some pair of mono-
mials p € P and q € Q such that |X(p) N X(q)| < R. A (potential) problem, however,
is that for different vectors a the corresponding monomials p and q may share differ-
ent variables in common. This may prohibit their combination into a rectangle (see
Remark 16.23 below). To get rid of this problem, we just fix a set Y of |Y| < R vari-
ables for which the set A C B of all vectors in B accepted by pairs of monomials with
X(p)NX(q) =Y is the largest one. Hence,

R
n
A= BI[ > (l) > |B| - 27HE),
i=0

where H(x) = —xlog, x — (1 — x)log,(1 — x) is the binary entropy function.
Cram 16.22. The set A contains a rectangle C of size
|A]?

|C| = 9,2n+R ‘

INote that we only count the number of tests of different bits—the total length of (the number of tests
along) comp(a) may be much larger than n+R.
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FIGURE 3. C = C; x {y} x C, forms a rectangle.

Assuming the claim, we can finish the proof of the theorem as follows. By the
rectangle-freeness of f, we know that |C| < 2"~%" for a constant § > 0. By Claim 16.22,
we know that

|A| <3. 2(n+R)/2|C| <3. 2(1+e)n/2+(1—5)n .

Hence, if R < ¢n for a constant ¢ > 0 satisfying ¢ + 2H(¢) < 26, then
|B| < |A| . 2H(e)n <3. 2n—(25—e—2H(€))n/2 < 2n—Q(n) .

It remains therefore to prove Claim 16.22.

Each monomial of length at most k accepts at least a 27 fraction of all vectors
from {0,1}". Hence, there can be at most 2 mutually inconsistent monomials of
length at most k. By (i) and (ii), this implies that

|P| < 2"? and |Q| < 2W/**R, (16.2)

For each monomial p € PUQ, let A, = {a €A| p(a) = 1} be the set of all vectors in A
accepted by p; we call these vectors extensions of p. Note that, by the definition of the
set A, a €A, iff pq(a) =1 for some monomial q € Q such that X(p)NX(q) =Y.

Since, by (ii), the monomials in P are mutually inconsistent, no two of them can
have a common extension. Since every vector from A is an extension of at least one
monomial p € P, the sets A, with p € P form a partition of A into |P| disjoint blocks.
The average size of a block in this partition is |A|/|P|. Say that a monomial p € P
is rich if the corresponding block A, contains |A,| > %lAl /|P| vectors. Similarly for
monomials in Q. By averaging, at least two-thirds of vectors in A must be extensions of
rich monomials in P. Since the same holds also for monomials in Q, at least one vector
x € A must be an extension of some rich monomial p € P and, at the same time, of
some rich monomial q € Q.

Let y be the projection of x onto Y = X(p) N X(q). Since all variables in Y are
tested in both monomials p and g, all the vectors in A, and in A; coincide with y on Y.
Consider the set of vectors C = C; x {y} x C,, where C; is the set of projections of
vectors in A, onto the set of variables X — X(q), and C, is the set of projections of A,
onto the set of variables X — X(p) (see Fig. 3). Since both monomials p and g have at
least n/2 variables, the set C is a rectangle of size

WA LA A 1P
3|P| 3|Q| T 92w/2 2n/2+R "~ g ontR’
Hence, it remains to verify that C C A, i. e., that all vectors ¢ € C are accepted by P AQ.
The vector x belongs to C and has the form x = (x1, y, x,) with x; € C;. Take now
an arbitrary vector ¢ = (cq,¥,¢;) in C. The vector (x;,Y,c,) belongs to A,. Hence,
there must be a monomial q’ € Q such that X(p) N X(q") = Y and pq’ accepts this
vector. Since all bits of x; are tested in p and none of them belongs to Y, none of these
bits is tested in q’. Hence, ¢’ must accept also the vector ¢ = (¢, y, ¢,). Similarly, using

ICl=1Ci[- |Gl =14, - 1Al =
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the fact that (cy, y, x,) belongs to A,, we can conclude that the vector ¢ = (¢;, y,¢,) is
accepted by some monomial p’ € P. Thus, the vector c is accepted by the monomial
p’q’, and hence, by P AQ.

This completes the proof of the proof of Claim 16.22, and thus, the proof of Theo-
rem 16.28. (]

REMARK 16.23. Note that in the last step of the proof it was important that every
vector from A is accepted by a pair of monomials sharing the same set of variables Y.
Would A not have this property, then the rectangle C would not necessarily lie within
the set A. Take for example P = {x;,~x;} and Q = {x,,x;7x,} with p = x; and
q = x5. The AND P A Q accepts the set of vectors A= {11,01,10}. The projection of
A, =1{11,01} onto X —X(q) = {x;} is C; = {0, 1}, and the projection of A, = {11, 10}
onto X — X(p) = {x,} is also C, = {0,1}. But C = C; x C, € A, because 00 does not
belong to A.

Important in our proof was also that the branching program is deterministic: this
resulted in the property (ii) in the proof of Theorem 16.21, and hence, into upper
bounds (16.2) on the number of monomials. In the case of nondeterministic branching
programs we do not necessarily have this property, and in this case no exponential
lower bounds are known even for R =1 (cf. Problem 16.8).

16.3.1. Graph expansion implies rectangle-freeness. To apply Theorem 16.21
we need an explicit boolean function that is sensitive, dense and rectangle-free. Note
that the first two conditions—being sensitive and dense—are easy to ensure. A difficult
thing is to ensure rectangle-freeness. The problem here is that f must be rectangle-free
under any balanced partition of its variables. We define such functions using graphs.

Let G = (V,E) be an undirected graph on V = {1,...,n}. The quadratic function
of G over GF(2) is a boolean function

fo(Xi,e,x,) = Z x;x;mod 2.
{i,j}€E
That is, given an input vector a € {0,1}", we remove all vertices i with a; = 0, and
count the number of the surviving edges modulo 2.
16.3.1.1. Density. That quadratic functions f; accept many vectors follows from
the a more general fact about polynomials.

LEMMA 16.24. Every nongero polynomial of degree k in n variables over GF(2) has
at least 2" nonzero points.

Proor. In each such polynomial f (x,...,x,) we can find a monomial X; = [ [.., x;
with |I| = k which is maximal in a sense that no monomial X;; with I’ D I is present
in f. Hence, after each of 2" assignments a of constants to variables x; with j & I,
we obtain a polynomial f, in k variables {x; | i € I} whose all monomials, other than
X,, have degree strictly less than k. Our goal is to show that then f,(b) =1 for at least
one b € {0,1}. The function f, has a form f, = X; ® g, where g is a polynomial of
degree d < k in k variables.

If g has no monomials at all, i.e., is a constant polynomial g = ¢ for ¢ € {0, 1},
then f,(b)=1forb=(c®1,...,c®1).

If g is a non-constant polynomial, then take one its monomial X; which is minimal
in a sense that no monomial X with J’ C J is present in g. Let ¢ € {0, 1} be the free
coefficient of g. If ¢ = 1, then f,(0,...,0) = ¢ = 1, and we are done. Otherwise (if
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FIGURE 4. After the setting to O all variables outside the induced
matching, the function f; = (i,jter XiY; turns to the inner product
function IP,,, = x1 Y1 ® - ® XY

¢ = 0) take the vector b € {0,1}} with b, =1 foralli€J,and b; =0 foralli €I —J.
Then g(b) = X;(b) = 1 due to the minimality of J, and X;(b) = 0 since I —J # 0.
Hence, we again have that f,(b) = 1. O

16.3.1.2. Matching number. The next question is: What properties of a graph G
do ensure that its quadratic function f is rectangle-free? We will now show that such
is the matching number m(G) of the underlying graph. The measure m(G) is defined as
the largest number m such that, for every balanced partition of vertices of G, at least
m crossing edges form an induced? matching; and edge is crossing if it joins a vertex
in one part of the partition with a vertex in the other part.

The fact that such a matching must be induced matching means that the endpoints
of any two of its edges are not adjacent in G. This last property is important: if M =
{X1¥1,-++»XmYm} is an induced matching of G, then we can set to 0 all variables of f
outside M, and what we obtain is the inner product function x;y; ® X, Y, ® - ® X Ym-
Then we can use the fact that the rectangle number of the inner product function is
small.

LEMMA 16.25. For every graph G on n vertices, we have
o(fg) <27 ™@.

ProoF. Fix an arbitrary balanced partition of the vertices of G into two parts. The
partition corresponds to a partition (x, y) of the variables of f;. Let r = r;(x)Ar,(y) be
an arbitrary rectangle function with respect to this partition, and suppose that r < f.
Our goal is to show that then r can accept at most 2" ™ vectors.

By the definition of m(G), some set M = {x;¥1,..., X, Ym} of m = m(G) crossing
edges x;y; forms an induced matching of G. We set to 0 all variables corresponding to
vertices outside the matching M (see Fig. 4). Since M is an induced subgraph of G, the
obtained subfunction of f; is just the inner product function

m
Ipzm(xp---;Xm,}ﬁ,---,ym)=inyi mod 2.
=1

The obtained subfunction r’ = r{(xy,...,x, ) Ar5(¥1,...,¥y) of the rectangle function
r =r; AT, is also a rectangle function such that r’(a) < IP,,,(a) for all a € {0,1}?>™.

2An induced subgraph of a graph is obtained by removing vertices together with their adjacent edges.
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Since r’ was obtained from r by setting to O at most n — 2m variables, we have that
|r=1(1)] < |B|-2" 2™ where B = {a | r’(a) = 1}. Hence, it remains to show that
|[B] < 2™. For this, let H be a 2™ x 2™ matrix defined by

Hx,y] = (~1)/Pntxet,

Since, for every x # 0, IP,,,(x,y) = 1 for exactly half of vectors y, this matrix is a
Hadamard matrix. The following property of Hadamard matrices is a special case of a
more general Lindsey’s Lemma (Lemma 10.25).

CLAIM 16.26. An n x n Hadamard matrix H can contain an a X b all-1 submatrix
only if ab < n.

ProoE. Take an a x b all-1 submatrix, and let v = v; + - 4+ v, be the sum of the
corresponding rows of H. Since this is an all-1 submatrix, the vector v must contain at
least b entries equal to a, implying that ||v||?> > a®b. On the other hand, since the rows
of H are pairwise orthogonal, we have that

a a
VI =D v v = D v vi) = an.
i=1 i=1
Altogether this yields ab < n. t

Since our set B € {0,1}™ x {0,1}™ lies within IPZ_nl(l), it corresponds to an all-1
submatrix of H. Claim 16.26 implies that |B| < 2™, as desired. O

16.3.1.3. Mixed graphs. By Lemma 16.25, we need graphs G such that, for any
balanced partition of their vertices, many crossing edges form an induced matching.
To ensure this, it is enough that the graph is “mixed enough”.

Say that a graph is s-mixed if every two disjoint sets of at least s vertices are joined
by at least one edge.

LEMMA 16.27. If an n-vertex graph G of maximum degree d is s-mixed, then
) > n—2s
m DV >
T 4(d+1)

and hence,
s

n
d+D A
ProoOF. Fix an arbitrary balanced partition of the vertices of G into two parts. To
construct the desired induced matching, formed by crossing edges, we repeatedly take
a crossing edge and remove it together with all its neighbors. In each step we remove
at most 2d + 1 vertices. If the graph is s-mixed, then the procedure will run for m steps
as long as [n/2] — (2d + 1)m is at least s. O

log, o(fg) <n

By Corollary 9.20 in Section 9.7, Ramanujan graphs G = RG(n,q) are are &n-
mixed for a constant § < 1/2, as long as g > 2°. Since the degree of G = RG(n,q) is
g+ 1 (a constant, if q is constant), Lemma 16.27 implies

o(fg) < 2nm (16.3)

Fix now a Ramanujan graphs G = RG(n,q) with ¢ > 2°, and consider the boolean
function

fa=foN(1®--Bx,®1).
That is, given an input vector a € {0, 1}", we remove all vertices i with a; = 0, and let
fn(a) =1 iff the number of 1’s in a is even and the number of survived edges is odd.
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THEOREM 16.28. There is a constant € > 0 such that any deterministic branching
program computing f, with the replication number R < en requires size 2%,

Proor. By (16.3), the function f;, and hence, also the function f, is rectangle-
free. Since the parity function is sensitive, the function f, is sensitive as well. Finally,
since f, is a polynomial of degree at most 3 over GF(2), Lemma 16.24 implies that f,
accepts at least 22 vectors, and hence, is also dense, and Theorem 16.21 yields the
desired lower bound. O

Bibliographic Notes
Lemma 16.17 is due to Zak (1995) and Savicky and Zak (1997). Theorem 16.15
was proved in [85]. Theorems 16.21 and 16.28 are from [82].



CHAPTER 17

Bounded Time

We consider functions f : D" — {0, 1}, where D is a finite domain, not necessarily
{0,1}. We can extend the notion of nondeterministic (as well as deterministic) branch-
ing programs also for this case. In the case of boolean n.b.p. (when D = {0, 1}) at each
edge some test of the form “x; = o” with o € {0,1} is made. By a D-way branching
program we will mean a branching program where the tests of the form “x; = d” with
d € D are made. Different edges leaving the same node may make the same test—this
is why a program is nondeterministic. Such a program accepts an input vector a € D"
if and only if all the tests along at least one s-t path are passed.

17.1. Short time forces large rectangles

We say that a program computes a given function f in time T if for every input
a € f71(1) there is a path from the source to a 1-sink which is consistent with a and
along which at most T tests are made. Important here is that the restriction concerns
only consistent paths, that is, paths along which no two tests x; = d; and x; = d,
for d; # d, are made. This makes the lower bounds problem more difficult. The
“syntactic” case, where the restriction is on all paths, be they consistent or not, is much
easier.

We now consider nondeterministic D-way branching programs working in time kn
where k is an arbitrary large constant. We want to show that some explicit functions
f : D" — {0,1} cannot be computed by such programs using polynomial number of
nodes. The idea is to show that, if the number of nodes is small then the program
must accept all vectors of a large configuration, called “broom”. Having shown this,
we construct a function f that cannot accept many vectors of any broom. This will
imply that any program for f working in time kn must have large size.

Let X = {xq,...,x,} be a set of n variables. A subset R C {0,1}" of vectors is an
s-broom, if there exist two disjoint s-element subsets X, and X; of X, subsets R, C D%
and R, € D*1 of vectors, and a vector w € DX %01 gych that (after some permutation
of the variables) the set R can be written as Ry X {w} X R;; the vector w is then the stick
of the broom. That is, on the variables outside X, UX; all vectors in R have the same
values as the vector w. With some abuse of notation we will write R =Ry X {w} X Ry,
meaning that this holds after the corresponding permutation of variables.

Note that, for s < n/2, each s-broom R is also a combinatorial rectangle, as defined
in the previous chapter. Such a rectangle has, however, special form: all vectors in R
have the same values in each of n — 2m positions, corresponding to the stick w of the
broom. This, in particular, implies that no s-broom can have more than |D|?* vectors.

The main property of s-brooms (as well as of rectangles, we have considered be-
fore) is the “cut-and-paste” property: if the broom R contains two vectors (ay, w,a;)
and (b, w, b;), then it must contain both vectors (by, w,a;) and (ay, w, b, ).

232
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A function f : D" — {0,1} is sensitive if any two accepted vectors differ in at
least two coordinates. The only property of such functions we will use is that in any
branching program computing such a function, along any accepting computation each
variable must be tested at least once.

LEMMA 17.1. Let f : D™ — {0, 1} be a sensitive function and suppose that f can be
computed by a nondeterministic branching program of size £ working in time kn. Let
r = 10k? and K = k°*. Then for every s < n/K, there exists an s-broom R C f ~}(1) of
size
If =1l D"

n 2 :

()

In the proof we will use the following simple combinatorial fact. Say that a se-
quence Sy,...,S, of finite subsets of an n-element set X is s-separated if there exist two

disjoint subsets X, and X; of X, each of size at least n/2N and such that, for each
i=1,...,r, either S;NX, =0 or S; N X, =0 (or both) hold.

IR| > (17.1)

Cramm 17.2. Let r > 8k%? and N := Zizio (0). If1S;| < kn/r foralli =1,...,r then
the sequence S,...,S, of sets is s-separated with s > n/2N.

Proor or CLalM 17.2. Associate with each element x € X, its trace
T(x)={i|xeS;}.

By double-counting,

DTN =Y IS < kn. (17.2)
xex i=1

We will concentrate on elements whose traces are not too large. Namely, say that an
element x € X is legal if |T(x)| < 2k. It is clear that we must have at least n/2 legal
elements, for otherwise the first sum in (17.2) would be larger than (2k)(n/2) = kn.

Partite the legal elements into blocks, where two elements x and y belong to the
same block iff they have the same trace, that is, iff T(x) = T(y). Since |T(x)| < 2k,
each block in this partition is determined by a subset of {1,...,r} of size at most 2k.
So, the total number of blocks does not exceed Zizio (0)=N.

Say that a legal element x € X is happy if the (unique) block, which it belongs to,
has at least n/2N elements. If we will find two legal elements x # y € X such that
both of them are happy and T(x)N T(y) =0, then we are done.

First observe that, by the same averaging argument as above, at least half of all n/2
legal elements must be happy (belong to large blocks); hence, at least n/4 elements
are both legal and happy. Fix any such element x. We have only to show that there is
yet another legal and happy element y which belongs to none of the |T(x)| < 2k sets
S; containing x. For this it is enough to observe that the total number of elements that
belong to some of the sets S; containing x is

U si

i€T(x)

2k’*n

r

< D718 <IT(x)| - max|s;| <

i€T(x)

which, due to our assumption r > 8k?, is strictly smaller than the total number n/4 of
legal and happy elements. O
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PROOF OF LEMMA 17.1. For each input a € f ~!(1), fix one accepting computation
path comp(a), and split it into r sub-paths p4, ..., p, of length at most kn/r; the length
of a sub-path p; is the number of tests made along it. That is, we have r time segments
1,...,r, and in the ith of them the computation on a follows the sub-path p;.

Say that two inputs a and b in f (1) are equivalent if the starting nodes of the
corresponding sub-paths comp(a) = (p4,...,p,) and comp(b) = (q;,--.,q,) coincide.
Since we have at most s nodes in the program, the number of possible equivalence
classes does not exceed ", where ¢ is the total number of nodes in our branching
program. Fix some largest equivalence class A C f ~!(1); hence,

Al = 1fHl/er.

Call a pair of disjoint subsets of variables X, and X; good for a vector a € A if
along the computation comp(a) = (py,...,p,) no subpath p; tests variables from both
sets X, and X;. That is, if some variable from one set is tested along p;, then none of
the variables from the other set is tested along p;.

By letting S; be the set of variables tested along the ith time segment p;, Claim 17.2
implies that every every vector a € f!(1) has at least one good pair X,,X; with
|Xol,|1X,| > n/K, where K = 2N = 221-250 ()< k. Since we have at most (';)2 pairs
of disjoint s-element subsets of variables, some of these pairs X,,X; must be good for
all vectors in a subset B C A of size! |B| > |A] (':) 2. To finish the proof of Lemma 17.1,
we will now show that this set B forces a large broom lying entirely in A, and hence, in
fH.

We can write each vector a € D" as a = (ay, w, a, ), where a, is the projection of a
onto X, a; is the projection of a onto X;, and w is the projection of a onto X —(X,UX} ).
Say that two vectors a = (agy, w,a;) and b = (by, w’, b)) are equivalent if w = w’. Since
the sets of variables X, and X; are disjoint, each equivalence class is an m-broom.

Let R C B be a largest equivalence class lying in B; hence

B A 11
R |D||n|_zs = n zl |n—2$ = r L: 2( 1|—25 :
()7IDI e ()7Ipl

So, it remains to show that all vectors of the broom R are accepted by the program.
This is a direct consequence of the following more general claim.

Cramv 17.3. If both vectors a = (agy, w,a;) and b = (by, w, b;) belong to B, then
the combined vector (a,, w, b;) belongs to A.

To prove the claim, let comp(a) = (p4,...,p,) be an accepting computation on a =
(ag,w,a;), and comp(b) = (qy,...,q,) an accepting computation on b = (by, w, b;).
Consider the combined vector ¢ = (ay,w, b;). Our goal is to show that then p,(c) V
qi(c)=1forall t =1,...,r. That is, that for each t = 1,...,r, the combined vector c
must be accepted by (must be consistent with) at least one of the sub-paths p, or gq,.

To show this, assume that c is not accepted by p,. Since p, accepts the vector
a = (ag,w,a;), and this vector coincides with the combined vector ¢ = (ay, w, b;) on
all the variables outside X;, this means that at least one variable from X; must be
tested along p,. But then, by the goodness of the pair X, X;, no variable from X, can
be tested along the sub-path g,. Since g, accepts the vector b = (by, w, b;), and the

IThis rough estimate makes the whole argument useless for the boolean case, that is, when D = {0, 1}.
At this place Ajtai (2005) uses probabilistic arguments to obtain a nontrivial lower bound on |B| also in the
boolean case; the arguments, however, do not work for nondeterministic branching programs.



17.2. A LOWER BOUND FOR CODE FUNCTIONS 235

combined vector ¢ = (ay, w, b;) coincides with this vector on all the variables outside
X, the sub-path g, must accept the vector c, as desired.
This completes the proof of Claim 17.3, and thus the proof of Lemma 17.1. O

17.2. A lower bound for code functions

Let q be a sufficiently large prime power; q > 3k>* is enough. Take D = GF(q) and
consider the function g(Y,x) in n? + n variables, the first n? of which are arranged in
an n X n matrix Y. Let

g(Y,x) =1 iff the vector x is orthogonal over GF(q) to all rows of Y.

In other words, g(Y,x) = 1 iff the vector x belongs to a linear code defined by the
parity-check matrix Y.

THEOREM 17.4. Every nondeterministic D-way branching program computing g(Y, x)
in linear time must have size 2\,

The time restriction in this theorem concerns only the last n variables—the first n>
variables from Y can be tested an arbitrary number of times!

Proor. Let k > 1 be an arbitrary integer, and take a nondeterministic branching
program computing g(Y,x) in time at most kn. Let r and K be the constants from
Lemma 17.1. Take d = s + 1 where s := [n/K|. By the Gilbert—Varshamov bound,
linear codes C € GF(q)" of distance d and size |C| > q"/V(n,s) exist, where

V(n,s) = Z(q - 1) (’:) <dg’ (:)
i=0

is the number of vectors in a Hamming ball of radius s around a vector in GF(q)".

Let Y be the parity-check matrix of such a code, and consider the function f :
GF(@)" — {0,1} such that f(x) = 1iff Y -x = 0. Thatis, f(x) = 1iff x € C.
The function f(x) is a sub-function of g(Y,x). Hence, if the function g(Y,x) can be
computed by a nondeterministic branching program working in time kn, then the size
of this program must be at least the size ¢ of a nondeterministic branching program
computing f(x) in time kn. To finish the proof of Theorem 17.4, it remains therefore
to show that £ must be exponential in s = n/K.

The function f(x) accepts |f ~*(1)| > q"/V(n,s) vectors. Hence, by Lemma 17.1,
the code C must contain an s-broom R =R x {w} x R; of size

PO @
ny 2 - ny 2 - 3 "
er () er()vins)  rd(})
On the other hand, since the Hamming distance between any two vectors in C is at least
d = s+ 1, none of the sets R, and R, can have more than one vector. Hence, |R| < 1.
Remembering that s = |[n/K| and q is large enough this, we have that (:)3 <(q/2).

Together with |[R| < 1 and (17.3), this implies that £7 > 2°/d = 2%) and the desired
lower bound ¢ = 296/7 = 290 follows. O

IR = (17.3)

RESEARCH PROBLEM 17.5. Prove an exponential lower bound on the size of for nonde-
terministic boolean (D = {0, 1}) branching programs in n variables, all whose consistent
paths have length at most n+ 1.
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Thus, if the computed function is sensitive, then only one variable is allowed to be
re-tested along each accepting computation. But what makes the problem non-trivial
is that the restriction is only on consistent paths. The case when the restriction is on all
paths (be they consistent or not) is much easier to analyze, and we do this in the next
section.

17.3. Syntactic read-k times programs

A nondeterministic branching program is syntactic read-k times program (k-n.b.p.)
if along each its path (be it consistent or not) from the source to the target node each
variable appears at most k times.

LEMMA 17.6. Let f : {0,1}" — {0, 1} be a sensitive boolean function, r = 10k? and
K = k> If f can be computed by a k-n.b.p. of size £, then for every s < n/K, there exists
an s-broom R C f~1(1) of size

IRl > |f~H(D)]- 25707

PROOE. As in the proof of Lemma 17.1, for each input a € f ~*(1), fix one accepting
computation path comp(a), and split it into r sub-paths comp,(a),...,comp,.(a) length
at most kn/r; as before, the length of a sub-path is the number of tests made along
it. Call two inputs a and b in f ~'(1) equivalent if, for each i = 1,...,r, the starting
nodes of the corresponding sub-paths comp;(a) and comp;(b) coincide. Since we have
at most £ nodes in the program, the number of possible equivalence classes does not
exceed £". Fix some largest equivalence class A C f ~1(1); hence, |A| > |f ~1(1)|/¢". Let

S; ={x; | x; or —x; appears along comp;(a) for some a € A}

be the set of variables that are tested along the ith sub-computation on at least one
vector from A. Since our program is syntactic read-k, no variable can belong to more
than k of the sets Si,...,S,: otherwise we could find a (non necessarily consistent)
path containing more than k ocurrencies of this variable. So, Claim 17.2 implies that
there must be a pair X, X; of disjoint subsets of variables, each of size at least n/2N
with N = Z?ﬁo (7) and such that ;N X, =0 or S; NX; =0 for each i = 1,...,r. The
rest of the proof is now the same as that of Lemma 17.1 with set A instead of B. U

To show an explicit lower bound for the size of k-n.b.p., consider binary linear
(n,m,d)-codes. Recall that such a code is a linear subspace C € GF(2)" of dimension
n—m such that the Hamming distance between any two vectors in C is at least 2d + 1.
Bose-Chaudhury codes (BCH-codes) are linear (n,m,d)-codes C with m < dlog,(n +
1). Such codes can be constructed for any n such that n+ 1 is a power of 2, and for
everyd <n/2.

CoRrOLLARY 17.7. For every integer k > 1, the characteristic function of BCH-codes of
minimal distance d = Q(+/n) require k-n.b.p. of size 22"

ProOE. Let C C {0,1}" be a BCH (n,m,d)-code with d = |&¢/n |, where &€ > 0 is
a sufficiently small constant. Let also f; be the characteristic function of C, that is,
fe(x) = 1iff x € C. Let £ be the smallest size of a k-n.b.p. computing f.. Since k
is constant, both r = 10k% and K = k°¢ are constants. Moreover, m < d log,(n+ 1),
implying that
FOI=2"" 2 2"/ (n+ DY
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Let s = [n/K|; hence, s = ©(n). We already know (see Claim 15.4 in Section 15.1)
that no code of minimal distance at least 2d 4+ 1 can contain an s-broom of size larger
than 2% (%) 2. By Theorem 17.6, this implies that

2
> |fN )2 (2) > exp (Zd log,(s/d) — dlog,(n + 1))
2
_ s _ — V)
= exp (dlog2 dz(n-l-l)) =exp(d)=2 . O
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We only note that Ajtai’s argument essentially employs the fact that the underlying
branching program is deterministic: this gives a 1-to-1 correspondence between input
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CHAPTER 18

Propositional Proof Complexity

Propositional proof systems operate with boolean formulas, simplest of them being
clauses, i.e., with ORs of literals, where each literal is either a variable x; or its negation
—x;. Atruth-assignment is an assignment of constants 0 and 1 to all the variables. Such
an assignment satisfies (falsifies) a clause if it evaluates at least one (respectively, none)
of its literals to 1. A set of clauses, that is, a CNF formula is satisfiable if there is an
assignment which satisfies all its clauses. The basic question is:

Given an unsatisfiable CNF formula F, what is the length of (number of clauses
in) a proof that F is indeed unsatisfiable.

Such a proof starts with clauses of F (called axioms), at each step applies one of sev-
eral (fixed in advance) simple rules of inferring new clauses from old ones, and must
eventually produce an empty clause 0 (which, by definition, is satisfied by none of the
assignments.

For such a derivation to be a legal proof, the rules must be sound in the following
sense: if some assignment (of constants to all variables) falsifies the derived clause,
then it must falsify at least one of the clauses from which it was derived. Then the
fact that 0 was derived implies that the CNF F was indeed unsatisfiable: given any
assignment o we can traverse the proof going from 0 to an axiom (a clause of F), and
soundness of rules will give us a clause of F which is not satisfied by a.

The main goal of proof complexity is to show that some unsatisfiable CNFs require
long proofs. The reason is its connection with the famous P versus NP question. This
is because the problem SAT—given a CNF formula F, detect whether F is satisfiable
or not—is an NP-complete problem. It is long known that NP = co-NP iff there is
a propositional proof system giving rise to short (polynomial in |F| length) proofs of
unsatisfiability of all unsatisfiable CNFs F.

Thus, a natural strategy to approach the P versus NP problem is, just like in the
circuit complexity, to investigate more and more powerful proof systems and show
that some unsatisfiable CNFs require exponentially long proofs. In this chapter we
will demonstrate this line of research on some basic proof systems, like resolution and
cutting planes proofs.

18.1. Resolution and branching programs

The resolution proof system was introduced by Blake (1937) and has been made
popular as a theorem-proving technique by Davis and Putnam (1960) and Robin-
son (1965).

Let F be a set of clauses and suppose that F is not satisfiable. A resolution refutation
proof) (or simply, a resolution proof) for F is a sequence of clauses Z = (Cy,...,C;)
where C, = 0 is the empty clause (which, by definition, is satisfied by no assignment)
and each intermediate clause C; either belongs to F or is derived from some previous

238
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FIGURE 1. A resolution refutation proof of a CNF formula F. Leaves
(fanin-0 nodes) are clauses of F, and each inner node is a clause
obtained from previous ones by the resolution rule.

two clauses using the following resolution rule:
AVx; BVYX;
_ (18.1)
AV B

meaning that
the clause AV B can be inferred from two clauses AV x; and B V —x;.

In this case one also says that the variable x; was resolved to derive the clause AV B.
The size (or length) of such a proof is equal to the total number t of clauses in the
derivation. It is often useful to describe a resolution proof as a directed acyclic graph,
see Fig. 1. If this graph is a tree, then one speaks about a tree-like Resolution proof. For
technical reasons the following “redundant” rule, the weakening rule, is also allowed:
a clause AV B can be inferred from A.

Observe that the resolution rule is sound: if some assignment (of constants to all
variables) falsifies the derived clause AV B, then it must falsify at least one of the
clauses AV x; and B V —x; from which it was derived. It is also known (and easy to
show, see Exercise 18.2) that Resolution is complete: every unsatisfiable set of clauses
has a resolution refutation proof.

What about the size of such derivations? Due to its practical importance, this
question bothered complexity theoreticians and logicians for a long time. Interestingly
enough resolution proof have a relation to a model we already considered above—
branching programs.

This is a reason why we include resolution proofs in a part devoted to branching
programs.

Let F be an unsatisfiable CNF formula, that is, for every input a € {0,1}" there
is a clause C € F for which C(a) = 0. The search problem for F is, given a, to find
such a clause. (There may be several such clauses; the goal is to find at least one of
them.) Such a problem may be solved by a branching program with |F| leaves: label
the leaves by clauses from F; then every input (truth assignment) a € {0, 1}" follows a
unique path and finally reaches some leaf labeled by a clause C for which C(a) = 0.

Let Sg(F) be the smallest size of a resolution refutation of F, and BP(F) the small-
est size of a deterministic branching program solving the search problem for F. It is not
difficult to show that Sg(F) > BP(F) (see the first part of the proof of Theorem 18.1
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FIGURE 2. A branching program obtained from the resolution proof
given in Fig. 1: just reverse the direction of arcs and label them ac-
cordingly. The program is not read-once.

below). But the gap between these two measures may be exponential: any unsatisfi-
able CNF F has a trivial branching program of size |F| whereas, as we will show in the
next section, some CNFs require Sz(F) exponential in it variables. It is an interesting
question to find a model of computation that is polynomialy equivalent to resolution.

First exponential lower bounds for Resolution proofs were obtained long ago by
Tseitin (1968) under additional restriction that along every path every particular vari-
able x; can be resolved at most once. He called this model regular resolution. In
particular, every tree-like resolution proof is regular. It turns out that this model just
coincides(!) with the known model of read-once branching programs.

Let 1-Sg(F) be the smallest size of a regular resolution refutation proof for F, and
1-BP(F) the smallest size of a deterministic read-once branching program solving the
search problem for F.

THEOREM 18.1. For every unsatisfiable CNF formula F, we have that
Sx(F)>BP(F) and 1-Si(F)=1-BP(F).

ProOE. To show that 1-Sg(F) > 1-BP(F), let Z be a resolution refutation proof for
F. Construct a branching program as follows.

a. The nodes of the program are clauses C of &Z.

b. The source node is the last clause in % (the empty one), the sinks are the
initial clauses from F.

c. Each non-sink node C has fanout 2 and the two edges directed from C to the
two clauses C, and C; from which this clause is derived by one application of
the resolution rule; if the resolved variable of this inference is x; then the edge
going to the clause containing x; is labeled by the test x; = 0, and the edge
going to the clause containing —x; is labeled by the test x; = 1 (see Fig. 2).

It is straightforward to verify that all clauses on a path determined by an input a €
{0,1}" are falsified by a, and hence, the last clause of F reached by this path is also
falsified by a. That is, the obtained branching program solves the search problem and
is read-once if # was regular.

It remains to prove the more interesting direction that 1-Sgx(F) < 1-BP(F). Let
P be a deterministic read-once branching program (1-b.p.) which solves the search
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problem for F. That is, for every input a € {0, 1}" the (unique) computation path on a
leads to a clause C € F such that C(a) = 0. We will associate a clause to every node of
P such that P becomes a graph of a resolution refutation for F. A vertex v labeled by
a variable will be associated with a clause C, with the property that

C,(a) = 0 for every input a € {0,1}" that reaches v. (18.2)

We associate clauses inductively from the sinks backwards. If v is a sink then let C, be
the clause form F labeling this sink in the program P.

Assume now that the node v of P corresponds to a variable x; and has edges
(v,up) for x; = 0 and (v,u;) for x; = 1. By induction we may assume that u, and u;
are labeled by clauses C, and C; satisfying (18.2).

CramM 18.2. C, does not contain —x; and C; does not contain Xx;.

Proor. Otherwise, if C, contains —x;, take an input a with a; = 0 that reaches v.
Such an input exists since by the read-once assumption on P, the ith bit x; was not
asked along any path from the source to v. The input a can reach u, and it satisfies Cy,
in contradiction to the inductive hypothesis. The proof in the case when C; contains
X; is similar. O

We conclude that either: (i) C, = (x; VA) and C; = (—x; V B), or (ii) one of C,
and C; does not contain x;, 7x; at all. In the first case label v with C, = AV B. In the
second case label v with the clause that does not contain x;,—x;. (If both clauses do
not contain Xx;, ~x; chose any of them.)

It is easy to see that the inductive hypothesis (18.2) holds for C, : since the program
P is read-once, any computation path from the source node to v can be prolonged in
both directions. Moreover, the clause associated with the source node must be the
empty clauses, just because every input reaches it. Thus the obtained labeled digraph
represents a regular resolution derivation for F (possibly with some redundant steps
that correspond to the second case (ii) in the labeling above. O

REMARK 18.3. Note that Claim 18.2 holds for any deterministic branching pro-
gram, not just for read-once ones: it is enough that P is a minimal program. Indeed,
in this case a node must be reachable by (at least) two inputs a and b such that a; =0
and b; = 1, for otherwise the test on the ith bit made at the node v would be redun-
dant. Where read-once property was important is the conclusion that so constructed
clause C, satisfies (18.2). Namely, if C, = (x; VA), C; = (-x; VB) and C, = AV B,
and if A(a) = B(b) = 0 but A(b) =1 or B(a) = 1, then Cy(a) = 0 and C;(b) = 0 but
C,(a) =1 or C,(b) = 1. In the read-once case such a situation cannot occur because
then every (single) computation reaching a node v can be extended in both directions.

18.2. Exponential lower bound for resolution

The pigeonhole principle asserts that if m > n + 1 then m pigeons cannot sit in n
holes so that every pigeon is alone in its hole. In terms of 0-1 matrices, this principle
asserts that, if m > n+ 1 then every m x n 0-1 matrix satisfies precisely one of the
following two conditions:

1. Every row has at least one 1.
2. Every column has at most one 1.
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To write this principle as an unsatisfiable CNF formula, we introduce boolean variables
x; ; interpreted as:

x; ; = 1 if and only if the ith pigeon sits in the jth hole.

Let PH P,;” denote the AND of the following clauses (we call them axioms):
a. Pigeon Axioms: each of the m pigeon sits in at least one of n holes:

X1 VXaVer VX, foralli=1,...,m.
b. Hole Axioms: no two pigeons sit is one hole:

—x; ;V-x; ; foralli; #i,and j=1,...,n.

1,] 12,]

Hence, truth assignments in this case are m x n (0,1) matrices a. Such a matrix can
satisfy all pigeon axioms iff every row has at least one 1, whereas it can satisfy all hole
axioms iff every column has at most one 1. Since m > n+ 1, no assignment can satisfy
pigeon axioms and hole axioms at the same time. So, PHP" is indeed an unsatisfiable
CNE

THEOREM 18.4. For a sufficiently large n, any resolution refutation proof of PHP!_,
requires size 2%,

ProoFE. The proof is by contradiction. We define an appropriate notion of a “fat”
clause and show two things:

a. If PHP | has a short resolution proof, then it is possible to set some variables
to constants so that the resulting proof is a refutation of PHP!! | for a large
enough m, and has no fat clauses.

b. If m is large enough, then every refutation proof for PHP,! | must have at
least one fat clause.

This implies that PHP,' ; cannot have short resolution proofs.
In the case of the CNF formula PHP" | truth assignments a are n by n —1 (0,1)
matrices. We say that a truth assignment « is i-critical if

a. the ith row of « is the all-O row, and

b. every column has exactly one 1.

Note that each such assignment a is barely unsatisfying: it satisfies all hole axioms as
well as the axioms of all but the ith pigeon. That is, the only axiom it falsifies is the
pigeon axiom C; = X; 1 V X;5 V-V X; ;1.

The properties of critical truth assignments make it convenient to convert each
clause C to a positive clause C* that is satisfied by precisely the same set of critical
assignments as C. More precisely to produce C*, we replace each negated literal —x; ;
with the OR

Xij=X1; Vo VX1 j VX j Vo VX .
Craim 18.5. For every critical truth assignment a, C*™(a) = C(a).
PROOE. Suppose there is a critical assignment a such that C*(a) # C(a). This

can only happen if C contains a literal —x; ; such that —x; ;(a) # X; j(a). But this is

impossible, since a has precisely one 1 in the jth column. O
Associate with each clause in a refutation of PH P!, the set
Pigeon(C) = {i | there is some i-critical assignment a such that C(a) = 0}

of pigeons that are “bad” for this clause: some critical assignments of these pigeons
falsify C.
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FIGURE 3. Assignment a’ is obtained from a by interchanging the ith
and jth rows.

Crav 18.6. Every resolution refutation of PHP | must have a clause C with
|C*| > n?/9.

Proor. Define the weight of a clause C as u(C) := |Pigeon(C)|. By the definition,
each hole axiom has weight 0, each pigeon axiom has weight 1, and the last (empty)
clause has weight n since it is falsified by any truth assignment. Moreover, this weight
measure is “subadditive:” if clauses A and B imply clause C, then u(C) < u(A) + u(B):
every assignment falsifying C must falsify at least one of the clauses A and B. Therefore,
if C is the first clause in the proof with u(C) > n/3, we must have

n/3 <u(C)<2n/3. (18.3)

Fix such a “medium heavy” clause C and let s = u(C) be its weight. Since n/3 <
s < 2n/3, it is enough to show that the positive version C* of this clause must have
|C*| > s(n — s) distinct variables.

Fix some i € Pigeon(C) and let a be an i-critical truth assignment with C(a) = 0.
For each j ¢ Pigeon(C), define the j-critical assignment a’, obtained from a by toggling
rows i and j. That is, if @ maps the ith pigeon to the kth hole, then a’ maps the jth
pigeon to this hole (see Fig. 3).

Now C(a’) = 1 since j & Pigeon(C). By Claim 18.5, we have that C*(a) =0 and
C*(a’) = 1. Since the assignments a,a’ differ only in the variables x;; and X; ., this
can only happen when C* contains the variable x; ;.

Running the same argument over all n — s pigeons j & Pigeon(C) (using the same
a), it follows that C* must contain at least n — s of the variables x; ,,...,X; ,_; cor-
responding to the ith pigeon. Repeating the argument for all pigeons i € Pigeon(C)
shows that C" contains at least s(n — s) variables, as claimed. U

We can now finish the proof of Theorem 18.4 as follows. Let % be a resolution
refutation proof of PHP! |, and S = |%| be the total number of clauses in it. Let a
and b > 2 be positive constants (to be specified later). For the sake of contradiction,
assume that

S<ee,

Together with 2 we consider the set Z+ = {C* | C € #} of positive versions of clauses
in #. Say that a clause of Z7 is fat if it has at least n?/b variables. Since each fat
clause has at least a 1/b fraction of all the variables, there must be (by the pigeonhole
principle!) a variable x; ; which occurs in at least S/b of fat clauses in RY.

Set this “popular” variable to 1, and at the same time set to 0 all the variables x; ;.

and x; ; for all j' #j,i #1 (see Fig. 4). After this setting, all the clauses containing
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FIGURE 4. Setting of constants to eliminate clauses containing x; ;;
non-shaded positions are not set. This way PHP, ; is reduced to

-1
PHP™}.

1

x; ; will disappear from Z™" (they all get the value 1) and the variables which are set
to 0 will disappear from the remaining clauses.

Applying this restriction to the entire proof % leaves us with a refutation proof %,
for PH P:—_zl’ where the number of fat clauses in %f’ is at most S(1 — 1/b). Continue
in this fashion until we have set all fat clauses to 1. Applying this argument iteratively
d = bIlnS < (b/a)n times, we are guaranteed to have knocked out all fat clauses,

because
S(1—-1/b) <emSd/b =1,
Thus, we are left with a refutation proof for PHP!' ,, where
m=n-d=(1-b/a)n,

and where |C™| < n?/b for all its clauses. But Claim 18.6 implies that any refutation
proof of PHP," | must contain a clause C for which

n?/b>|C*|>m2/9=(1-b/a)*n%/9.

To get the desired contradiction, it is enough to chose the parameters a and b so that
(1—b/a)? > 9/b which, in particular, is the case for b =16 and a = 4b. O

The reader may wonder where in this proof we used that the clauses in a refutation
are derived using only resolution and weakening rules? The same argument seems to
work for more general derivations? And this is indeed so—the only important thing
was that the formulas in such a derivation are clauses: this allowed us to kill off a
clause by setting just one variable to constant.

A closer look at the proof shows that it also works for any semantic derivation
Z = (Cq,...,C,) such that C, = 0 is the empty clause and each C;is either an axion
(belongs to F) or is implied by some k previous clauses C; ,...,C; in a sense that, for
all a € {0,1}",

C,(a)=1,...,C;(a)=1 implies Cj(a)=1.
The only difference is that now instead of (18.3) we will have

n )< kn
— < —
k1 oMY=
which results in a lower bound |C*| > n?/(k+1)? in Claim 18.6. The rest ist the same
with constants b :=4(k + 1) and a := 2b.
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18.3. Short proofs are narrow

We have already seen that “fat” clauses—those whose length exceeds some given
threshold value—play a crucial role in trying to show that the size of a resolution
proof (= the total number of lines in it) must be large. We are now going to show
that this is a general phenomenon, not just an accident: If any resolution proof for an
unsatisfiable CNF formula F must contain at least one fat clause, then F cannot have
a short resolution proof.

The width w(C) of a clause is just the number of literals in it. If F is a set of clauses
then its width w(F) is the maximum width of its clause. Recall that each resolution
refutation £ is also a set (more precisely, a sequence) of clauses. Hence, the width of
a refutation is also the maximum width of a clause participating in it.

Let now F be an unsatisfiable CNF in n variables. Define its resolution refutation
width wg(F) as the minimum width of a resolution refutation of F. The resolution
refutation size Sg(F) is, as before, the minimum number of clauses in a refutation of F.
That is,

wg(F) =min{w (&) : Z is a resolution refutation proof of F}

and
Sg(F) =min{|Z|: 2 is a resolution refutation proof of F}.

Note that refutation proofs # achieving wy(F) and Sz(F) may be different!

What is the relation between these parameters? If we use all clauses of the CNF
F in its refutation, then wg(F) > w(F). But it is not true in general: one may not use
all clauses of F for its refutation, one might be able to deduce the empty clause from a
subset of its clauses.

The relation Si(F) < (2n)"*F) between prof-size and proof-width is easy to see:
since we only have 2n literals, the number of all possible clauses of width k does not
exceed (2n)*. Much more interesting is the following lower bound on proof size in
terms of proof width: only CNF formulas having narrow proofs can be proved in a
short time!

THEOREM 18.7. For any unsatisfiable k-CNF formula F in n variables,
(wg(F) —k)?

16n ’

For the proof of this theorem we need a concept of a restriction of CNFs and of
refutation proofs. Let F be some set of clauses (think of F as a CNF or as a refutation

proof). Let x be some of its literals. If we set this literal to 0 and to 1, then we obtain
two sets of clauses:

log, Sg(F) =

F,_ is F with literal x removed from all clauses of F;
F,._, is F with all clauses containing x removed from F.

Note that, if F was an unsatisfiable CNE then both CNFs F,._, and F,._; remain unsatis-
fiable. Moreover, if # was a resolution refutation proof of F and a € {0, 1}, then &Z,_,
is also a resolution refutation proof of F,_,. If at some step in % a literal x is resolved
using the resolution rule, then this step in %,._, corresponds to an application of the

weakening rule:
AVx BV-x A B

— or .
AV B AV B AV B
LEMMA 18.8. If wg(F,—;) < w — 1 and wg(F,—y) < w, then wy(F) < max{w, k}.
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Proor. The idea is to combine refutations for F,._; and for F,_ into one refutation
proof for F. First we can deduce —x from F,_; using clauses of width at most w. To
do this, follow closely the deduction of an empty clause from F,_;, which uses clauses
of width at most w — 1, and add the literal —x to every clause in that deduction. Let %
be the resulting deduction of —x from F,_;. Now, from —x and F we can deduce F,_,
by using the resolution rule: just resolve —x with each clause of F containing x to get
F._o. This step does not introduce any clause of width more than k. Finally, deduce
the empty clause from F,_, using clauses of width at most w. (|

Let now W be a parameter (to be specified later), and call a clause fat if it has
width larger than W. Set also

a:= (1 - K)_l > W/
2n -

LEMMA 18.9. If a k-CNF F has a refutation that contains less than a® fat clauses then
wr(F)SW+b+k.

ProOF. We prove this by induction on b and n. The base case b = 0 is trivial, since
then we have no fat clauses at all implying that wy(F) < W + k.

Assume now that the claim holds for all smaller values of n and b. Take a resolu-
tion refutation 2 of F using < a® fat clauses. Since there are at most 2n literals and any
fat clause contains at least W of them, an average literal must occur in at least W/2n
fraction of fat clauses. Choose a literal x that occurs most frequently in fat clauses and
set it to 1. The obtained refutation %,_, of F,_; has fewer than a®(1 — %) =qab! fat
clauses. By induction on b we have wy(F,—;) < W + (b — 1) + k. On the other hand,
since F,_, has one variable fewer, induction on n yields wg(F,—y) < W + b + k. The
desired upper bound wg(F) < W + b + k now follows from Lemma 18.8. O

PrOOF OF THEOREM 18.7. Choose b so that a® = Sz(F). Then
- log Sg(F) - 2nlog Sg(F) - 4nlog Sg(F)
" loga ~ W2 ~ w

and, by Lemma 18.9,
4nlog Sg(F
WR(F)SW-F#()—H(.

Choosing W := 24/ nlog Sg(F) to minimize the right-hand side yields the desired upper

bound wg(F) < 44/nlogSg(F) + k. O

REMARK 18.10. That Theorem 18.7 cannot be substantially improved was shown
by Bonet and Galesi (1999): there are unsatisfiable c-CNF formulas F (¢ being a con-
stant) such that Sg(F) < n°® but wx(F) = Q(v/n).

18.3.1. Expanding formulas require large refutation width. As such, the mea-
sure wg(F) is difficult to deal with: we must take all possible resolution refutations of F
into account. Still, there are properties of CNFs F forcing wy(F) to be large. Namely, it
is enough that F has good “expansion” properties. For this, we look at a CNF formula
F as a set of its clauses. Hence, |F| denotes the number of clauses in F, and G C F
means that the CNF G contains only clauses of F.

Let v(F) denote the number of variables in F, and call a CNF formula F is (r,c)-
expanding if

v(G) > (14 ¢)|G]| for every subset G C F of its |G| < r clauses.
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We can associate with F a bipartite graph, where nodes on the left part are clauses of
F, nodes on the right part are variables, and a clause C is joined to a variable x iff x
or —x belongs to C. Then F is (r,c)-expanding iff every subset of s < r nodes on the
left part have at least (1 + ¢)s neighbors on the right part.

TueOREM 18.11. For every unsatisfiable (r, c)-expanding CNF formula F,
cr
wp(F)=> —.
NGBS

We first prove three claims relating the number of clauses with the number of
variables in unsatisfiable CNF formulas.

Cramm 18.12. If |G| < v(G) for every G C F, then F is satisfiable.

Proor. We will use the well-known Hall’s Marriage Theorem. It states that a family
& =1{S4,...,S,} has a system of distinct representatives (that is, a sequence x,..., X,
of elements such that x; € S; iff i = j) if the union of any number 1 < k < m of
members of & has at least k elements.

Assume now that |G| < v(G) for all G € F. Then, by Hall’s theorem, we can find
for each clause C of F a variable x. € v(C) which appears in none of the remaining
clauses of F. Since each variable x. is “unique” for the corresponding clause C, we
can set these variables to 0 or 1 independently to make the corresponding clauses true.
Hence, F is satisfiable. O

Say that an unsatisfiable CNF formula is minimal unsatisfiable if removing any
clause from it makes the remaining CNF satisfiable. The following claim is also known
as Tarsi’s Lemma.

Cramv 18.13. If F is minimally unsatisfiable, then |F| > v(F).

PrOOF. Since F is unsatisfiable, Claim 18.12 implies that there must be a subset of
clauses G C F such that |G| > v(G). Let G C F be a maximal subset of clauses with
this property. If G = F then we are done, so assume that G C F and we will derive a
contradiction.

Take an arbitrary sub-formula H C F — G, and let Vars(H) be the set of its vari-
ables. Due to maximality of G, Vars(H) — Vars(G) must have at least |H| variables, for
otherwise we would have that v(GUH) < |GUH], a contradiction with the maximality
of G.

Thus, the CNF formula F — G satisfies the condition of Claim 18.12, and hence,
can be satisfied by only setting constants to variables in Vars(F) — Vars(G). Since F is
minimally unsatisfiable, the CNF formula G must be satisfiable using only the variables
in Vars(G). Altogether this gives us a truth assignment satisfying the entire formula F,
a contradiction. [

We say that a CNF formula F implies a clause A if any assignment satisfying F also
satisfies A. We also say that F minimally implies A if the CNF formula F implies A but
no its proper subformula (obtained by removing any its clause) does this.

CraiM 18.14. If F minimally implies A then |A| > v(F) — |F|.
Proor. Let Vars(F) = {xy,...,x,} and assume w.l.0.g. that Vars(A) = {x1,...,x.}.
Take a (unique) assignment a € {0, 1}* for which A(a) = 0. Since F implies A, re-

stricting F to a must yield an unsatisfiable formula F, on variables x;,,...,x,. The
formula F, must also be minimally unsatisfiable because F minimally implied A. By
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Claim 18.13, F, must have more than n — k clauses. Hence, |[F| > |F,| > n—k =
v(F) — |A|, as desired. O

We now turn to the actual proof of the theorem.

Proor oF THEOREM 18.11. Let F be an (r, c)-expanding unsatisfiable CNF formula,
and let Z be any resolution refutation proof of F. We can assume that both numbers
r and c are positive (otherwise there is nothing to prove). With each clause C in &
associate the number

u(A) = min{|G| : G € F and G implies A} .

It is clear that u(A) < 1 for all clauses A of F. Furthermore, u is subbaditive: u(C) <
w(A) + u(B) if C is a resolvent of A and B. Finally, the expansion property of F implies
that u(0) > r. Indeed, by the definition, u(0) is the smallest size |G| of an unsatisfiable
subformula G C F, and Claim 18.13 yields |G| > v(G). Would we now have u(0) <r,
then we would also have |G| < r and the expansion property of F would imply v(G) >
(1+ ¢)|G], a contradiction.

Hence, the subadditivity of u implies that the refutation £ of F must contain a
clause C such that r/2 < u(C) < r. Fix some G C F minimally implying C; hence,
|G| = u(C) < r. By the expansion of F, v(G) > (1 + ¢)|G|. Together with Claim 18.14
this implies |C| > v(G) — |G| > ¢|G| > cr/2, as desired. O

18.3.2. Matching principles for graphs. Given a bipartite m X n graph G =
([m], [n], E), we may consider the CNF formula PHP (G) which is an AND of the fol-
lowing set of axioms:

o Pigeon Axioms: C; = \/(; sy x;; fori=1,...,m.

o Hole Axioms: —x; ; V —x;, ; for iy # i, € [m] and j € [n].
That is, the graph dictates what holes are offered to each pigeon, whereas hole axioms
forbid (as in the case of PHP™) that two pigeons sit in one hole.

Observe that, if m > n and if the graph G has no isolated vertices, then the CNF
formula PHP(G) is unsatisfiable. Indeed, every truth assignment a defines a subgraph
G, of G. Now, if a satisfies all hole axioms then G, must be a (possibly empty) match-
ing. But we have m > n vertices of the left side. Hence, at least one of these vertices
i € [m] must remain unmatched in G,, implying that C;(a) = 0.

Observe also that PHP™ = PHP(K,, ,) where K, , is a complete bipartite m X n
graph. Moreover, if G’ is a subgraph of G, then every resolution refutation for PHP (G)
can be turned to a resolution refutation of PHP(G’) just by setting to O all variables
corresponding to edges of G that are not present in G’. Thus, to prove a lower bound
of the resolution complexity of PHP(G) it is enough to prove such a bound for any
subgraph of G.

This opens plenty of possibilities to prove large lower bounds for PHP": just show
that the exists a graph G (a subgraph of K, ,) such that PHP(G) requires large long
resolution refutations. By Theorems 18.7 and 18.11, this can be done by showing that
the CNF formula F = PHP(G) has large expansion. This, in turn, can be achieved if
the underlying graph G itself has good expansion properties.

A bipartite graph is (r, c)-expander if every set of k < r vertices on the left part has
at least (1 + ¢)k neighbors on the right part. It can be easily shown (Exercise 18.4)
that if G is an (r, c)-expander then the CNF formula PHP(G) is (r, ¢)-expanding.

Using a simple probabilistic argument it can be shown that (r, c)-expanders with
¢ > 0, r =Q(n) and constant left-degree exist (Exercise 18.5). Hence, the CNF formula
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F = PHP(G) has N = O(m) variables and each its clause has constant width. Theo-
rem 18.11 implies that wg(F) = Q(n). So, by Theorem 18.7, every resolution refutation
for F, and hence, for PHP!" must have size exponential in wr(F)?/N = Q(n?/m).
This lower bound is super-polynomial, as long as we have m < n?/logn pigeons.
However, the larger m is, the more true the pigeonhole principle itself is, and it could
be that PHP" could be refuted by much shorter resolution refutation proof. And
indeed, all attempts to overcome this “n? barrier” for the number of pigeons failed for
many years. This was one of most famous open problems in the propositional proof
complexity. The “n? barrier” for PH P™ was first broken by Raz (2001): PHP, requires
resolution proofs of exponential size for any number m > n+ 1 of pigeons. A simpler
proof was then found by Razborov (2003), and we will present it in Section 18.6.

18.4. Local search for satisfiability

The 3SAT-problem is, given a 3-CNF F to decide whether it is satisfiable. This is
the most famous NP-complete problem. Thus, any proof that 3SAT requires a super-
polynomial (in the number of clauses) time would imply P # NP. Due to its impor-
tance, many algorithms for 3SAT were introduced, resolution being one of them: try
to resolve literals one by one until a contradiction (an empty clause) is produced. But
if the CNF is satisfiable, such an algorithm will stuck without an answer.

A trivial algorithm, which newer gets stuck, is just to probe all 2" possible assign-
ments. A less trivial algorithm does a “local search:” it starts with some assignment,
and tries to flip its bits one by one in a hope to reach a satisfying assignment, if there
is one.

18.4.1. Local search for 2-CNFs works well. Let F be a CNF in n variables,
and suppose that we know that it is satisfiable. How quickly can we find a satisfying
assignment? If each clause of F has exactly 2 literals, then a satisfying assignment can
be found in O(n?) steps by the following simple randomized procedure.

Suppose we start with an arbitrary assignment of values to the literals. As long as
there is a clause that is unsatisfied, we modify the current assignment as follows: we
choose an arbitrary unsatisfied clause and pick one of the (two) literals in it uniformly
at random; the new assignment is obtained by complementing the value of the chosen
literal. After each step we check if there is an unsatisfied clause; if not, the algorithm
terminates successfully with a satisfying assignment.

THEOREM 18.15. Suppose that F is a satisfiable 2-CNF in n variables. Then, with
probability at least 1/2, the above algorithm will find a satisfying assignment in 2n?
steps.

Proor. Fix an arbitrary satisfying assignment a € {0, 1}" for F, and refer to the
values assigned by a to the literals as the “correct values.”

The progress of the above algorithm can be represented by a particle moving be-
tween the integers {0,1,...,n} on the real line. The position of the particle indicates
how many variables in the current solution have “incorrect values,” i.e., values differ-
ent from those in a. At each iteration, we complement the current value of one of the
literals of some unsatisfied clause, so that the particle’s position changes by 1 at each
step. In particular, a particle currently in position i, for 0 < i < n, can only move to
positions i — 1 or i + 1 (see Fig. 5).

Let t(i) denote the expected number of steps which a particle, started in position
i, makes until it reaches position 0. Our goal is to show that t(i) < n? for all i.
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FiGure 5. Random walk on a line for 2-CNFs. The particle being in
position i means that the current assignment differs in i bits from the
fixed (but unknown) satisfying assignment.

A particle at location n can only move to n—1, and the process terminates when the
particle reaches position 0 (although it may terminate earlier at some other position
with a satisfying assignment other than a). Hence, t(n) < t(n—1)+ 1 and t(0) = 0.
In general, we have that

t(A)=p;i—1 A+t = 1) +pi - A+t +1)),

where p; ; is the probability with which the particle moves from position i to position
jefi—1,i+1}

The crucial observation is the following: in an unsatisfied clause at least one of
the literals has an incorrect value. Thus, with probability at least 1/2 we decrease the
number of variables having false values. The motion of the particle thus resembles a
random walk on the line where the particle moves from the ith position (0 <i < n) to
position i — 1 with probability p; ;_; > 1/2. This implies that

t(i—1)+t(i-i-1)Jrl

t(i) <
()< 5
Replace the obtained inequalities by equations
x(0)=0,
x((—1)+x(i+1
x()= ( ) 5 ( ) +1,

x(n)=x(n—-1)+1.

This resolves to x(1) = 2n—1, x(2) = 4n—4 and in general x(i) = 2in—i2. Therefore,
t(i) < x(i) < x(n) = n?, as desired.

By Markov’s inequality, a random variable can take a value 2 times larger than its
expectation only with probability < 1/2. Thus, the probability that the particle will
make more than 2 - t(i) steps to reach position 0 from position i, is smaller than 1/2.
Hence, with probability at least 1/2 the process will terminate in at most 2n? steps, as
claimed. O

18.4.2. Local search for 3-CNFs fails. The local search algorithm for a satisfiable
CNF picks an initial assignment in {0, 1}" at random, and flips its bits one by one trying
to satisfy all clauses. At each step, the decision on what bit of a current assignment
a to flip is also random one. The algorithm first constructs a set I C [n] of bits such
that flipping any bit i € I increases the number of satisfied clauses. Then it chooses
one of these bits at random, and flips it. If I = (), then the algorithm chooses one bit at
random from the set of bits that do not lead to the decrease of the number of satisfied
clauses. If all variables lead to such a decrease, it chooses at random a bit from [n]

The algorithm works in iterations, one iteration being a random choice of an initial
assignment. We are interested in how many iterations are needed to find a satisfying
assignment with a constant probability.
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THEOREM 18.16. There is a satisfiable 3-CNF formula F with n variables and O(n®)
clauses such that the local search algorithm needs 2™ iterations to find a satisfying
assignment with a constant probability.

Proor. The desired CNF formula F is an AND of two CNFs G and H. The first CNF
G consists of n + 1 clauses:

XV Xy, X9V X3, ..., X, VX; and —x; VX,

The first n clauses express that in every satisfying assignment for G the values of all its
bit must be equal. The last clause of G ensures that all these values must be equal to
0. Hence, a = 0 is the only assignment satisfying all the n + 1 clauses of G.

The second CNF H consists of al n("gl) clauses of the form

_‘XiVXjVXk.

Hence, a = 0 is the unique satisfying assignment for the entire CNF F = G A H. The
clauses in H are intended for “misleading” the algorithm.

We will show that there is a threshold t such that the assignments with t 1’s form
an “insurmountable ring” around the (unique) satisfying assignment 0. Namely, if
the algorithm encounters an assignment a with! |a| > t, then it chooses a wrong bit
for flipping. That is, on such assignments a the algorithms flips some 0-bit to 1-bit,
and hence, goes away from the satisfying assignment 0. As a threshold t we take
t :=n/3 + ¢ where c is a sufficiently large constant. Important for us will only be that
under this choice, we have for all k > t:

(k=1)(n—k—1)> (“;k)+4.

CraiM 18.17. Let a € {0,1}" be an assignment with |a| > t. Then the number of
satisfied clauses of F:

a. decreases when flipping a 1-bit of « to 0;
b. increases when flipping a 0-bit of a to 1.

ProoF. Fix an i € [n] such that a; = 1. Flip the ith bit of a from 1 to 0, and let
Won(1 — 0) be the set of clauses of F that were unsatisfied by a but are satisfied by
the new assignment a’. Similarly, let Lost(1 — 0) be the set of clauses of F that were
satisfied by a but are satisfied by the new assignment.

Each clause C € Won(1 — 0) has the form C = —x; V x,, V x, where u and v are
such that a, = a, = 0. The number of such clauses is therefore

[Won(1 — 0)| < (n _2|a|) +2,

because flipping one bit can increase/decrease the number of satisfied clauses in the
first CNF G by at most 2. On the other hand, each clause C € Lost(1 — 0) has the form
C = —x, V x; V x, where u and v are such that a, =1 and a, = 0. The number of such
clauses is

ILost(1— 0)| > (Ja| = 1)(n—|a|) — 2 > (” _2"”) +2> [Won(1— 0)].

This completes the proof of the first claim (a). The proof of the second claim (b) is
similar. t

1Here || stands for the number of 1’s in a.
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By Claim 18.17, the algorithm can find the (unique) satisfying assignment 0 for
F only if it starts with an initial assignment with at most t = n/3 + ¢ 1’s. Since the
fraction of such assignments is 27" the probability that the algorithm finds this
satisfying assignment in one iteration is also 27, So, 2" jterations are necessary
to achieve a constant probability error. t

18.5. Geometric resolution: cutting plane proofs

A proof system strengthening resolution is the cutting plane proof system. It orig-
inated in works on integer programming by Gomory (1963) and Chvatal (1973). As
a proof system it was first considered in Cook, Coullard and Tdran (1987). The basic
idea is to prove using a few elementary rules that a system of linear inequalities with
integer coefficients does not have a 0-1 solution.

Let M be a matrix with integer entries, and b an integer vector. Say that the system
Mx > b of inequalities is unsatisfiable if it has no solution x € {0,1}". That is, instead
of unsatisfiable CNF now we have an unsatisfiable system of linear inequalities, and
our goal is to prove this (unsatisfiability) using as few applications of rules as possible.
Note that a system Mx > b may be unsatisfiable even if it is feasable, that is, has real
values solutions x: we are interested in 0-1 solutions.

Each formula in such a proof is an inequality of the form f(x) > A, where f(x) =
Zi a;x;, and a; and A are integers. Since we want to prove nonexistence of 0-1 so-
lutions, besides the axioms arising from Mx > b, there are standard axioms x; > 0
and x; < 1. In order to keep the same “direction” of inequalities, we use that fact that
f < g is equivalent to —f > —g. That is, besides the axioms given by Mx > b we
have integrity axioms for each variable: x; > 0 and —x; > —1. There are three rules of
derivation:

a. Addition of two inequalities:

fx)=A g(x)=B

f(x)+g(x)>A+B "

b. Multiplication by a non-negative integer constant:
fx)=A

cf(x)=>cA

c. Division by a positive integer ¢ > 1 with rounding:

cf(x)=A cf(x)<A

=4 7 <[4

c c

(c non-negative integer).

where [a] =minfm € Z | a <m} and |a] =max{m €Z | m < a}.
Given a system Mx > b with no 0-1 solution x, the goal of a CP proof (“CP” stands for
“cutting planes”) is to derive a contradiction, represented as

0=>1.

The first two rules are “innocent”—the whole power of cutting plane proof system
comes from the third rule, because of rounding. Important in this rule is that the
coefficients a; are integers—otherwise this rule would be not valid.

Let us first show that cutting plane proof are not less efficient than resolution.
First, we replace each clause by an inequality using the translation x; — x; and —x; —
1 — x;. For example, the clause x V —y translates to an inequality x + (1 —y) > 1,
which is the same as x — y > 0. Then an assignment a = (a;, a,) € {0, 1}? satisfies the
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x+y+z>1 1-x2>1 y+(1-2)21 1-y)+z=>1 (QA-y)+(1Q-2)=1

y+z=>1
Zazl
y2f1=1 S »
\ 1-2>1
z>1
0>1

FIGURE 6. A cutting plane proof.

clause iff a; — a, > 0, that is, iff either a; =1 or a, = 0. In this way each unsatisfiable
CNF translates to an unsatisfiable system of linear inequalities. For example, the CNF

(e vV y)(=x Vv y)(x vV ay)(=x Voy)
translates to the system
x+y>1, (1-x)+y>1, x+(Q-y)>1,1-x)+(1-y)>1
or simpler,
x+y>1, -x+y>0,x—-y>0, —x—y>-1.
More generally, each clause C translates to the inequality
Zaixl- >1-m,

where m is the number of negated literals in C, and

1 ifx;€C,
ai = _1 if —|Xi (S C,
0 if neither in C.

ProPOSITION 18.18. The cutting planes proof system can efficiently simulate resolu-
tion.

PrOOFE. Suppose we have a resolution refutation proof 2 of some unsatisfiable
CNE By adding a trivial derivation rule “derive C Vz from C”, we can assume that each
resolution inference in this proof has the form

Cvx; CVX;

C
Let f = Zj ajx; = 1 —m be the inequality corresponding to clause C; here m is the
number of negated literals in C. Then the inequality for the clause C V x; is f + x; >
1 —m (x; comes positive in this clause), and the inequality for the clause C Vv —x; is
f —x; 21—m— 1. Now apply the sum-rule
f+x;21-m f—-x;21-m—1
2f >2—-2m—1

>
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and then the division rule?
2f >2-2m—-1
fzl-m
to obtain the inequality for the clause C. t

We will now show that, in fact, cutting plane proofs for some CNFs may be even
exponentially shorter that resolution proofs. So, proving lower bounds for the former
model is a more difficult task.

18.5.1. Tree-like CP proofs. In a general CP proof one derived inequality can be
used many times without re-deriving it. That is, the underlying graph of a derivation
here may be an arbitrary directed acyclic graph. A tree-like CP proof is a special case
of a CP proof, where the underlying graph is a tree. That is, every inequality in the
proof, except for the initial inequalities, is used at most once as an antecedent of an
implication.

Although restricted, tree-like CP proofs are still powerful. So, for example, we
already know that the CNF formula PH P:“ formalizing the pigeonhole principle has
no resolution proof of polynomial length. On the other hand, tree-like CP proof for
this CNF is relatively short.

THEOREM 18.19. PHP," has a tree-like cutting plane proof of polynomial size.

Proor. When translated to the language of inequalities, the axioms for the pigeon-
hole principle PHP," consist of the following inequalities:

a. Pigeon axioms: x;; + X5+ -+ x;, = 1foralli=1,...,m.

b. Hole axioms: x;; +x;; <1foralll1<i<k<m,j=1,...,n.

c. Integrity axioms: X205 x; =1 fori=1,...,m,j=1,...,n.

For each j we first derive x;; + x5; + -+ + x,,; < 1 inductively. The inequality x;; <1
is an integrity axiom, and inequality x;; + x,; < 1 is a hole axiom. For k from 3 to m,
suppose we have already derived x;; + x5; + - + X(—1); < 1. We can then derive the

inequality with k — 1 replaced by k as follows.

- Multiply x3; + x5; + -+ + x—1); < 1 by k — 2 and add to the result the hole
axioms x;; +x;; < 1,i=1,...,k — 1 to get

a. Apply division rule to get

- 2k —3 1

X1j+X2j+"'+ij = \‘HJ = \\2— EJ =1.

Summing these inequalities x;; +x,;+- -+ Xx,,; < 1 over all holes j gives that the sum
S of all variables is at most n, that is, —S > —n. On the other hand, summing pigeon
inequalities x;; +x;5+ -+ x;, = 1 over all pigeons i gives that S > m. Summing these
two last inequalities gives 0 > m — n > 1, the desired contradiction. O

We are now going to prove an exponential lower bound on the size of tree-like CP
proofs using communication complexity arguments.

Let Mx > b be an unsatisfiable system of inequalities. As in the case of CNFs,
every proof of the unsatisfiability of the system Mx > b can be viewed as an algorithm
for the following search problem: Given an assignment o € {0,1}" find an axiom (an

2r-1/21=0
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s

FiGURE 7. The original tree-like CP proof (left), and the obtained
threshold tree (right).

inequality in our system) which is not satisfied by a. To see this, just traverse the proof
starting from its last inequality 0 > 1 until a “hurt” axiom is found.

Inequalities in a CP proof are not arbitrary: they are derived from axioms using
the cutting planes rules. We now relax this and allow arbitrary inequalities to be used
in the search problem. This gives rise to so-called “threshold trees.”

By a threshold function we will now mean a boolean function which, on input
vector x € {0,1}", outputs 1 iff the vector x satisfies the inequality Z?:l a;x; = A,
where the threshold A as well as the weights a; are arbitrary integers. A threshold
tree for an unsatisfiable system Mx > b is a decision tree whose leaves are labeled by
inequalities of the system. At each inner node, a decision (where to branch) is made
using to an arbitrary threshold function.

LEMMA 18.20. If an unsatisfiable system Mx > b has a tree-like cutting planes proof
of size S, then the search problem for this system can be solved by a threshold tree of depth
at most 1 +log, S.

ProoE. Take an arbitrary tree-like cutting plane proof of size S for the system
Mx > b, and let T be its underlying tree. We argue by induction on S.

If S = 1 then the system consist of a single unsatisfiable inequality, and we can
take it as the only inequality in our threshold tree.

For the induction step, assume that the lemma is true for all decision trees of size
smaller than S.

By Claim 2.2, there must be a subtree T, of T rooted in some node v and such
that S/3 < |T,| < 25/3. Cut off this subtree T, from the entire proof T, assign its
root (now a leaf) the inequality 1 > 1, and let T; be the resulting decision tree. Let
also f(x) > A be the linear inequality associated with the root of T, in the original
proof T. We now can construct a new threshold tree as follows. We first query the
function g(x) = 1 iff f(x) > A. If g evaluates to 0, we proceed on the subtree T;
otherwise we proceed on the subtree T; (see Fig. 7). By the induction hypothesis,
since both T, and T, have size at most 25/3, the depth of the decision tree obtained
will be 1 +log,(25/3) <1+1log,S.

To see that the new tree solves the search problem for Mx > b, take an assignment
a € {0,1}". If g(a) = 0 then we proceed on the subproof corresponding to the subtree
T,- Since the proof is sound, and the root inequality of Ty, is false on a, this implies that
one of the leaf inequalities must be falsified by a. If g(a) = 1 then we proceed on the
subproof corresponding to the subtree T;. Again since the root inequality 1 > 0 of T;
is false, one of the leaf inequalities of the original proof T must be falsified by a. This
inequality cannot lie in the removed subtree T, because its root inequality g as well as
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the inequality 1 > 1 are satisfied by a. So, a must falsify some other leaf inequality of
Tl- D

Let Mx > b be an unsatisfiable system of inequalities, and let I,J be a partition
of the index set {1,...,n} of its variables xi,...,x,. By a communication game for
Mx > b under this partition we will mean a Karchmer-Wigderson type game where,
for an assignment a € {0,1}", Alice gets its projection onto I, Bob gets the projection
onto J, and their goal is to find an inequality falsified by a.

LEMMaA 18.21. Ifthe search problem for Mx > b has a threshold tree of depth d where
all threshold functions have polynomial-sized weight, then there exists a communication
protocol for this problem where O(d logn) bits are sent.

PrOOE. Let a;x; + azxy + -+ + a,x, > t be the first inequality queried at the root
of the threshold decision tree for Mx > b, and let g(x) be the corresponding thresh-
old function. Then g(x) can be written as A(x) > B(x), where A(x) = Zie[ a;x; and
B(x)=1t-— Zie ;a;x;. Alice first communicates the value of A(x) to Bob; this only
requires O(log n) many bits (assuming polynomial-sized weights). Bob then completes
the computation of g(x), and sends the value g(x) to Alice. The two players then
continue on the half of the decision tree which agrees with the value of g(x). The
protocol terminates after d rounds, and each round only requires O(log n) bits of com-
munication. (]

In Section 8.4 we have considered the following communication game on a com-
plete graph with n = 3m vertices:

MATCH,,: Alice gets a matching p consisting of m edges and Bob gets an (m — 1)-
element set g of vertices. Find an edge e such that e € p and engq = 0.

We proved (Theorem 8.12) that any deterministic communication protocol for this
game requires (n) bits of communication. We now will turn this “search an edge”
problem into a search problem for an unsatisfiable CNF formula Match, with O(n?)
variables and O(n*) clauses.

Assume for a moment that we already have such a CNF formula Match,,. Then the
communication complexity of the corresponding to Match, search problem is Q(n).
By Lemma 18.21, if a threshold tree T only has threshold functions of polynomial-
sized weight and solves the search problem for the corresponding to Match,, system of
inequalities Mx > b, then T must have depth d = Q(n/logn). By Lemma 18.20, this
means that any tree-like CP proof for Mx > b, all coefficients in which are polynomial
in n, must have exponential size 22"/ 1og™)

To describe the desired CNF formula Match,, we encode each m-matching p =
{e1,..., ey} by an m x (3m) matrix of variables X = (x;;), where x;; = 1 iff j € ¢;. Each
(m — 1)-element subset ¢ = {v;,...,Vv,,_1} of [3m] is encoded by an (m — 1) x (3m)
matrix Y = (y;;), where y;; = 1 iff v; = j. That is, the ith row of X specifies the ith
pair in the matching p, whereas the ith row of Y specifies the ith vertex in the set q.
The CNF formula Match,, consists of three CNFs:

a. F,(X) is satisfied iff p is an m-matching: every row of X has two 1’s, and every
column has at most one 1.

b. F,(Y) is satisfied iff q is an (m — 1)-subset of [3m]: every row of of Y has
exactly one 1, and and every column has at most one 1.



18.5. GEOMETRIC RESOLUTION: CUTTING PLANE PROOFS 257

c. F5(X,Y) is satisfied iff every edge in p has at least one endpoint in g:

m—1 m—1
ﬂxkiv—'xkjv\/yﬁv\/y[j foralll<k<mand1<i#j<3m.
=1 =1

By what was said, we have proved the following

THEOREM 18.22. Any tree-like CP proof for Match,, all coefficients in which are
polynomial in n, must have size 24"/1°8™),

In fact, a similar lower bound 29"/ log’n) for M atch,, also holds without any re-
strictions on the size of coefficients used in a CP proof—being tree-like is the only
restriction. For this, it is enough to observe that Theorem 8.12 about the determinis-
tic communication complexity of the game MAT CH,, can be extended to randomized
protocols: Ry ,,(MAT CH,,) = Q(n/logn). It remains then to combine this lower bound
with the following “randomized” version of Lemma 18.21.

LEMMA 18.23. If the search problem for Mx > b has a threshold tree of depth d, then
there exists a randomized communication protocol for this problem where O(d log® n) bits
are sent.

PrOOF. It is enough to use two facts about threshold functions. The first (classi-
cal) fact is that any threshold function in n variables can be computed as a threshold
function with weights at most 20(nlogn) (gaa [115], Theorem 9.3.2.1). The second fact
is that R, ,(GT,) = O(log?n), where GT,(x,y) is the grater than function on two n-bit
integers which outputs 1 iff x > y (see Exercise 7.5). The rest is the same as in the
proof of Lemma 18.21. O

18.5.2. Arbitrary CP proofs. The lower bound above only holds for tree-like CP
proofs: we have no analogon of Lemma 18.20 for general CP proofs. When trying
to prove lower bounds for the length of (=number of inequalities in) general cutting
plane proofs, an interesting connection with monotone circuits was detected. The
connection is via so-called “interpolation theorem” in logics.

Namely, suppose that our system of inequalities has the form F = A(x, y)AB(y, z),
where the inequalities in A(x, y) do not have z-variables, and those in B(y,z) do not
have x-variables. If F is unsatisfiable, then an interpolant of F is a function C(y) (on
the common variables) such that for any truth assignment a to the y-variables,

a. C(a)=0 implies A(x, @) is unsatisfiable, and

b. C(a) =1 implies B(a,2) is unsatisfiable.

That is, given any assignment a to y-variables, the interpolant says which one of
A(x,a) and B(a,z) is unsatisfiable. Note that at least one of them must be unsatis-
fiable, for otherwise the whole system F would be satisfiable: inequalities in A(x, a)
and B(a, z) have no variables in common.

This gives us the following decision problem for F = A(x,y) A B(y,z): Given a
truth assignment a to the y-variables, decide whether A(x, ) is unsatisfiable. We call
such an algorithm an interpolating algorithm for F.

LEMMA 18.24. Every cutting plane proof for F of size { gives an interpolating algo-
rithm for F running in time polynomial in {.

ProoF. Take a cutting plane proof for F. The idea is, given an assignment a to
the common y-variables, to split the proof so that we get a refutation either from
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x-axioms A(x, a) or from z-axioms B(a,z). The only rule which can mix x-variables
and z-variables in the original proof is the addition of two inequalities, yielding an
inequality

f(x)+g(y)+h(z)>D.

The strategy is (after the assignment y — a) not to perform this rule in such a case
and keep two inequalities

f(x)>D, and h(z)>D,,

where D, D, are integers. The sums f(x) and g(z) may be empty, in which case they
are treated as 0. What we need is only to ensure that this pair of inequalities is at least
as strong as the original inequality after the assignment a, which means that we need
to ensure the property:

To achieve this, the axioms are replaced (after the assignment y — a) by pairs of
inequalities as follows:

fG)+g(y)za bypair f(x)=a—-g(a) and 0>0;
gy)+h(z)=b by pair 0>0 and h(z)>b-—g(a).

The addition rule is simulated by performing additions of the first inequalities from
pairs and the second inequalities in the pairs in parallel. This clearly preserves the
property (18.4) we need. The multiplication rule is simulated in a similar way.

But what about the division rule? We perform this rule also in parallel on the two
inequalities in the pair. The divisibility condition is clearly satisfied, as we have the
same coefficients at variables x and z as in the original inequality. The only “sorrow” is
therefore to make sure that the property (18.4) is preserved under rounding. For this,
look at an inequality ¢ - f(x) + ¢ - h(z) > D in the proof after assignment y — a. By
inductive assumption, we have the following inferences:

c-f(x)=D, c-h(z) > D,

—————— and ———.

f(x)=[Do/cl h(z) 2 [D,/c]
Write D;/c = d; + &;, where d; € Z and §; € [0,1). Then

c

Dy Dyl _
— |t - =(do+[6o1)+(dy +[0o1) =do+d; +[dg] +[0:]12= c

Do+ D, "
This implies that for a positive integer ¢ which divides all the coefficients of g(y), we
have that

Do+Dy, =D —g(a) implies [&1 n [&} > P} _3@),
C C C C

Consider now the pair corresponding to the final inequality O > 1. It is of the form
0 > Dy, 0 = D; where Dy + D; > 1. Since D, and D, are integers, this implies that
either Dy > 1 or D; > 1. Thus we have a proof of contradiction either from A(x, a)
or from B(a,z). To know which one is the case, the algorithm may just test whether
“Dy > 1” or not. By only looking at the first inequality in each pair, the CP proof gives
us an algorithm ./ which, given an assignment a to y-variables, compute a number
o/ (a) = D,y such that D, > 1 implies A(x, @) is unsatisfiable, and D, < 0 implies B(a, %)
is unsatisfiable. O
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Having an interpolating algorithm we can turn it into a sequence of boolean cir-
cuits. Thus, if any interpolating circuit for F must be large, then F cannot have small
cutting plane proofs. This is the main idea of relating proofs with circuits. Of course,
so as it is, this idea is of little help: no nonlinear lower bound for circuits is known.
An intriguing aspect, however, is that under some mild conditions on the form of in-
equalities in F, the circuits can be made monotone: we only have to allow monotone
real-valued functions as gates.

Namely, say that a system A(x, y) A B(y,2) of linear inequalities is separated if all
y-variables appear in all inequalities of A(x,y) with nonnegative coefficients, or all
appear with nonpositive coefficients in B(y, z).

THEOREM 18.25. If an unsatisfiable system F of linear inequalities is separated then
it has an interpolating monotone real circuit of size polynomial in the minimal cutting
plane proof size of F.

PrOOE It is enough to turn the algorithm from Lemma 18.24 into a monotone real
circuit whose size is polynomial in the size of the underlying cutting proof of F. Let
us first realize that we only need to compute the constant D, (or only D,) correspond-
ing to the last inequality. We shall assume w.l.o.g. that all y-variables appear in all
inequalities of A(x, y) with nonnegative coefficients.

Recall that, in each step, we replace an inequality f(x) + g(a) = a by f(x) > D,
with D, = a — g(a). Since the coefficients of y-variables in A(x, y) are nonnegative,
it is more convenient to talk about —D, = g(a) — a; then we do not need to multiply
g(a) by a negative constant —1.

Thus, we only need to compute successively —D,, for each pair. For this, we can
use the graph of the circuit for constructing a circuit. Each gate will produce a new
—D,, from previous ones. The circuit has 0 and 1 as inputs corresponding to the truth
assignment a to y-variables, but computes arbitrary integers in the inner nodes.

If f(x)+ g(y) > a is an axiom, where g(y) = Y.c;¥;, then the function a —
—D, = g(a) — a is nondecreasing because all coefficients c; are nonnegative, by our
assumption. Hence, if a < 8 are two 0-1 vectors, then g(a) < g(f). Thus, operations
we need are:

a. addition of an integer constant,

multiplication by a non-negative integer constant,

addition,

division be a positive integer constant with rounding,

to get a 0-1 output we add a threshold gate at the output gate, that is, the
unary gate t defined by ¢t(§) =1 if £ > 0 and t(&) = 0 otherwise.

All the operations are nondecreasing except for multiplication by negative constants.
In general they are needed in the initial inequalities, where for f(x) + g(y) > a we
need to compute g(a) — a. However (as we observed above), we do not need mul-
tiplication by negative constants there, since we assume that coefficients in g(y) are
all nonnegative. The remaining inequalities where we need multiplication by negative
constants are —y; > —1. These, however, can be treated as inequalities containing
z-variables, that is, we can put D, = O for them. Thus we get all gates nondecreasing.

As in the proof of Theorem 18.25, for each assignment a to y-variables, the input
to the last gate t(&) is an integer & = —D, such that D, > 1 implies A(x, a) is unsat-
isfiable, and D, < 0 implies B(a,2) is unsatisfiable. Hence, t(&) = O implies A(x, )
is unsatisfiable (because then § = —D, < —1, or equivalently, D, > 1), and t(§) =1

o AN T
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implies B(x, a) is unsatisfiable. Thus, the obtained circuit is indeed an interpolating
circuit for A(x, y) A B(y, 2). O

Theorem 18.25 reduces the lower bounds task for cutting planes to that for mono-
tone real circuits. We already know (see Theorem 4.16) that every monotone boolean
function f in n variables with the following two properties requires monotone real
circuits of size 2. Inputs of f are graphs G on n vertices, encoded by (g) boolean
variables, and

a. f(G)=1if G contains a k-clique,

b. f(G)=0if G is (k — 1)-colorable.

What we need is a system of linear inequalities A(x, y) A B(y,2) such that any inter-
polant f(y) for this system satisfies these two conditions. That is, we only need to
write the statement

a graph contains a k-clique and is (k — 1)-colorable

as an unsatisfiable system of linear inequalities. For this we take three groups of vari-
ables:

y-variables y; ; encoding the edges: y; ; = 1 iff the edge {i, j} is present;

x-variables x;, one for each vertex, encoding cliques;

z-variables z; ., one for each vertex i and color ¢ encoding (k—1)-colorings: z; . =1
iff vertex i has color c.

We want to impose the conditions:

(i) The set of nodes {i | x; = 1} forms a clique of size > k.

(i) Forallc=1,...,k — 1, the set {i | ;. = 1} is an independent set.

The underlying graph is given by the values of y-variables. We now describe
a system of inequalities Clique(x,y) corresponding to the first condition (i), and a
system of inequalities Color(y,z) corresponding to the second condition (ii).

Clique(x, y): For V = {i | x; = 1} to form a clique, besides the inequality
in >k
i

we also need to ensure that all nodes in V are pairwise adjacent. That is,
we need that x; = 1 and x; = 1 implies y; ; = 1. This can be written as an
inequality
yi’j_xi_X‘ 2 _]..
Color(y,z): For the sets I = {i | z;, = 1} to be independent sets (color classes), we
first need that each vertex i receives exactly one color:

C
and that no two adjacent vertices i # j receive the same color. This last con-
dition means that z; . = 1 and z;, = 1 must imply y; ; = 0, and this can be
written as an inequality

—Yij " Zie T % = 2.

Note that the y-variables occur in Clique(x, y) only with positive signs, and occur with
negative signs in Color(y,z). Hence, the system of inequalities F = A(x,y) AB(y,z) is
separated. By Theorem 18.25, this system has an interpolating monotone real circuit
C(y) of size polynomial in the minimal CP proof size of F.
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Let us look at what this circuit C(y) does. For every assignment a € {0, 1}(;) to
y-variables, Clique(x, @) is satisfiable if the graph G, encoded by a contains a k-clique,
whereas Color(a,z) is satisfiable if the graph G, is colorable by k — 1 colors. Hence,
C(a) =1 if G, has a k-clique, and C(a) = O if the graph G, is (k — 1)-colorable. By
Theorem 4.13, we know that, for k = ©(y/n), the circuit C(y) must have size 2" for a
constant ¢ > 0. This gives us

CoroLLARY 18.26. Any cutting plane derivation of the contradiction 0 > 1 from
Clique(x, y) A Color(y, z) has size at least 2™ .

This proof is not quite satisfying—it is not as “combinatorial” as that for resolution
refutations. It would be nice to find a lower bounds argument for cutting plane proofs,
explicitly showing what properties of inequalities do force long derivations.

ResEARCH ProBLEM 18.27. Find a combinatorial lower bounds argument for cutting
plane proofs.

18.6. Addendum: Arbitrary number of pigeons

We have already seen how to prove super-polynomial lower bound on the size of
resolution refutations of PHP" for up to m < n?/logn pigeons (see Section 18.3.2).
However, the larger m is, the more true the pigeonhole principle itself is, and it could
be that PHP" could be refuted by much shorter resolution refutation proof. And
indeed, all attempts to overcome this “n? barrier” for the number of pigeons failed for
many years. This was one of most famous open problems in the propositional proof
complexity.

The “n” barrier” for PHP!" was broken by using a more subtle concept of “pseudo-
width” of clauses, tailor made for this particular CNF formula. It turns out that PHP"

requires resolution proofs of exponential size for any number m > n + 1 of pigeons!

THEOREM 18.28. For every m > n+ 1, every resolution refutation proof of PHP'" has
length at least 22",

Recall that PHP™ denotes the AND of the following clauses (we call them axioms):

a. Pigeon Axioms: each of the m pigeon sits in at least one of n holes:
X1 VXiaVeo VX, foralli=1,...,m.
b. Hole Axioms: no two pigeons sit is one hole:
—x; jVoxg, ; foralliy #Ziyand j=1,...,n.

A special feature of this CNF is that any resolution refutation of the set all its

axioms (clauses) can be transformed to a monotone refutation of its pigeon axioms

without any increase in size of a derivation. To define monotone refutations, let X; ;
be the OR of all but the ith variable in the jth column:

Xij=X1j Voo VX j VX j Ve VX ;.
By a monotone refutation of PHP," we will mean a derivation of an empty clause from
pigeon axioms and using the following monotone resolution rule:
AVx;;  BVX;
AV B

Such a derivation can be obtained from the original (non-monotone) derivation by
replacing each negated variable —x; ; by the OR of variables X; ;. Note that, in general,
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this rule is not sound: there are assignments satisfying both assumptions but falsifying
the conclusion. Still, the rule is sound if we consider only assignments satisfying all
hole axioms; we call such assignments legal. That is, an assignment a is legal if it sends
no two pigeons to the same hole (no column has more than one 1).

The following fact reduces the lower bounds problem for PHP" to its monotone
version.

LemMA 18.29. If PHP" has a resolution refutation of size {, then PHP™ also has a
monotone refutation of size at most .

ProoOF. Given a resolution refutation proof for PHP", just replace all occurrences
of a negated variable —1x; ; by the OR X; ; = Vs i Xkj- 1t can be shown (do this!) that
the resulting sequence of monotone clauses is a monotone refutation of the pigeon
axioms. U

For the proof in the case when m is arbitrarily large, it will be convenient to in-
crease the power of refutations by allowing a larger set of monotone derivation rules:

CO VXIO’J Cl VXIl’J
C b
where X, ; = Ve X;j> IpNI; =0 and Cy v C; < C. From now on, by a monotone
refutation of PHP" we will mean a refutation of pigeon axioms using any of these
rules. Note that these rules are still sound with respect to all legal truth assignments,
that is, assignments sending no two pigeons to one hole: if such an assignment satisfies

both clauses C, VX, ; and C; VX ; then, due to the condition Iy N I; = @, it must also
satisfy at least one of the clauses C, or C;, and hence, the clause C as well.

18.6.1. Size versus pseudo-width of refutations. Suppose we have a monotone
refutation proof & of the pigeon axioms

Xi,[n]: X i=1,...,m.

i,j>

&
<=
N

To analyze the refutation &, we are going to allow much more axioms. For this we fix
two parameters. First set
n
" 2log,m’

A threshold string is a string d = (d4, . .., d,,) of positive integers with 6 < d; < n for all
i. Having such a string d, we will allow all clauses of the form

n
X5 = \/xl-,j with i€ [m] and |J|>d;
jeJ
be used as axioms; we call such axioms d-axioms. Note that every monotone refutation
of PHP™ is a monotone refutation of the set of d-axioms for the threshold string d =
(n,...,n).

Allowing more axioms does not hurt us, since our goal is to prove a lower bound
on the size of a refutation. The reason for introducing new axioms is that we can then
“filter out” from the refutation proof all clauses containing at least one such axiom: we
just replace each such clause by the corresponding axiom.
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For this purpose we consider the degree of freedom d;(C) of each pigeon i in a
clause C: this is the number of holes offered by C to this pigeon, that is, the number
of holes j such that the variable x; ; (ith pigeon sits in the jth hole) belongs to C:

d,(C)=|{j:x;;€C}.

The clause C is “filtered out” from the proof (i.e. can be replaced by an axiom) if
d;(C) = d, for at least one pigeon 1i.

The main concept of our analysis will be the following very special notion of the
“width” of refutation proofs for PHP", tailor made for this particular set of CNFs
Namely, define the pseudo-width w,(C) of a clause as the number

wa(C)=|{i: di(C) = d; - 53

of pigeons whose degree of freedom in this clause is large. The pseudo-width of a
refutation Z is the maximum pseudo-width of a clause in it.

Our first task (Lemma 18.30 below) will be to show that if the thresholds d; are
chosen in a clever way, then in every clause C € # passing the filter—that is, having
d;(C) < d; for all pigeons i—almost all, namely, at least m — O(log|2|) pigeons pass
it safely: their “degree of freedom” in C is well below the corresponding threshold d;,
is < d; — 6. Thus, the number of pigeons who narrowly (= non-safely) pass the filter
(dy,-..,d,) must be at most O(log|Z|).

LemMA 18.30 (Short proofs have small pseudo-width). If PHP." has a resolution
refutation of size S then there exists a threshold string d such that some set of at most S
d-axioms has a monotone refutation of size S and pseudo-width O(logS).

ProoE. To prove the lemma, we have to somehow “filter out” clauses of large
pseudo-width. For this we need the following combinatorial lemma; we will give its
proof later in Section 18.6.2.

LEMMA 18.31 (Pigeon filter lemma). Let R = {ri,k} be an m x S matrix with integer
entries. If S is sufficiently large, then there exists a sequence rq,...,r,, of integers such
that r; < [logm] and for every column k at least one of the following two events happen:

(i) rix <1 for at least one row i;

(i) r;x <r;+1 for at most O(logS) rows i.

Suppose now that PHP" has a resolution refutation of size S. Then, by Lemma 18.29,
the set of all m pigeon axioms has a monotone refutation of size S. Fix such a refu-

tation Z an consider an m x S matrix R = {r; ¢} whose rows correspond to pigeons
i € [m] and columns to clauses C of this refutation. Define the entries of this matrix

by
_di C
T‘i’c = \‘HT()J +1.

Let rq,...,r, be a sequence of integers guaranteed by Lemma 18.31. Set
di:=|n—-06r;|+1,

and note that d; > 6 because r; < logm. Hence, d = (d,,...,d,,) is a threshold string.
This special choice of the entries r; - as well as of the d; guarantee us two properties
(check this!):

(iii) If r;c <r; then d;(C) > d;.

(V) If dl(C) > di — 6 then rl',c < T + 1.



264 18. PROPOSITIONAL PROOF COMPLEXITY

Now take an arbitrary clause C € . Our goal is to show that either C contains a
d-axiom (and C can be replaced by that axiom which reduces its pseudo-width w;(C)
to 1) or wy(C) = O(logS).

If the first case (i) in Lemma 18.31 takes place, then r; o < r; for some pigeon i,
and by (iii), d;(C) > d;. Hence, in this case C contains a subclause X; ; which is a
d-axiom, and can be replaced by this axiom.

If the second case (ii) in Lemma 18.31 takes place, then the number of pigeons i for
which r; ¢ <r;+1, and hence, by (v), the number of pigeons i for which d,(C) > d; -6
does not exceed O(logS). Hence, in this case the pseudo-width w4(C) of C cannot
exceed O(logS). O

The second task is to show that the number of pigeons who narrowly passed the
filter must be at least (n/log3 |92|). This implies log|%| > Q(n'/4), as desired.

LEMMA 18.32 (Pigeonhole proofs have large pseudo-width). For every threshold
string d, every monotone refutation % of a set of S d-axioms requires pseudo-width at
least Q (n/log3 S).

This lemma, together with Lemma 18.30 and an observation that in any refutation
of PHP;" of size S at most m < 25 pigeons can be used, implies that the minimal size

S of a resolution refutation of PHP" must satisfy the inequality S > 27" claimed in
Theorem 18.28.

PrOOF OF LEMMA 18.32. Let d = (d,...,d,,) be an integer vector with 6 <d; <n
for all i. Take an arbitrary set .¢f of |.&/| < S d-axioms, and set
£62
wyi= ——
%" nlogl|.e/|
where ¢ > 0 is a sufficiently small constant. Take an arbitrary monotone refutation 2
of .«/. We will show that w4(C) > w, for at least one clause C in Z%.

Suppose the opposite, i.e., that w;(C) < w, for all clauses C € #. Our goal is to
show that then the empty clause 0 does not belong to %, i.e., that Z is not a refutation
of .

Recall that each axiom in .¢/ has the form X; ; := \/je ; X;; for some pigeon i and
some set J of [J| > d; holes; X; ; is the axiom for the pigeon i. Let

o ={X;; € : U2 d;}
denote the set of all such axioms in .7, and let .¢/; := [ J

A = U «;
1:d,(C)2d,~5

ie; . For a clause C in 2 let

denote the set of all axioms in ./ corresponding to pigeons that are “free enough” in
the clause C.

As before, truth assignments are m x n (0,1) matrices a. Such an assignment is
legal if it satisfies all hole axioms, that is, if no column has more than one 1. Say that
an assignment « is critical if it is legal and no row of a has more than

[

1-entries. We say that a set 6 of clauses implies a clause C, and write € |= C, if every
critical assignment a satisfying all clauses of % also satisfies C.
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0

FiGure 8. I—{io} ={1,...,r}L,Ji={jla;=1}LJ(@)={j|q; =1}
and J(C)={j | x; ; € C}.

CrLaim 18.33. For every clause C in Z we have that .« = C.

This already gives the desired contradiction, because 6 < d; for all i implies that
oy =0, and hence, that .¢, [~ 0. Thus, it remains to prove the lemma.

To prove Claim 18.33, we argue by induction on the number of steps in the deriva-
tion of C in #. The case C € .¢/ is obvious since then C € .¢/.

For the inductive step suppose that .«/, = A, .z = B and C is obtained from
clauses A, B by a single application of the monotone refutation rule. Since the rule is
sound with respect to all legal (and hence, also for all critical) truth assignments, we
have that {A, B} |= C. Hence, if we take the set

I=1{i|d;(A)>d; -6 ord;(B) >d; — 6}

of pigeons of large degree of freedom in at least one of the clauses A or B, then |I| <
2w, and .o |= C. Let us choose a minimal I € {1,...,m} such that ./, |= C; then still
|I] < 2w,. We will show that, in fact,

rciild(C)=d;—6};

this will obviously imply .«/; C ./, and hence, ./ |= C.

Assume the contrary, and pick an arbitrary i, € I with d;(C) < d; — &. Since I is
minimal, we have that ./;_; ; [~ C. Hence, there is a critical assignment a = (q; ;)
which satisfies all clauses in .«/;_; ; but falsifies C. We may assume that a; ; = 0 for all
i &I —{ip} and all j, because C is positive and none of such variables x; ; appears in
;_yg3- Let now

J={jlx;#Canda;,;=0foralliel—{i}}

be the set of holes “permissible” for the pigeon i, (see Fig. 8): if we pick an arbitrary
subset J' C J of size |J’| = £ and change the assignment a by letting a; ; = 1 iff j € J/,
then we will get a critical assignment a’ which still satisfies all clauses in gy (we
have not touched other pigeons) but falsifies C.

We want to show that J’ can be chosen in such a way that this new assignment o’
will also satisfy all clauses in .7 ; this will give the desired contradiction with .¢/; |~ C.

First, observe that the set J is large enough: since d; (C) < d;, — 6 and each row
of a has at most £ 1-entries, we have that

I=n—(lI]-£+d;,(C)) 2n— (2wel +(d;, —8)) = n—d; +65/2. (18.5)
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Now pick J uniformly and at random among all £-element subsets of J, and let a be
the random assignment resulting from the assignment a by setting to 1 all q; ; with

Jj € J. Take an arbitrary axiom A € .¢/; , and let J, = {j | x; ; € A} be the set of holes
offered by the clause A to the pigeon i,. Since |J,| = d; , by (18.5) we have

|JaNJ|>6/2.
Now we can apply Chernoff’s inequality and conclude that
PriA(a) = 1] =Pr[J, NI # 0] > 1 — e M0 > 1 — o =H3/m),
Since

5€> 52 5% n-logle/| log|.d|

n — 4wgn Tan T e8| 4e

>

we obtain that
PriA(a)=1]>1—|.o/| 2,
if the constant ¢ is sufficiently small. Since clearly, |.< | < |./, |2 < |.of|?, this implies
that, for at least one choice a’ of a, all axioms in «f; will be satisfied. Since (as we
observed above) the assignment a’ also satisfies all axioms in .¢f;_y; ; but falsifies C,
we obtained a contradiction with .« |= C.
This completes the proof of Claim 18.33, and thus, the proof of Lemma 18.32. [

18.6.2. Proof of the pigeon filter lemma. The lemma is a direct consequence of
the following property of randomly chosen numbers. Let m and S be positive integers.
Set t := |logm] —1, and let r be a random variable taking its values in [t] = {1,..., t}
with probabilities

Prir=t]=2""Y and Pr[r=s]=2"° foreach s=1,2,...,t—1.

Craim 18.34. Let S be a positive integer, x = (xq,...,X,,) an integer vector, and
Letry,...,r, be m independent copies of r. Then with probability at least 1 — O(S™2)
at least one of the following two events happens:

A,: r; > Xx; for at least one integer x;;
B,: r; <x;— 1 for all but at most O(logS) integers x;.

Proor. Our goal is to show that at least one of Pr[—A,] and Pr[—B,] is at most
0(S72), implying that the desired sequence ry,...,r,, satisfying both conditions of
Lemma 18.31 exist with probability at least 1 — O(S72).

Define the “weight” of x as W(x) := Z?Ll 27, We consider two cases depending
on whether W(x) > 2In S or not.

Case 1: W(x)>2InS. Let I = {i | x; < t} and note that

D2 <m2 ) <2,
idl
Therefore,
Zz—xi >W(x)—2>2InS —2. (18.6)
i€l
On the other hand, for every i € I we have Pr[r; > x;] > 27", and these events are
independent. Since Pr[r; > x;] = 0 for all i € I, we have that in this case

Pr[-A, ] =Pr[Vi: r;<x;] = l_[ (1-279) <exp ( —ZZ_X") <e?§72,
iel iel

where the last inequality follows from (18.6).
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Case 2: W(x) < 2InS. We first show that Pr[r > x; — 1] < 227 for every i.
Indeed, if x; > t then either x; = t + 1 and
Prir>x; — 1] =Pr[r =t] =27t =227%

or x; > t+2and Pr[r > x; —1] =0. If x; < t then

t 00
Prlr>x,—1]= D 27 <217y 27T <227,
s=x;—1 j=0

Hence, the expected number of i for which r; > x; — 1 does not exceed

m m

Zzz—xf = 422‘*i =4W(x) < 8InS.

i=1 i=1
Since the events “r; > x; — 1” are independent, we may apply Chernoff’s inequality
and conclude that, for any sufficiently large constant c,

Pr[-B,]=Pr[|{i:r;>x;— 1} >clnS] <S2. O

Exercises
Ex. 18.1 (Cliques and CNFs). Given a graph G = (V, E), define the CNF formula

{i.j}¢E
Each assignment a = (a4,...,a,) € {0,1}" can be interpreted as an incidence vector
of the set of vertices S, = {i | a; = 1}. Show that S, is a clique in G if and only if «
satisfies the formula Fj.

Ex. 18.2. Show that Resolution is complete: every unsatisfiable CNF formula F
has a resolution refutation proof. Hint: Show that the search problem for F can be solved by a
decision tree, and use Theorem 18.1.

Ex. 18.3. Let F be a CNF formula and x a literal. Show that F is unsatisfiable if
and only if both CNFs F,_; and F,_, are unsatisfiable.

Ex. 18.4. Let G be a bipartite (r,c)-expander graph. Show that then the induced
CNF formula PHP(G) is (r, c)-expanding.

Ex. 18.5. Show that for every constant d > 5, there exist bipartite n x n graphs of

left degree d that are (r,c)-expanders for r =n/d and c =d /4 — 1.
Hint: Construct a random graph with parts L and R, |L| = |R| = n, by choosing d neighbors for each
vertex in L. For S € L and T C R, let Eg 1 be the event that all neighbors of S lie within T. Argue that,

Pr[Egr]1=(|Tl/ n)4S!. Let E be the event that the graph is not the desired expander, i.e., that all neighbors
of some subset S C L of size |S| < n/d lie within some subset T C R of size |T| < (d/4)|S|. Use the union

bound for probabilities and the estimate () < (%)k to show that

n/d

PrE]< )| (%)ds/z )
i=1

Use our assumption d > 5 together with the fact that Z?io x! = 1/(1—x) for any real number x with |x| < 1

to conclude that Pr[E] is strictly smaller than 1.

A CNF formula F is k-satisfiable if any subset of its k clauses is satisfiable.
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Ex. 18.6 (3-satisfiable CNFs). Given a 3-satisfiable CNF formula F in n variables,
define a random assignment a = (a4, ...,a,) € {0,1}" by the following rule:

2/3 if F contains a unary clause (x;);
Pr{a;=1]=1< 1/3 if F contains a unary clause (;);
1/2  otherwise.

a. Why this definition is consistent? Hint: 3-satisfiability.

b. Show that Pr[y(a) = 1] > 1/3 for each literal y € {x;,x;}, which appears in the
formula F (independent of whether this literal forms a unary clause or not).

c. Show that the expected number of clauses of F satisfied by a is at least a 2/3 fraction
of all clauses.

Hint: Show that each clause if satisfied by a with probability at least 2/3. The only non-trivial case is

when the clause has exactly 2 literals. Treat this case by keeping in mind that our formula is 3-satisfiable,
and hence, cannot have three clauses of the form (y v z), (¥) and ().

Ex. 18.7 (2-satisfiable CNFs). Prove the Lieberher-Specker result for 2-satisfiable
CNF formulas: if F is a 2-satisfiable CNF formula then at least y-fraction of its clauses
are simultaneously satisfiable, where y = (v/5 —1)/2 > 0.618.

Hint: Define the probability of a literal y to be satisfied to be: a (a > 1/2) if y occurs in a unary clause,
and 1/2 otherwise. Observe that then the probability that a clause C is satisfied is a if C is a unary clause,
and at least 1 — a® otherwise (at worst, a clause will be a disjunction of two literals whose negations appear
as unary clauses); verify that a =1 —a® fora =1y.

Ex. 18.8. Write down explicitely the CNF formulas F;(X) and F,(Y) in the defini-
tion of the CNF formula Match,, in Section 18.5.1.

Ex. 18.9. The probability distribution of r in Claim 18.34 is defined somewhat
“artificially”? Why we could not take just Pr[r =s] =27 for all s < t? Hint: ) a' =
(™' —a)/(a—1).
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Epilog

In this book we have learned almost all arsenal of existing lower bounds argu-
ments. They work well for different restricted circuit classes but, so far, have not led to
a non-linear lower bound for unrestricted circuits. In this concluding chapter we sketch
several general results explaining this failure (the phenomenon of “natural proofs”) as
well as showing a possible line of further attacks (the “fusion method”).

Pseudo-random generators

When trying to prove a lower bound, we try to show that something cannot be
computed efficiently. It turned out that this task is closely related to proving that
something—namely, so-called “pseudorandom generators”—can be efficiently com-
puted!

Informally speaking, a pseudorandom generator is an “easy to compute” function
which converts a “few” random bits to “many” pseudorandom bits that “look random”
to any “small” circuit. Each one of the quoted words is in fact a parameter, and we
may get pseudorandom generators of different qualities according to the choice of
these parameters. For example, the standard definitions are: “easy to compute” =
polynomial time; “few” = n®; “many” = n.

DEFINITION 18.35. A function G : {0,1}! — {0,1}" with [ < n is called an (s, ¢)-
secure pseudorandom generator if for any circuit C of size s on n variables,

|PriC(y) =11 - Pr[C(G(x)) =1]| <,
where y is chosen uniformly at random in {0,1}", and x in {0, 1} .

That is, a pseudorandom generator G stretches a short truly random seed x into a
long string G(x) which “fools” all circuits of size up to s: no such circuit can distinguish
G(x) from a truly random string y.

Note that the definition is only interesting when [ < n, for otherwise the generator
can simply output the first n bits of the input, and satisfy the definition with ¢ = 0
and arbitrarily large circuit size s. The larger the fraction n/l is, the stronger is the
generator. Note also that, if the input x is taken in {0,1}' at random, the output G(x)
of a generator is also a random variable in {0,1}". But if [ < n, the random variable
G(x) is by no means uniformly distributed over {0,1}" since it can take at most 2!
values with nonzero probability.

Pseudorandom generators have many applications in computer science. It is there-
fore important to know how to construct them. It turns out that this problem (con-
struction of good pseudorandom generators) is related to proving lower bounds on
circuit size.

269
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DEFINITION 18.36. Let f : {0,1}" — {0, 1} be a boolean function. We say that f is
(s, €)-hard if for any circuit C of size s,

PrlCCo = F(O] - 5| <,

where x is chosen uniformly at random in {0, 1}".

The meaning of this definition is that hard functions f must be “really hard:” no
circuit of size s can even approximate its values, that is, any such circuit can do nothing
better then just guess the value. So, the function f looks random for each such circuit.

The idea of how hard boolean functions can be used to construct pseudorandom
generators is well demonstrated by the following construction of a generator stretching
just one bit.

LEmMA 18.37. Let f be an (s + 1,¢)-hard boolean function in n variables. Then
the function G : {0,1}" — {0,1}"*" defined by G;(x) := (x,f(x)) is a (s,&)-hard
pseudorandom generator.

ProoF. The intuition is that, since f is hard, no small circuit C should be able to
figure out that the last bit f(x) of its input string (x, f(x)) is not just a random bit.
By the definition of a pseudorandom generator, we want the following to hold for any
circuit of size at most s on n + 1 variables:

|PrlC(y) = 1] - Pr[C(G,(x)) =1]| <,

where y is chosen uniformly at random in {0,1}""!, and x in {0,1}*. Assume that
this does not hold. Then there is a circuit C that violates this property. Without loss of
generality, we may assume that

PrlC(G;(x))=1] =Pr[C(y)=1] = ¢.

This can be done because we can take —C if this is not the case. The above is the same
as

Pr[C(x, f(x))=1]—Pr[C(x,r)=1] > ¢,

where x is chosen uniformly at random in {0, 1}", and r is a random bit in {0, 1} with
Pr[r = 0] = Pr[r = 1] = 1/2. A way to interpret this inequality is to observe that
when the first n input bits of C are a random string x, the circuit C is more likely to
accept if the last bit is f(x) than if the last bit is random. This observation suggests
the following strategy in order to use C to predict f(x): given an input x for which we
want to compute f (x), we guess a value r € {0,1} and compute C(x,r). If C(x,r)=1
we take it as an evidence that r was a good guess for f (x), and output r. If C(x,r) =0,
we take it as evidence that r was the wrong guess for f(x), and we output 1 — r. Let
C.(x) be a random circuit (with just one random input r) we just described. We claim
that

PrC,(x) = F(x)] 2 % e (18.7)



NATURAL PROOFS 271

Since C,(x) = r iff C(x,r) =1, this can be shown by elementary calculations:
Pr[C,(x) = f(x)]
= Pr[C.(x) = f(x)|r = f()]-Pr[r = f(x)]
+Pr[C.(x) = fC)lr # f(x)] - Pr[r # f(x)]
=5 Pr[C.(x) = f()lr = f(x)] + 5 - Pr[C,(x) = f (0)|r # £ (x)]

L-Pr[Clx,r) = 1Ir = f(x)] + L - Pr[C(x, 1) = Ofr = £ (x)]
=3+ 3 Pr{Cle,r) =1fr = f(x)] = § - Pr[Clx,r) = 1|r = £ (x)]
=14+ Pr[Clx,r) =1|r = f(x)]

= 1(PeCCe, ) =1 = FOOT+Pr{CCx, ) = 17 # £ ()]
= L4+ Pr{C(x, f (1) = 1] = PrC(x,r) = 1]

— 2
> +te.
From (18.7) we obtain that there must be a constant r € {0, 1} such that
I;r[Cr(x) =f(x)]>1/2+¢.

Since the size of C, is at most s + 1 (plus 1 could come from starting with =C instead
of C), which is a contradiction with the hardness of f. U

To push this strategy further, what we could do is to beak up the input into k
blocks and then apply f to them. This way we get a generator stretching n bits into
n + k pseudorandom bits. But this is not too much: for applications we need gener-
ators stretching n bits into 2" pseudorandom bits. To achieve this, we need to use
intersecting blocks. But we also have to ensure that these blocks do not intersect too
much. This is the main motivation for the construction of generators known as Nisan—
Wigderson generators. The starting point of this construction are combinatorial object
known as “partial designs.”

A collection of subsets Si,...,S, of [I] = {1,...,1} is called partial m-design if
|S;| =m for all i, and [S; N S;| < logn for all i # j.

Given such a design and a boolean function f : {0,1}™ — {0,1}, the Nisan—
Wigderson generator Gy : {0, 1} — {0,1}" is defined by:

Gy () = (FQxls ) f(xls) s Fx]5))

where x g is the substring (x; | i € S) of x. That is, the ith bit of G;(x) is just the value
of f applied to the substring of x determined by the ith set of the design.

Using a similar argument as for the one-bit generator above, one can prove the
following:

THEOREM 18.38. If the function f is (n*,1/n®)-hard, then G; is an (n®/2,2/n)-
secure pseudorandom generator.

Natural proofs

So far, none of existing lower bounds arguments was able to separate P from
NP. Razborov and Rudich (1997) gave an explanation: all these proof techniques
are “natural”, and natural proofs cannot prove P # NP, unless good pseudo-random
generators do not exist. Since the existence of such generators is widely believed, it
seems very unlikely that natural proofs could do this separation. We are not going to
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decision by circuitsin I

FIGURE 9. A random function f should have a non-negligible chance
of having the property . But the value ®(f) must be computable by
a circuit in T" taking the 2" bits of the truth table of f as input.

sink into details of how this is proved; interested reader can just look at a well-written
paper of Razborov and Rudich. We just briefly mention what is meant under a “natural
proof” and how one could try to avoid this “naturality”.

Let &, be the set of all boolean functions f : {0,1}" — {0,1}, and let I" and A be
some classes of boolean functions. We can think of A being, say, the class of all boolean
functions computable by circuits of size n?, and I" being the class P/poly of boolean
functions computable by circuits of polynomial in n size. Hence, f € A iff f can be
computed by relatively small circuit (of quadratic size).

Given a specific boolean function f, € 4,, our goal is to show that f; & A. A
possible proof of this fact is a property ® : 9, — {0, 1} of boolean functions such that
®(fy,) =1and ®(f) =0 for all f € A. Each such property is a witness for (or a proof
of) the fact that “f, € A.”

A T-natural proof against A is a property ¢ : %, — {0, 1} satisfying the following
three conditions:

(1) Usefulness against A: ®(f) =1 implies f & A.

(2) Largeness: ®(f) =1 for at least 27°(") fraction of all 2% functions f in %,.

(3) Constructivity: ® € T, that is, when looked at as a boolean function in N = 2"

variables, the property ® itself belongs to the class I'.

The first condition (1) is obvious: after all we want to prove that f, & A. If
A # 0, this condition also ensures that ® cannot be trivial, i.e., take value 1 on all
functions. Condition (2) corresponds to our intuition that any reasonable lower bounds
argument, designed for a given function f,, should be also able to show the hardness
of the hardest functions—random ones. Thus, a random function f should have a
non-negligible chance of having the property ®. What makes the property ‘natural” is
the last condition (3). That is, the requirement that the property itself can be tested by
not too large circuits.

We emphasize that when property ®(f) is computed, the input is the truth table
of f, whose size is 2", not n. Thus, a property is P/poly-natural, if it can be computed
by circuits of size 20(”), which is more than exponential in n(!)

ExampLE 18.39. Let us consider the case when A = AC?, the class of all boolean
functions computable by constant depth circuits with polynomial number of NOT and
unbounded fanin AND and OR gates. The proof that Parity & AC® (Section 11.1)
involves the following steps: (i) Show that every AC° circuit can be simplified to a
constant by restricting at most n — n® input variables to constants, and (ii) show that
Parity does not have this property. (Here 0 < ¢ < 1/2 is a constant depending only on
the depth of a circuit, and property (ii) trivially holds, as long as n —n® > 1.) Thus the
natural property lurking in the proof is the following:
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®(f) =1 iff f cannot be made constant by restricting its all but n® variables.

Clearly, if ®(f) = 1 then f € AC°, so ® is useful against AC®. Furthermore, the number
of functions that can be made constant by setting its n — k variables does not exceed
2(3) 22" < 272" and this is a negligible fraction of all 22" functions. Hence, ® has
largeness property as well. Finally, ® is constructive in a very strong sense: given a
truth table of f, the value ®(f) can be computed by a depth-3 circuit of size 2°(" as
follows. List all (}})2"* = 200" restrictions of n — k variables. For each one there is a

circuit of depth 2 and size 20 which outputs 1 iff that restriction does not leave f a
constant function, that is, iff the positions in the truth sub-table, corresponding to that
restriction, not all are equal. Output AND of all these circuits. The resulting circuit has
depth 3 and is polynomial-sized in 2".

Thus, property ® is AC°-natural against AC°.

Now we show that natural properties cannot be useful against substantially larger
classes of boolean functions, like P/poly, unless good pseudorandom generators do not
exist.

A pseudo-random function generator is a boolean function f (x,y) : {0, 1
{0,1}. By setting the y-variables at random, we obtain its random subfunction f,(x) =
f(x,y). Let h: {0,1}" — {0,1} be a truly random boolean function. A generator
f(x,y) is secure against T'-attacks if for every circuit C in T,

[Pr[C(f,) =1]—Pr[C(h) =1]| <27™. (18.8)

That is, no circuit in T' can distinguish f, from a truly random function; here again,
inputs for circuits are truth tables of boolean functions.

THEOREM 18.40. If a complexity class A contains a pseudo-random function generator
that is secure against ['-attacks, then there is no I'-natural proof against A.

PrROOFE. Suppose that a I'-natural proof ® against A exists. To get a contradiction,
we will show that then the proof & can be used to distinguish f, from a random func-
tion h.

Since f (x, y) belongs to I', every subfunction f,(x) with y € {0, 1}2" belongs to T’
as well. The usefulness of ® against A implies that &(f,) = 0 for all y. Hence,

Pr[®(fy) =1]=0.
On the other hand, the largeness of & implies that Pr[®(h) =1] > 270 Hence,
|Pr{@(f,) = 1] - Prld(h) = 1]| = 270,

and thus ® is a distinguisher. But by constructivity, the boolean function ® itself be-
longs to I', a contradiction with (18.8). O

It is known that pseudo-random function generators may be constructed starting
from simpler objects—pseudo-random number generators. These are just functions
g, : 10,1}" — {0,1}*". Such a function g, is secure against I'-attacks if for every
circuit Cin T,

[PrCg,(x)) = 1] - Pr[C(y) =1]| <27
Here x is chosen at random from {0, 1} and y is chosen at random from {0, 1}?". That

is, given a random seed x, g, produces a random string y = g,(x) in {0,1}*", and no
circuit in T" can distinguish this produced string y’ from a truly random string y.
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Starting from a pseudo-random number generator g : {0,1}" — {0,1}?", one can
construct a pseudo-random function generator f (x,y) : {0, 1}"*’"2 — {0, 1} as follows.
Associate with g two functions g, g&; : {0,1}" — {0, 1}", where g,(x) is the first and
g1(x) the second half of the string g(x). Having a vector y € {0, 1}"2, we can define
a function S, : {0,1}" — {0, 1}" which is a superposition S, =g, og, ©o---og, of
these two functions g, and g; defined by the bits of y. Then just let f (x, y) be the first
bit of the superposition S, applied to input x.

It is widely believed that the class A = P/poly (and even much smaller classes)
contain pseudo-random number generators g, that are secure enough against P/poly-
attacks. It is also known that the pseudo-random function generator f(x,y) con-
structed from g, is then also secure enough against P/poly-attacks. Together with The-
orem 18.40, this means that no P/poly-natural proof can lead to a super-polynomial
lower bound on circuit size.

MARGINAL NoOTE. This result raised some pessimism among the complexity people: Why try
things that are (most probably) impossible? To my opinion, the pessimism is not well founded.

1. The main goal of circuit complexity is not to separate P from NP or some other “uni-
form” complexity classes—this will probably be done by some cute diagonalization argument
(diagonalization is not natural). Also, there is a big difference between the classes P and P/poly:
the first is “uniform” (requires one Turing machine for all boolean functions f, in the sequence
{f, In=1,2,...}), whereas the second only requires that for each n a small circuit computing
f, exists. At the beginning of complexity theory, some people (including a great mathematician
Kolmogorov) even believed that the whole NP is doable with circuits of linear size. Decades
passed, and this belief ist still not refuted! The goals of circuit complexity are therefore much
more “prosaic:” to prove lower bounds for “simple” explicit functions. In this (pragmatic) re-
spect, even restricted circuit models—like decision trees, bounded-depth circuits, time-restricted
branching programs, etc.—are important as they are.

2. The phenomenon of “natural proofs” should be looked at as a guide and a hint that some
lower bound arguments cannot be fetched too far. It also answers the question: why proving
lower bounds is so difficult? This is difficult because any such proof gives us an algorithm to
break down a pseudorandom generator (for the corresponding class of circuits). That is, when
proving that something is not possible, we actually try to prove that something very strange is
possible!

3. The discovery of natural proofs phenomenon gives us an additional motivation to search
for new arguments. This (striving for better arguments) was always present in circuit complexity.
New is that now we know what this “new” means: the arguments must avoid largeness and/or
constructivity. So, for example, Chow (2009) has already shown that, if one replaces the large-
ness condition by “®(f) = 1 for at least | 8, |/29™ functions” where g(n) is quasi-polynomial in
n, then the resulting “almost-natural” proofs against P/poly exist!

4. Mathematics is full with non-constructive proofs—why should we stick on constructive
ones?

5. Our intuition that any lower bounds proof should also work for a random function
(the largeness condition) might also be wrong. For example, the property of being K, ,-free
is not shared by random graphs, whereas dense K, ,-free graphs have many nice special prop-
erties. Thus, the approach based on graph structure of boolean functions—known as “graph
complexity”—could also be promising; we sketched this approach in Sections 1.8 and 10.4.

6. We cannot just put the lower bounds problem away—it is too important, both for math-
ematics and for praxis. My overall opinion is that the idea of natural proofs is just a very nice
conceptual frame to classify existing and forthcoming lower bound arguments, as well as an invi-
tation to search for non-constructive, not computable in polynomial time lower bounds criteria.
Anyway, this is not a “sentence of depth” for circuit complexity. Just the opposite: thanks to this
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discovery, a wild collection of deep and nice lower bound arguments now begins to become a
Theory.

The fusion method

In order to show, by contradiction, that a given circuit C is too small for computing
a given boolean function f one could try to argue in the following way: try to combine
(or “fuse™) correct rejecting computations of C on inputs in f~!(0) into an incorrect
rejecting computation on an input in f ~*(1).

The idea is to look at circuit C = (gy,...,g,) of size t as a set & of local tests on
strings r = (rq,...,r,) in {0,1}". Namely,

?
each gate g; = ¢(g;,,---,§;,) corresponds to a test r; = ¢(r,...,T;,)-

The first n bits of r correspond to an input vector, and each subsequent bit must pass
the corresponding test. If, for example, we consider circuits over the basis {A,V,},
then each of the tests looks at < 3 bits of r and has one of the forms
? ? ?
rg=-r; rp=r; Aty or ri=r1; Vry (J,j1,0 <1).
It is clear that each computation C(a) = (g;(a), ..., g,(a)) on a input vector a € {0, 1}"
must pass all the tests. It is, however, important to note that also the opposite holds:

A string r € {0, 1}" is a computation of C iff it passes all tests in &.

Indeed, if r passes all tests in &, then r is just a computation of C on input a =
(rq,...,1,), and the result of this computation is the last bit r, of r.

This suggests the following “diagonalization” argument to prove that a given func-
tion f cannot be computed by a circuit of size t:

Show that, for every set ® of |®| < t local tests, there exists a vector r in {0, 1}*
such that r passes all tests in ® but r, # f(rq,...,7,)-

There are two general ideas of how to construct such a "diagonal computation” r:
the "topological approach" of Sipser (1985) and the "fusion method" first proposed by
Razborov (1989a) and then put in a more general frame by Karchmer (1993).

Let f(xy,...,X,) be a given boolean function, and let U = f ~}(0) be the set of all
vectors rejected by f. We look at each gate g : {0,1}" — {0, 1} as a (column) vector
g € {0,1}™ with m = |U| whose jth position is the value of g when applied to the jth
vector in U. In particular, the vector x; corresponding to an input variable x; has a
1 in the jth position iff the jth vector of U has 1 the ith position. Put otherwise, the
columns x,...,x, form an m X n matrix A such that f(a) = 0 iff a is a row of A.

This way we can look at any circuit G = (g, ..., g;) as a boolean m by 2n-+t matrix
M, a computation matrix, whose columns are the vectors g,,...,8, (see Fig. 18.6.2).
This matrix has the following properties:

a. the (n+ i)-th column is the negation of the i-th column, fori =1,...,n;
b. if g; = g; A g then the i-th column is the AND of the j-th and the k-th columns;
c. if g; = g;V gi then the i-th column is the OR of the j-th and the k-th columns,

where here and throughout, boolean operations on boolean vectors are performed
component-wise.

Each boolean function f determines the set U = f ~1(0) of its zeroes, as well as the
first 2n columns x4,...,x, and —x,,...,7x, of a computation matrix M of any circuit
for f. The remaining columns, however, are determined by the gates of a concrete
circuit we are considering. To construct a “diagonal” computation we will combine
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xl N xn —|x1 cee —|xn cee gl_ cee gt
a; 0 1 1 0 0 0
a, 1 1 0 0 1 0
a, 1 0 0 1 0 .0

| [FGa) - F(xn) [F(oxy) -+ F(ox,) |-+ F(g) -~ ]0]

Ficure 10. A matrix of a circuit. In a row for vector a, the first n po-
sitions is the vector a itself, the next n positions is the complemented
vector a ® 1, and the ith further position is the value g;(a) of the
ith gate g;. The last (t-th) position in each row must be 0, since
g.(a)=f(a)=0forallac U= f"1(0).

columns in a new row using boolean functions F : {0,1}" — {0,1} defined on the
column space.

We call such a function F a fusing functional for f if F(0) = 0 and F(—x;) = 7F(x;)
forall i =1,...,n, that is, if F respects negations of “basis” columns x1,...,x,. Say
that a pair (a, b) of vectors in {0, 1}™ covers a functional F if

F(a)ANF(b)#F(aAb). (18.9)

We can now introduce a combinatorial (set-covering) measure characterizing the size
of circuits.

Let u(f) be the smallest number of pairs of vectors in {0,1}™ satisfying the fol-
lowing condition: each monotone fusing functional F for f such that

f(F(xy),...,F(x,))=1 (18.10)

is covered by at least one of these pairs. Let s(f) be the smallest number of gates in a
DeMorgan circuit computing f .

LEMMA 18.41. For every boolean function f, s(f) > u(f).

PrOOE. Let U = f~1(0), m = |U| and let G = (g;,...,g,) be a circuit computing
f. Take an arbitrary monotone functional F : {0,1}™ — {0, 1} for f satisfying (18.10).
Say that a gate g; = g;* g with * € {A, v} covers F if F(g;)*F(g,) # F(g;*&y)- Note
that, if none of the gates in G would cover F, then r = (r,...,r,) with r; = F(g;)
would be a computation G(a) = (g;(a),..., g, (a)) of our circuit G on the input

a:=(F(xq),...,F(x,)).

The fact that F(g,) = F(0) = 0 would imply that this is a rejecting computation. But
(18.10) implies that f(a) = 1, and hence, the vector a should be accepted by G, a
contradiction.

Thus, the functional F must be covered by at least one gate of G. It suffices
therefore to show that if a V-gate covers F, then F is also covered by an A-gate. To
show this, let S be the set of all gates in G that cover F. For the sake of contradiction,
assume that S contains no A-gates.

By the definition of cover we have that for each g; = g; v g, in S,

F(g))VF(gi)#F(g;V&i)-
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Since F is monotone, the only possibility is that
F(g;)=F(g,)=0 and F(g;Vg,)=1. (18.11)

Let G’ be a circuit identical to G except that each gate g; = g; V gk in S is replaced by
the instruction g/ = 1V 1. We concentrate on the behavior the both circuits G and G’
on the input vector

a=(F(xy),...,F(x,))
defined by the functional F, and make the following two observations:

a. G'(a) = 1. This is because we have only changed gates g;, whose values were
0 on this input (by (18.11)). Since the circuit uses only AND and OR gates,
which are monotone, we have that G'(a) > G(a) = f(a) = 1.

b. The computation of G'(a) = (g;(a),...,g;(a)) on input a coincides with the
string F(g,),...,F(g,), thatis, g/(a) = F(g;) foralli=1,...,t. We show this
by induction on the position of the gates in G’. Since the first n gates of G’
are the same as in G, namely - the variables x;,..., x,, the claim holds for all
i=1,...,n. Take now a gate g; = g; * g and assume the claim holds for both
its inputs, that is g]f(a) =F(g;) and g;(a) = F(gy).

- Case: g; = g; A g Since, by our assumption, A-gates do not cover F, we
obtain:

gil@)=gj(a)Ag(a)=F(g;)NF(g,)=F(g; Agi) =F(g,).

- Case: g; = g;V g If g; €S, then g; does not cover F, and the claim follows
as in the previous case. If g; € S, then (18.11) holds, implying that

g@=1v1=1=F(g;Vg,)=F(g,).

Putting observations (1) and (2) together, we get that g/(a) = g.(a) = f(a) =1,
on one side, and g;(a) = F(g,) = F(0) = 0, on the other side. Thus, we have a
contradiction that S can contain only V-gates, that is, that only OR gates can cover F.
This means that at least one of the pairs (g, &) of vectors in {0, 1}V, corresponding
to A-gates g; = g; A g of G, will cover F in the sense of (18.9), as desired. O

It can also be shown (we will not do this) that the lower bound in Lemma 18.41 is
tight enough: s(f) < c(u(f)+n)? for a constant c. Thus, at least in principle, diagonal
computations for (deterministic) circuits can be produced by only using monotone
functionals. It turned out that different classes of fusing functionals capture different
circuit models. A boolean function F(x) is self-dual if F(—x) = =F(x), and is affine if
it is a parity (sum modulo 2) of an odd number of variables.

a. Monotone functionals capture deterministic circuits as well as nondeterminis-
tic branching programs: classes P and NL.

b. Monotone self-dual functionals capture nondeterministic circuits: the class NP.

c. Affine functionals capture nondeterministic circuits as well as parity branching
programs: classes NP and @L.

How does this happen can be found in a nice survey of Wigderson (1993) and in the
literature cited therein.
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TaBLE 1. In the next two tables we shortly summarize some (not all!)
lower bounds arguments as well as some properties of boolean func-
tions making them hard to compute.

Property of f Circuit model Meaning
Mixed General fanin-2 circuits For every k-element subset of variables Y,
read-once branching programs no two assignments to Y lead to the same
subfunction.
Robust DeMorgan formulas, Assigning all but a nontrivial portion

Hard to cover

Hard to
approximate

Clique-free

Large rank

Large rigidity

Large entropy

Rectangle-free

constant depth over {A,V, -}

DeMorgan formulas

constant depth modular circuits,

monotone circuits

depth-3 over {®, A, V, 1}

monotone formulas,

monotone span programs

constant depth over {®, A, V, 1},

log-depth circuits over {&, 1}

general depth-2 circuits

multi-partition communication
branching (1, 4+R)-programs

of variables to constants leaves a non-
constant function.

Many rectangles in any monochromatic de-
composition of Sy = F7H0) x £71(1).

If ®pl> 2" for any degree n® polyno-
mial p.

Any r-CNF C and s-DNF D with C < f or
f < D requires many clauses/monomials.

My has many 1’s but no large all-1 subma-
trix. Example: f(x,y) =1 iff
x; Ay; =0 for all i.

Formula size(f) > rk(Dy), where Dy is the
disjointness matrix of minterms/maxterms
of f.

Program size(f) > rk(Dy ) if maxterms can
be splitted b = by U by so that |a N by| # 0
< |an by| =0 for all minterms a.

Inputs are any matrices of rank 1.

R (ns) > n'*¢ implies super-linear lower
bound.

Setting all but one variable in a subset
Y € X of |Y| = k variables leads to about
2k different suboperators of f : {0,1}" —
{0,1}". Examples: matrix product, convo-
lution

If r(X) = rl(Xl) A r2(X2) with Xl ﬂXz =0
and |X;| = |X,|, and if and r < f, then
[r=1(1)| is small.
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TABLE 2
Argument How it works
Counting/Entropy: Split the variables into disjoint blocks Y3, ..., Y} and, for each block Y;, show
formulas, that many different subfunctions of f can be obtained by setting variables

branching programs,
span programs,
general depth-2 circuits

Gate elimination:
general circuits

Random restrictions:
DeMorgan formulas,
bounded-depth circuits,
resolution proofs

Rank arguments:
monotone formulas,
monotone span programs,
communication protocols

Approximations:
monotone circuits,
bounded-depth circuits,
circuits for matrices,
circuits with modular gates

Finite limits:
depth-3 circuits
monotone circuits

Amplification:
communication complexity

Adversary arguments:
decision tree depth

Spectral arguments:
decision tree size

Cut-and-paste:
branching programs

outside Y; to constants.

Show that fixing k inputs to constants eliminates the need of more that k
gates.

Set some variables to constants at random and show that the size of a circuit
drops down quickly.

Transform the boolean function f into an appropriate disjointness matrix
D¢, or any other matrix whose rank is large. For this, use the cross-
intersection property of minterms and maxterms. Show that small circuit
for f would allow to reduce the rank of Dy.

Together with random restrictions, this was one of the most fruitful argu-
ments so far! Show that at each gate only a small “progress” towards com-
puting the function f can be made. For this, gradually associate with gates
some simpler objects (“approximators”), show that at each gate only few
errors can be introduced, and finally, use the properties of the boolean func-
tion f computed at the output gate to show that any approximator for f
must differ from f on many inputs. So, the number of gates must be large.

Vector x € A is k-limit for set B € {0, 1}" if, for every S C [n], |S| = k there
is y € B such that y [g= x[g. Then no depth-2 circuit of bottom fanin < k,
which accepts all vectors in A and rejects all vectors in B, can detect the fact
x &€B.

If the density |S|/n* of a set S C [n]* of “surviving” inputs with respect to
the entire universum [n]* becomes too small, take a projection S’ of S onto
some [ < k coordinates, so that the density |S’|/n! of S’ with respect with
this smaller universum [n]' is again large enough.

Fix the bits one by one. Depending on what the algorithm has chosen so far,
set the next bit so that the “uncertainty” about the value of f is the largest
one.

If the sum of absolute values of subsequent Fourier coefficients of f is large,
then any decision tree for f needs many nodes.

This is a kind of diagonalization. Combine correct accepting computations
in a wrong accepting computation.
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33 circuit, 138
V-decision tree, 201
@-decision tree, 154
k-CNE 43

exact, 43
k-DNE 43

exact, 43
k-dimensional cube, 125
k-threshold function, 159
n-operator, 168
s-broom, 230
t—(v, k, 1) design

partial, 57

Adleman’s theorem, 7
amplification of density, 115
Andreev’s n>> lower bound, 23
approximate disjointness problem, 120
Approximation Lemma

for functions, 161

for matrices, 166
approximator, 162

in monotone circuits, 44

left, 44

right, 44
assignment, 236

balanced partition, 131
Barrington’s Theorem, 213
binary decision diagram (BDD), see also
branching program
boolean function, 72
d-rare, 221
k-fold extension, 70
m-dense, 221
m-mixed, 215
t-simple, 44
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block sensitivity of, 186
certificate complexity of, 186
communication matrix of, 12, 84
decrease of, 62
dense, 223
evasive, 187
Fourier coefficient of, 193
Fourier transform of, 193
lower one of, 217
lowest one of, 217
monotone, 9
negative input of, 46
positive input of, 46
random, 33
rectangle-free, 223
rectangular, 223
sensitive, 223
symmetric, 180, 187
truth matrix of, 12
weakly t-simple, 48
weakly symmetric, 188
branching program

deterministic, 3
length of, 208
nondeterministic, 2

size of, 2
oblivious, 208
parity modus, 4
read-once, 214
replication of, 214
syntactic read-k times, 234
weakly read-once, 218
width of, 208

Cauchy-Schwarz inequality, 26
certificate, 186
chain, 62

jump position, 62
characteristic function, 219
Chernoff inequalities, 151
circuit, 1

depth of, 164

inversion complexity of, 62

linear, 172, 180, 181



modular, 162
monotone, 43
monotone real-valued, 48
probabilistic, 7
representing a graph, 13
representing a matrix, 172
symmetric, 130, 180
unstable, 16
clause, 8, 43, 236
length of, 8
CNE 8
k-satisfiable, 259
DNF-tree of, 9
expanding, 244
interpolant of, 255
minimally unsatisfiable, 245
resolution refutation size of, 243
resolution refutation width of, 243
search problem for, 237
unsatisfiable, 236
Coding Principle, 158
combinatorial rectangle, see also rectangle
common neighbor, 40, 41
communication complexity
nodeterministic, 89
the fooling-set bound, 90
communication game
best-partition, 84, 101
clique versus independent set, 95
edge-nonedge game, 109, 118
fixed-partition, 84
Karchmer-Wigderson game, 105
multi-party pame, 120
set packing problem, 121
with the referee, 135
communication protocol, 85
deterministics, 85
mixed, 208
randomized, 98
simultaneous messages, 130
communication tree, see also communication
protocol
connector, 65
cross intersection, 76
local intersection, 76
cross-intersection, 10
of partitions, 122
cutting plane proof, 250
cylinder, 124
cylinder intersection, 124, 135

decision tree, 184
V-decision tree, 201
for graph properties, 189
for search problems, 198
nondeterministic, 184
spectral lower bound, 195
degree, 74

INDEX

dependency program, 80
discrepancy, 125
of a function, 124
Discriminator Lemma, 149
disjointness function, 148
disjointness matrix, 94, 100
general, 77
of a pair of families, 76
of a single family, 78
DNE 8
Drag-Along Principle, 34

element distinctness function, 25, 204
entropy of operators, 169

Euler’s theorem, 74

exact perfect matching, 217
Expander Mixing Lemma, 133

fat matching, 147

finite limit, 141

forgetting pair, 221

fork position, 113

formal complexity measure, 33
submodular, 33

formula, 2
DeMorgan, 2
depth of, 2
inversion complexity of, 66
leaefsize of, 2

fusing functional, 268

fusion method, 267

gate-elimination, 6
generalized inned product, 127
generalized inner product, 135, 152
graph
(r, c)-expander, 246
4-cycle in, 38
K, p-free, 146
k-separated, 41, 78
k-star, 132
s-starry, 132
chromatic number of, 55
clique number of, 55
connected, 74
connected component of, 74
fat covering of, 147
induced subgraph of, 227
matching number of, 227
mixed, 132, 228
odd factor in, 74
Paley, 42, 79
quadratic function of, 38, 226
triangle-free, 38
graph complexity, 13
graph function, 55
clique-like, 55
graph property
monotone, 189
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trivial, 189
graph representation, 13
greedy covering, 90

Hadamard graph, 150
Hadamard matrix, 149, 176, 228
Hall’s Marriage Theorem, 245
Hamming distance, 25
Hamming sphere, 123

center of, 123

forbidden, 123
hyperedge, 131
hypergraph, 131

k-matching, 131

induced, 131

induced sub-hypergraph, 131

inner product function, 150
Isolation Lemma, 205

iterated disjointness function, 143
iterated majority function, 196
iterated NAND function, 197

Jensen’s inequality, 29

Konig-Egervary theorem, 90
Khrapchenko’s theorem, 25

fractional version, 27
Kneser graph, 148

k-limit, 141
Lindsey’s Lemma, 104, 149, 228
linear code, 209, 219
BCH-code, 210, 223
Reed-Muller code, 220
universal function of, 233
linear space, 160
dimension of, 160
literal, 8
Little Birdie Principle, 189
local search algorithm, 248
lower bounds criterion
for graph properties, 51

for monotone boolean circuits, 44

for monotone real circuits, 48

for nondeterministic read-once programs, 217

Magnification Lemma
for X5 circuits, 145
for matrices, 12

matrix
a-dense, 115
clique number of, 90

communication complexity of, 85

complement of, 92
cover number of, 89

decomposition number of, 85, 95

discrepancy of, 87
distributional complexity of, 99
Frobenius norm of, 88

INDEX

line weight of, 90
rectangular, 164
representation by circuits, 172
rigidity of, 165, 177
term-rank of, 90
trace of, 88
triangular, 97
matrix multiplication, 129
matrix norm, 31
matrix product, 170
matrix rigidity, 165, 177
maxterm, 8
minterm, 8, 157
modular gate MOD,,, 162
monochromatic rectangle, 105
separating position of, 105
monochromatic submatrix, 85
monomial, 8, 43
multivariate polynomial
number of roots, 226

natural proof, 264
Nechiporuk’s theorem, 24

for branching programs, 203
network

switching-and-rectifier, 203
Nisan-Wigderson generator, 263

operator, 169
entropy of, 169
linear, 172
orbit of a vector, 188
orthonormal basis, 194

Paley graph, 42, 79

parity branching program, 4, 218
parity function, 6

parity rectangle, 28, 106

partial m-design, 263

partial assignment, see also restriction
permutation branching program, 211

Perseval’s Theorem, 201
Pigeonhole Principle PHP)", 239
pointer function, 216
projections of linear codes, 219
projective plane, 40, 146
pseudorandom generator, 261

Ramanujan graphs, 134, 228
Ramsey graphs, 150
rectangle, 10

fractional partition number of, 27

fractional partition of, 27
full rectangle, 10
monochromatic, 11
monocrhomatic, 105

monotone partition number of, 37

rank lower bound, 37
subrectangle, 10



INDEX

rectangle function, 27

normalized, 27
rectangle measure

additive, 29

convex, 27

matrix based, 31

polynomial, 30
rectangular function, 223
rectangular matrix, 12
regular resolution, 238
replication number, 214
resolution

completeness of, 237

regular, 238

soundness of, 236
resolution refutation proof, 236

tree-like, 237
resolution rule, 237
restriction, 8, 155
Rychkov’s lemma, 11

search problem, 198
set packing problem, 121
slice function, 57, 60
span, 160
span program, 72
canonical, 79
spectral norm, 31
sphere, 123
center of, 123
forbidden, 123
Spira’s theorem, 20
storage access function, 17
stright line program, see also circuit
Subbotovskaya’s n'*> lower bound, 21
subgraph
spanning, 74
suboprator, 169
sunflower, 173
Sunflower Lemma, 173
Switching Lemma, 155, 167
monotone version of, 43
non-monotone version of, 155
switching-and-rectifair network, see also
branching program
Sylvester graph, 151
Sylvester matrix, 104

Tarsi’s Lemma, 245
threshold cover, 148
threshold function, 6, 152
truth assignment
i-critical, 240
truth-assignment, 236

weakening rule, 237
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