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Abstract
Pudlak, P. and P. Savicky, On shifting networks, Theoretical Computer Science 116 (1993) 415-419.
We show nonlinear lower bounds on boolean circuits of depth 2, with arbitrary boolean functions

and unbounded fan-in, which compute shifts. We give an explicit construction of a certain network
related to the above circuits.

We consider the problem of proving the lower bounds on the size of circuits that
compute shifts. Let x and y be nonnegative integers, we assume that they are given in
binary. The shift operation is the binary operation x-2*. We shall assume that the
length of x is n and the length of y is[ log, n]. Furthermore, we are interested only in
the processing of x; this can be formalized e.g. by assuming that any function
depending only on y is given for free. We shall use an equivalent way of formalizing
this, which is to consider only x as the input and allow the gates to be adjusted for
each y.

We shall consider circuits of bounded depth with arbitrary fan-in and which can use
arbitrary boolean functions as gates. We shall prove nonlinear lower bounds on the
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size (= the number of edges) of such circuits computing shifts. The proof is based on
defining a graph property, called interval shifters, weaker than the property of being
a superconcentrator. An easy argument shows that each circuit computing shifts is an
interval shifter. Then we prove the lower bounds by modifying the proof for supercon-
centrators of Pippenger [2]. We also present a simple explicit construction of interval
shifters.

As the shift operation is implicit in multiplication, such bounds are also lower
bounds on the size of multiplication circuits. However, the lower bounds for multipli-
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can also be derived from the lower bounds for weak superconcentrators proved
in [1].

1. Definitions
Let G be a directed acyclic graph with » inputs xq,...,x,_, and n outputs
’.y”*
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Vit simodm» f0r i=0,...,n—1.

(2) Giscalled a boolean shifrer if, for every shift s, one can assign boolean functions
to the vertices so that it computes the shift s, i.e. yi=X;4s@modn)» fOr i=0,...,n—1.

(3) G is called an interval shifter if, for every interval I < [0,n— 1] and every shift s,
there are vertex-disjoint paths connecting the vertices x;, iel, with the vertices
of y;, jel+s(modn). (We consider intervals on the cycle; thus, eg. I can be
{0+, ..,n—10,1,....j1)

(4) G is called a ser distributor if, for every k=1, ..., n, there are n subsets of inputs
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k subsets and each output vertex is in exactly k subsets and each of the subsets
of inputs is connected with each of the subsets of outputs by k vertex disjoint
paths.

(5) G is called a superconcentrator if, for all pairs A, B < [0, n— 1] of subsets of equal
cardinality, there are vertex-disjoint paths connecting the vertices x;, i 4, with the
vertices of y;, jeB.

Note that in (3)—(5) we do not require paths between particular pairs of vertices,
we only require that each vertex in one set is connected with some vertex in the
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We are interested in the minimal size of boolean shifters. (The difference between
cyclic and ordinary shifts is inessential.) While the asymptotic behaviour of the

minimal size of shifters has been determined [5], this is an open problem for boolean
shifters. Our tool will be interval shifters. Distributors are introduced only in order to
have as weak assumptions as possible in the following theorem.
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2. Results

Lemma 2.1. The dependence between the concepts defined above is:

Proof. (1)=(2) Usec projection functions.
(2) = (3): By a standard information-theoretic argument.
(3) = (4) and (5) = (3): Trivially by definition. ]

Theorem 2.2. The number of edges in a set distributor of depth 2 is Q(nlogn).

with a sllght modification.

Let a set distributor of depth 2 be given. Let X ={x,,...,x,} and Y={y,,...,y
order to simplify the computations, we shall assume, moreover, that n=2* Let
I denote the set of vertices on the middle level; for ve V, denote by f, (g,) the in-degree
(out-degree) of v. Let i, 1 <i<k, be given. Take randomly and independently sets
A< X and B< Y of size 2° ¥ given by the definition of the set distributor. Then, for
xeX (for yeY) the probability that xeA4 (yeB) is 27" Thus, the probability that v is
connected with 4 and B is at most
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and is, of course, at most 1. This estimatc was cstablished in [2] in a different way. The
rest of the proof follows the proof of [2]. Since we assume that there are 2*~ disjoint

paths connecting 4 and B, the mean value of the number of vertices in ¥ connected
with 4 and B must be at least this number. Thus, we get the following inequality:
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Summing over i and interchanging the summations, we have

Y Y min((fi+g.)2-27 2,2 =k 2k
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The inner sum will now be split according to which of the terms are minimal;

Y. etg)r 27 Y 2ig(fitg)?

Setge<2it Jetgez2i41

1
(——ﬁ+gl‘)+(fv+gu)

2(fe+g0)-



418 P. Pudlak, P. Savicky

Thus,

Z 2(fitg) =k 2" = Z (fitg )=k 251, 0

veV veV
Corollary 2.3. There are no boolean shifters of depth 2 and linear size.

However, there remains a big gap between upper bounds and lower bounds on the
size of boolean shifters. The best upper bound that we know of follows from an easy
bound O(n' " ') for depth-d shifter graphs. We shall now describe a simple construc-
tion of a depth-2 interval shifter of size O(n-logn).

Proposition 2.4. There is a simple explicit construction of an interval shifter of depth
2 and size O(n-logn).

Proof. It is sufficient to construct interval shifters for n=2% since the others can be
obtained from these by “wrapping around”. For n=2* the proposition follows
immediately from the next lemma.

Lemma 2.5. There is a simple explicit construction of a bipartite graph E< X x Y,
| X|=2% |Y|=2*"1— 1, |E\=(k+ 1)2%, such that, for any d <2%, there exists a set Y,
such that, for every interval I = X of length d, there is a matching between I and Y,
contained in E.

Proof. Let X =[0,2*—1], Y={ve{0,1}*||v|<k}. Define E by
(u,v)eE =4 v is an initial segment of the binary expansion of u.

For instance, the empty sequence A is connected with all ue X. Clearly, |E|=(k+1)2*.
Now, let d <2* Represent d as

d=20 4 42 <<y,
Then take
Yy={veY||vleliy, ....in}}
Let I=[a,a+d—1] be an interval of length d. Take the following partition of I
[a,a+d—1]=[a,a+2"—1]ula+2",a+2" +22—1]
Ueru[a4 2 4 20 g4 20 4 4 20 ],

Each interval [a+2" +---+27" " a+2" 4 -..+2%—1] has a matching with the sub-
set {veY||v|=i;,,} of Y,, and these subsets form a partition of Y,. Thus, there is
a matching between I and Y,;. U
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The lower bound can be extended to all depths; namely, for each fixed depth there is
a nonlinear lower bound for boolean shifters. A general theorem which implies this
will be published in a forthcoming paper [6].
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