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Abstract

We exactly determine the formula size of the parity function. If n = 2` + k, where 0 ≤ k < 2`, then
the formula size of parity on n bits is 2`(2` + 3k) = n2 + k2` − k2. Khraphchenko 1971 had previously
shown a n2 lower bound on the formula size of parity—our result shows that when n is not a power of
two parity requires larger formulas, and in fact that limn→∞ sup of the formula size of parity is (9/8)n2.

To obtain this result, we introduce a new technique for proving formula size lower bounds based
on matrix rank. This result cannot be proven by any of the lower bound techniques of Khrapchenko,
Nečiporuk, Koutsoupias, or the quantum adversary method, which are all limited by n2.

1 Introduction

One of the most important open problems in complexity theory is to prove superlinear lower bounds on the
circuit size of an explicit Boolean function. While this seems quite difficult, a modest amount of success has
been achieved in the weaker model of formula size, a formula being a circuit where every gate has fan-out
exactly one. The current best lower bound on the formula size of an explicit function is n3−o(1) [Hås98].

The difference between circuit and formula size is well illustrated by the parity function. Parity can be
computed by a linear size circuit, but when creating a formula for parity in the obvious way, the restriction
that each gate has fan-out one results in a quadratic blowup in size. Khrapchenko was the first to show that
this blowup is necessary, showing a n2 lower bound for parity [Khr71].

Let us see this in more detail. To compute the parity of a single bit, we can make do with a formula of
size one, where we measure the size of a formula by the number of literals: φ(x1) = x1. To compute the
parity of two bits, that is an XOR gate, we need a formula of size four: φ(x1, x2) = (x1∧¬x2)∨(¬x1∧x2).
We can then inductively construct a formula for parity on n bits in a straightforward way

φ(x1, . . . , xn) = (φ(x1, . . . , xbn/2c)∧¬φ(xbn/2c+1, . . . , xn))∨(¬φ(x1, . . . , xbn/2c)∧φ(xbn/2c+1, . . . , xn)).

Letting ⊕n to be the parity function on n bits, and L(f) the formula size of a function f , we see that
L(⊕n) ≤ 2(L(⊕bn/2c) + L(⊕dn/2e)).

Thus an upper bound on the formula size of parity is given by the solution to the recurrence relation
a(1) = 1, a(2) = 4, a(n) = 2(a(bn/2c)+a(dn/2e)). This turns out to have solution a(n) = 2`(2` +3k) =
n2 + k2` − k2, for n = 2` + k, where 0 ≤ k < 2`. Our main result gives a matching lower bound:
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Theorem 1 If n = 2` + k where 0 ≤ k < 2`, then

L(⊕n) = 2`(2` + 3k) = n2 + k2` − k2.

While Khrapchenko’s bound of n2 is tight when n is a power of two, this result shows that parity sometimes
requires larger formulas and, in fact, limn→∞ supL(⊕n) = (9/8)n2.

After we obtained our result it was pointed out to us that Rychkov [Ryc94] shows a lower bound of
n2 + 3 for odd n ≥ 5, and n2 + 2 for even n ≥ 6 which are not powers of 2.

To prove this theorem we introduce a new formula size lower bound technique based on matrix rank.
We use the setting of Karchmer and Wigderson [KW88] who characterize formula size as a communication
complexity game, specifically as the communication complexity of a relation. Although matrix rank is
one of the best tools available for proving lower bounds on the communication complexity of functions it
has proved difficult to adapt to the relational case. We do this by means of a “selection function” which
restricts a relation into a (non-Boolean) function, for which rank can be applied in a similar way to the usual
case of Boolean functions. Razborov [Raz90] has previously used matrix rank in a different way to show
superpolynomial lower bounds on monotone formula size, but also shows [Raz92] that his method is limited
to O(n) bounds for general formulas.

Most of the known generic techniques for proving formula size lower bounds cannot prove lower bounds
larger than n2. The technique of Nečiporuk [Neč66] is limited to bounds of size n2/ log n—we should
mention, however, that this technique works in the more general setting where any set of binary gates is
allowed; the methods of Khrapchenko [Khr71], its generalization by Koutsoupias [Kou93], and further
generalization by the quantum adversary method [LLS06], all cannot prove lower bounds larger than n2;
Karchmer, Kushilevitz, and Nisan [KKN95] introduce a promising technique based on linear programming
but at the same stroke show that it cannot prove lower bounds larger than 4n2.

As our rank method can surpass this n2 limitation, we hope that it can make progress on some of the
many open questions remaining about the formula size of basic functions. One of the most dramatic such
questions is the gap in our knowledge about the formula size of the majority function: the best lower bound
is dn/2e2, provable by Khrapchenko’s method, while the best upper bound is O(n4.57) [PPZ92]. Even in
the monotone case, where a formula consists of only AND and OR gates, the best lower bound is bn/2cn
[Rad97], while the best upper bound is O(n5.3) by Valiant’s beautiful construction [Val84].

2 Preliminaries

We will make use of Jensen’s inequality. We will use the following form:

Lemma 2 (Jensen’s Inequality) Let φ : R → R be a convex function and ai a set of positive real numbers
for i = 1, . . . , n. Then

φ

(∑n
i=1 aixi∑n
i=1 ai

)
≤
∑n

i=1 aiφ(xi)∑n
i=1 ai

.

2.1 Linear algebra

We will use some basic concepts from linear algebra. For a matrix A, let A∗ be the transpose conjugate of A,
that is A∗[i, j] = A[j, i]. A matrix is Hermitian if A = A∗. We will use ≤ to refer to entrywise comparision
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of matrices: that is A ≤ B if A[i, j] ≤ B[i, j] for all (i, j). The shorthand A ≥ 0 means that all entries of
A are nonnegative. The rank of A, denoted by rk(A), is the number of linearly independent columns of A.
The trace of A, written Tr(A), is the sum of the diagonal entries of A. For a Hermitian n-by-n matrix A, let
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) be the eigenvalues of A. Let σi(A) =

√
λi(A∗A) be the ith singular value

of A.
We will make use of three matrix norms. The Frobenius norm is the `2 norm of a matrix thought of as a

long vector—that is

‖A‖F =
√∑

i,j

A[i, j]2.

Notice also that ‖A‖2
F = Tr(A∗A) =

∑
i σ

2
i (A). We will also use the trace norm, ‖A‖tr =

∑
i σi(A).

Finally, the spectral norm ‖A‖ = σ1(A). A very useful relationship between Frobenius norm, trace norm,
and rank is the following:

Lemma 3 Let A be a n-by-m matrix with n ≤ m.⌈
‖A‖2

tr

‖A‖2
F

⌉
≤ rk(A).

Proof. The rank of A equals the number of nonzero singular values of A. Thus by the Cauchy–Schwarz
inequality, (

n∑
i=1

σi

)2

≤ rk(A) ·
n∑

i=1

σ2
i .

As rank is an integer, we obtain ⌈
‖A‖2

tr

‖A‖2
F

⌉
≤ rk(A).
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A useful tool to lower bound the trace norm is the following:

Lemma 4
‖A‖tr = max

B

|Tr(A∗B)|
‖B‖

.

For Theorem 1 we in fact need only the following simple bound on the trace norm: if there are k distinct
rows x1, . . . , xk and k distinct columns y1, . . . , yk such that A[xi, yi] = 1 for all 1 ≤ i ≤ k, then ‖A‖tr ≥ k.

2.2 Formula size and communication complexity

A formula is a binary tree with nodes labeled by AND and OR gates, and leaves labeled by literals, that is
either a variable or its negation. The size of a formula is its number of leaves. The formula size of a Boolean
function f , written L(f), is the size of a smallest formula which computes f .

Karchmer and Wigderson [KW88] characterize formula size in terms of a communication game. Since
this characterization, nearly all formula size lower bounds have been phrased in the language of communi-
cation complexity.
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Let X, Y, Z be finite sets and R ⊆ X × Y × Z a relation. In the communication problem for R, Alice
is given some x ∈ X , Bob some y ∈ Y , and they wish to output some z ∈ Z such that (x, y, z) ∈ R. A
communication protocol is a binary tree with each internal node v labeled either by a function av : X →
{0, 1} if Alice speaks at this node, or by a function bv : Y → {0, 1} if Bob speaks. Each leaf is labeled by
an element z ∈ Z. We say that a protocol P computes a relation R if for every (x, y) ∈ X × Y , walking
down the tree according to the functions av, bv leads to a leaf labeled with z such that (x, y, z) ∈ R. We let
CP (R) denote the number of leaves in a smallest protocol which computes R.

For a Boolean function f : {0, 1}n → {0, 1}, let X = f−1(0) and Y = f−1(1). We associate with f a
relation Rf ⊆ X × Y × [n], where Rf = {(x, y, i) : x ∈ X, y ∈ Y, xi 6= yi}.

Theorem 5 (Karchmer–Wigderson) L(f) = CP (Rf )

An important notion in communication complexity is that of a combinatorial rectangle. A combinatorial
rectangle of X × Y is a set which can be expressed as X ′ × Y ′ for some X ′ ⊆ X and Y ′ ⊆ Y . A set
S ⊆ X × Y is called monochromatic for the relation R if there is some z ∈ Z such that (x, y, z) ∈ R for
all (x, y) ∈ S. Let CD(R) be the number of rectangles in a smallest partition of X × Y into combinatorial
rectangles monochromatic for R. We will often refer to this informally as the rectangle bound. A basic
fact, which can be found in [KN97], is that CD(R) ≤ CP (R). The rectangle bound is also somewhat

tight—Karchmer, Kushilevitz, and Nisan [KKN95] show that CP (R) ≤ CD(R)log CD(R).

3 Rank technique

One of the best techniques for showing lower bounds on the communication complexity of a function f :
X × Y → {0, 1} is matrix rank, originally used by Melhorn and Schmidt [MS82]. If Mf is a matrix
with rows labeled from X , columns labeled from Y and where Mf [x, y] = f(x, y), then rk(Mf ) lower
bounds the number of leaves in a communication protocol for f . This follows as rank is subadditive and
a communication protocol partitions the communication matrix into monochromatic rectangles, which are
rank one matrices.

Let X, Y, Z be finite sets and R ⊆ X × Y × Z a relation. In order to apply the rank bound, we
first restrict the relation to a (non-Boolean) function by means of what we call a selection function. A
selection function S : X × Y → Z for the relation R takes input (x, y) and outputs some z such that
(x, y, z) ∈ R. That is, it simply selects one of the possible valid outputs of the relation on input (x, y). We
let R|S = {(x, y, z) : S(x, y) = z}.

Theorem 6 CP (R) = minS CP (R|S).

Proof. For any selection function S, we have CP (R) ≤ CP (R|S), as a protocol for R|S is in particular a
protocol for R.

To see CP (R) ≥ minS CP (RS), let P be an optimal protocol for R. We define a selection function
based on this protocol, that is, let S(x, y) = z if and only if (x, y) lead to a leaf labeled z by P . Now the
protocol P also solves R|S and the claim follows. 2

With the help of selection functions, we can now use rank as in the functional case.
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Theorem 7 Let R ⊆ X × Y × Z be a relation. To a selection function S, we associate a set of matrices
{Sz} over X × Y where Sz[x, y] = 1 if S(x, y) = z and Sz[x, y] = 0 otherwise. Then

CD(R) ≥ min
S

∑
z∈Z

rk(Sz).

Proof. Let R be an optimal rectangle partition of R satisfying |R| = CD(R). We let R define a selection
function in the natural way, setting S(x, y) = z where z is the lexicographically least color of the rectangle
in R which contains (x, y).

We now show for this particular choice

CD(R) ≥
∑
z∈Z

rk(Sz),

which gives the theorem. Clearly CD(R) is equal to the sum over all z of the number of rectangles labeled
z by the partition R. Thus it suffices to show that rk(Sz) lower bounds the number of rectangles labeled
by z. Consider some z and say that there are k monochromatic rectangles B1, . . . , Bk labeled z. As each
Bi is a combinatorial rectangle we can write it as Bi = Vi × Wi for Vi ⊆ X and Wi ⊆ Y . Let vi be the
characteristic vector of Vi, that is vi[x] = 1 if x ∈ Vi and vi[x] = 0 otherwise, and similarly for wi with Wi.
Then we can express Sz as Sz =

∑k
i=1 viw

∗
i and so rk(Sz) ≤ k. 2

In general, this bound seems quite difficult to apply because of the minimization over all selection
functions. We will now look at a simplified form of this method where we get around this difficulty by using
Lemma 3 to lower bound the rank.

Corollary 8 Let f : {0, 1}n → {0, 1} be a Boolean function, and let X = f−1(0), Y = f−1(1). Let ci

be the number of pairs (x, y) ∈ X × Y which differ only in position i, and let s1, . . . , sn be n nonnegative
integers which sum to |X||Y |. Then

CD(Rf ) ≥ min
siP

i si=|X||Y |

∑
i

⌈
c2
i

si

⌉
.

Proof. By Theorem 7 and Lemma 3

CD(Rf ) ≥ min
S

∑
i

rk(Si) ≥ min
S

∑
i

⌈
‖Si‖2

tr

‖Si‖2
F

⌉
. (1)

Let (x1, y1), . . . , (xci , yci) be the ci many pairs which differ only in position i. For these pairs, any selection
function S must choose i. As for every x, the string y differing from x only in position i is unique, this gives
us ci many distinct rows x1, . . . , xci and ci many distinct columns y1, . . . , yci for which Si[xk, yk] = 1.
Thus by the comment following Lemma 4 we have ‖Si‖tr ≥ ci. The Frobenius norm squared of a zero/one
matrix is simply the number of ones, thus ‖Si‖2

F is simply the number of (x, y) pairs for which the selection
function S chooses i. As the selection function is total,

∑
i ‖Si‖2

F = |X||Y |. The claim follows. 2

The simplified version of the rank method given in Corollary 8 is already strong enough to imply
Khrapchenko’s method. Khrapchenko’s method works as follows: let f be a Boolean function, and as
before let X = f−1(0), Y = f−1(1). Let C be the set of (x, y) ∈ X × Y which have Hamming distance
one. Khrapchenko’s bound is then |C|2/|X||Y |.
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Theorem 9 The bound given in Corollary 8 is at least as large as that of Khrapchenko.

Proof. Let ci be the number of (x, y) ∈ X × Y which differ only in position i, and let {si} be such that∑
i si = |X||Y | and which minimize the bound given in Corollary 8. We now apply Jensen’s inequality,

Lemma 2, with φ(x) = 1/x, xi = si/ci, and ai = ci to obtain

∑
i

c2
i

si
≥

(
∑

i ci)2∑
i si

=
|C|2

|X||Y |
.

2

4 Application to parity

In this section, we apply the rank technique to the parity function and thereby obtain Theorem 1. We first
show the upper bound.

Proposition 10 Let n = 2` + k, where 0 ≤ k < 2`. Then L(⊕n) ≤ 2`(2` + 3k).

Proof. We construct our formula inductively. For n = 1, we have a formula of size one, φ(x1) = x1. For
n = 2, we have a formula of size four, φ(x1, x2) = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2). We can then inductively
construct a formula for parity on n bits as

φ(x1, . . . , xn) = (φ(x1, . . . , xbn/2c)∧¬φ(xbn/2c+1, . . . , xn))∨(¬φ(x1, . . . , xbn/2c)∧φ(xbn/2c+1, . . . , xn)).

This construction leads us to consider the recurrence relation a(1) = 1, a(2) = 4, a(n) = 2(a(bn/2c)+
a(dn/2e)), which has solution a(n) = 2`(2` + 3k), where n = 2` + k. This can be easily verified as it
satisfies the initial conditions and

2(a(bn/2c) + a(dn/2e) = 2
(
2`−1(2`−1 + 3bk/2c) + 2`−1(2`−1 + 3 dk/2e)

)
= 2`

(
2` + 3(bk/2c+ dk/2e)

)
= 2`

(
2` + 3k

)
2

We now turn to the proof of the lower bound.

Proposition 11 Let n = 2` + k, where 0 ≤ k < 2`. Then L(⊕n) ≥ 2`(2` + 3k).

Proof. Let S be any selection function. For every i, there are 2n−1 entries of the matrix Si which must be
one, namely the entries x, y which differ only on position i. If S only assigns these entries to have the label
i, then Si is a permutation matrix and so has rank 2n−1. Thus to reduce the rank of Si, the selection function
S must therefore assign more (x, y) pairs to also have the label i. The catch is that S must do this for all i
simultaneously, and we will bound how well it can do this.
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Notice that for parity on n-bits, |X| = |Y | = 2n−1. For every i there are 2n−1 pairs (x, y) which differ
only in position i. Thus applying Corollary 8 with ci = 2n−1 for all i, we obtain

CD(R) ≥ min
si:

P
i si=22n−2

n∑
i=1

⌈
22n−2

si

⌉
. (2)

If we were to ignore the ceilings, then we are minimizing over a convex function φ(x) = 1/x and so
Jensen’s inequality gives that the minimum is obtained when all si are equal. In this case si = 22n−2/n and
so
∑

i 2
2n−2/si = n2.

To get bound larger than n2 we need to take the ceiling functions into account. If n is not a power of two,
then 22n−2/n will not be an integer, whereas each si is an integer—this means that it is no longer possible
to have all si values equal and

∑
i si = 22n−2. It is this imbalance that will lead to a larger lower bound.

We transform Equation (2) in a series of steps. First, notice that

min
si:

P
i si=22n−2

n∑
i=1

⌈
22n−2

si

⌉
= min

s′i:
P

i s′i≤22n−2

n∑
i=1

⌈
22n−2

s′i

⌉
. (3)

The right hand side is clearly less than the left hand side as the minimization is taken over a larger set.
The left hand side is less than the right hand side as given a solution {s′i} to the right hand side, we can
obtain a solution to the left hand side which is not larger by setting si = s′i for i = 1, . . . , n − 1, and
sn = 22n−2 −

∑n−1
i=1 s′i ≥ s′n.

Now we observe that there is an optimal solution {si} to Equation (3) where each 22n−2/si is an integer,
and so each si is a power of two. If 22n−2/si is not an integer, then we can set s′i to the largest power of two
less than si and

⌈
22n−2/si

⌉
= 22n−2/s′i, and the sum of s′i does not increase.

Thus assume that each si is a power of two, say si = 2ai . We can now rewrite Equation (3) as

min
aiP

i 2ai≤22n−2

∑
i

22n−2−ai

As the logarithm is a monotone function, the values {ai} which achieve this minimum will maximize

max
aiP

i 2ai≤22n−2

∑
i

ai.

We now show that there is an optimal solution to this maximization problem where |ai− aj | ≤ 1 for all i, j.
If ai−aj > 2 then we can let a′i = ai− 1 and a′j = aj +2, so that a′i +a′j > ai +aj and 2a′j ≤ 2aj +2ai−1

so 2a′i + 2a′j ≤ 2ai + 2aj . If ai − aj = 2 then by setting a′i = ai − 1 and a′j = aj + 1 then we still have

a′i + a′j = ai + aj , and have saved on weight, 2a′i + 2a′j < 2ai + 2aj .
By performing these transformations, we can turn any solution into one where |ai − aj | ≤ 1 and whose

value is at least as good. Now if we have |ai − aj | ≤ 1 and
∑

i 2
ai = 22n−2, it follows that ai = 2n− `− 2

for 2` − k many values of i and ai = 2n− `− 3 for 2k many values of i. This gives

min
ai

n∑
i=1

22n−2−ai = (2` − k)2` + 2k2`+1

= 2`(2` + 3k).

2
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We take this opportunity to make some remarks on the expression of the formula size of parity. The
recurrence relation we consider has arisen before in complexity theory [AS03], and is sequence A073121 in
Sloane’s online encyclopedia of integer sequences [Slo].

The values of n for which parity is the “hardest” to compute are of the form n = [(4/3)2k], where [x]
denotes the nearest integer to x. The formula size of parity on these instances asymptotically approaches
(9/8)n2. This sequence is known as the Jacobsthal sequence (Sloane’s A001045), and arises in surprisingly
many contexts. We record these observations in the next Corollary.

Corollary 12

lim
n→∞

sup
L(⊕n)

n2
=

9
8

Proof. Simple calculus shows that f(x) = 2`(2` +3x)/(2` +x)2, a function of the real variable x, achieves
its maximum in the interval x ∈ [0, 2k − 1] when x = 2`/3. At this value, f(x) = 9/8. As the second
derivative of f is negative for x ∈ [0, 2k − 1], the largest value of f(x) over integers will be an integer
adjacent to 2`/3, and in fact is [2`/3] the closest integer to 2`/3. It is straightforward to check that f([2`/3])
approaches 9/8 as ` →∞. 2

5 A more general technique

In this section, we highlight one way to generalize the simple bound given by Equation (1). While this
bound works well for the parity function, it has the shortcoming that it cannot take advantage of the fact
that certain inputs to a function might be harder than others. To give a concrete example, the bound given
by Equation (1) on the function f : {0, 1}2n → {0, 1} on 2n bits which is just the parity of the first n bits,
ignoring the second n bits, is worse than the bound for parity on n bits. To remedy this, we let u be a unit
vector of length |X| and v be a unit vector of length |Y | and consider the matrix Si ◦ uv∗ instead of the
matrix Si. As rk(Si ◦ uv∗) ≤ rk(Si), we can again apply Theorem 7 and Lemma 3 to obtain

CD(Rf ) ≥ min
S

max
u,v

‖u‖=‖v‖=1

∑
i

‖Si ◦ uv∗‖2
tr

‖Si ◦ uv∗‖2
F

. (4)

Remark 13 As rk(AB) ≤ min{rk(A), rk(B)}, one may ask why we do not consider the stronger bound

max
X,Y

‖XAY ‖2
tr

‖XAY ‖2
F

≤ rk(A).

The left hand side, however, is actually equal to the rank of A, thus this approach gives us the full strength
of Theorem 7.

We now show that Equation (4) gives bounds at least as large as the formula size bounds given by the
quantum adversary method [LLS06]. Laplante, Lee, and Szegedy have already shown that the quantum
adversary method gives lower bounds at least as large as the method of Koutsoupias, which in turn is known
to give lower bounds at least as large Khrapchenko’s method.

Ambainis [Amb02, Amb03] developed the quantum adversary method to prove lower bounds on bounded-
error quantum query complexity. Laplante, Lee, and Szegedy show that the square of the adversary bound
is lower bound on formula size. The adversary bound can be phrased as a maximization problem of the
spectral norm of a matrix associated with f [BSS03].
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Definition 14 (Adversary bound) Let f : {0, 1}n → {0, 1} be a Boolean function, and X = f−1(0) and
Y = f−1(1). Let Γ be a |X|-by-|Y | matrix, and let Γi be the matrix such that Γi[x, y] = Γ[x, y] if xi 6= yi

and Γi[x, y] = 0 otherwise, for 1 ≤ i ≤ n. Then

ADV(f) = max
Γ≥0
Γ6=0

‖Γ‖
maxi ‖Γi‖

.

Theorem 15 The bound given by Equation (4) is at least as large as ADV(f)2.

Proof. Applying Jensen’s Inequality to Equation (4) with φ(x) = 1/x, xi = ‖Si ◦uv∗‖2
F /‖Si ◦uv∗‖tr, and

ai = ‖Si ◦ uv∗‖tr, we obtain:

min
S

max
u,v

‖u‖=‖v‖=1

∑
i

‖Si ◦ uv∗‖2
tr

‖Si ◦ uv∗‖2
F

≥ min
S

max
u,v

‖u‖=‖v‖=1

(
∑

i ‖Si ◦ uv∗‖tr)
2∑

i ‖Si ◦ uv∗‖2
F

.

As the selection function is total we have
∑

i ‖Si ◦ uv∗‖2
F = ‖uv∗‖2

F = 1.
Now we use Lemma 4 to lower bound ‖Si‖tr. One can think of the weight matrix Γ in the adversary

bound as the matrix from Lemma 4 which witnesses that the trace norm of the Si’s is large:

min
S

max
u,v

‖u‖=‖v‖=1

(∑
i

‖Si ◦ uv∗‖tr

)2

≥ min
S

max
Γ≥0
Γ6=0

max
u,v

‖u‖=‖v‖=1

(∑
i

|Tr((Γ ◦ Si)vu∗|
‖Γ ◦ Si‖

)2

≥ min
S

max
Γ≥0
Γ6=0

max
u,v

‖u‖=‖v‖=1

(∑
i

|Tr((Γ ◦ Si)vu∗|
‖Γi‖

)2

.

This step follows as 0 ≤ Γ ◦ Si ≤ Γi and for matrices A,B if 0 ≤ A ≤ B then ‖A‖ ≤ ‖B‖. We can now
continue

min
S

max
Γ≥0
Γ6=0

max
u,v

‖u‖=‖v‖=1

(∑
i

|Tr((Γ ◦ Si)vu∗|
‖Γi‖

)2

≥ min
S

max
Γ≥0
Γ6=0

max
u,v

‖u‖=‖v‖=1

(∑
i Tr((Γ ◦ Si)vu∗)

maxi ‖Γi‖

)2

= max
Γ≥0
Γ6=0

max
u,v

‖u‖=‖v‖=1

(
Tr(Γvu∗)
maxi ‖Γi‖

)2

= max
Γ≥0
Γ6=0

(
‖Γ‖

maxi ‖Γi‖

)2

.

2

6 Hierarchy of techniques

In this section, we give one more result to clarify the hierarchy of available techniques for proving lower
bounds on formula size. We show that the linear programming bound of Karchmer, Kushilevitz, and Nisan
[KKN95] also gives bounds at least as large as the quantum adversary method.

We first introduce the linear programming bound. Karchmer, Kushilevitz, and Nisan notice that for a
relation R ⊆ X × Y × Z the rectangle bound CD(R) can be written as an integer program. Indeed, let
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R be the set of all rectangles which are monochromatic with respect to the relation R. To represent the
relationship between inputs (x, y) and the rectangles of R we use a |X| · |Y |-by-|R| incidence matrix A,
where for (x, y) ∈ X × Y and S ∈ R we let A[(x, y), S] = 1 if (x, y) ∈ S. Now a set of rectangles can be
described by a |R|-length vector α, with each entry α[S] ∈ {0, 1}. If α represents a partition, then Aα = ~1,
and the number of rectangles in such a partition is simply

∑
S α[S]. Karchmer, Kushilevitz, and Nisan relax

this integer program to a linear program by replacing the condition α[S] ∈ {0, 1} with 0 ≤ α[S] ≤ 1.

Definition 16 (Linear programming bound [KKN95]) Let f : {0, 1}n → {0, 1} be a Boolean function,
Rf the relation corresponding to f , and α a vector indexed by rectangles monochromatic with respect to
Rf . The linear programming bound, denoted LP(f), is then

LP(f) = min
α:Aα=~1

0≤α[S]≤1

∑
S

α[S].

Now we show that the bound given by the linear programming method is also always at least as large as
that given by the adversary method.

Theorem 17 LP(f) ≥ ADV2(f).

Proof. Let α be a solution to the linear program associated with f . By definition we have
∑

S:(x,y)∈S α[S] =
1 for every (x, y). Let u, v be unit vectors such that |u∗Γv| = ‖Γ‖. We will need some notation to label
submatrices of Γ and portions of u, v. For a combinatorial rectangle S = U × V , let ΓS [x, y] = A[x, y] if
(x, y) ∈ S and Γ[x, y] = 0 otherwise. Similarly, let uS [x] = u[x] if x ∈ U and uS [x] = 0 otherwise, and
similarly for vS . Now

‖Γ‖ =
∑
x,y

Γ[x, y]u[x]v[y]

=
∑
x,y

∑
S:(x,y)∈S

α[S]Γ[x, y]u[x]v[y]

=
∑
S

α[S]
∑

(x,y)∈S

Γ[x, y]u[x]v[y]

≤
∑
S

α[S]‖ΓS‖‖uS‖‖vS‖

≤

(∑
S

α[S]‖ΓS‖2

)1/2(∑
S

α[S]‖uS‖2‖vS‖2

)1/2

,

where the first inequality follows from the definition of spectral norm, and the second uses the Cauchy–
Schwarz inequality. Notice that∑

S

α[S]‖uS‖2‖vS‖2 =
∑
x,y

α[S]|u[x]|2|v[y]|2 = 1.

Thus
‖Γ‖2 ≤

∑
S

α[S]‖ΓS‖2 ≤ max
S

‖ΓS‖2
∑
S

α[S],

and so ∑
S

α[S] ≥ max
Γ

‖Γ‖2

maxS ‖ΓS‖2
≥ max

Γ

‖Γ‖2

maxi ‖Γi‖2
.

2
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Formula Size

Rectangle Bound

Rank Technique
(this paper)

Linear Programming
(KKN95)

Quantum Adversary Method
(LLS06)

Koutsoupias
(Kou03)

Khrapchenko
(Khr71)

Figure 1: Hierarchy of formula size techniques. Arrows point from larger to smaller.
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