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Abstract

We introduce a new technique for proving formula size lower bounds based on matrix
rank. A simple form of this technique gives bounds at least as large as those given by the
method of Khrapchenko, originally used to prove ann2 lower bound on the parity function.
Applying our method to the parity function, we are able to give an exact expression for the
formula size of parity: ifn = 2` + k, where0 � k < 2`, then the formula size of parity onn bits is exactly2`(2` + 3k) = n2 + k2` � k2. Such a bound cannot be proven by any of the
lower bound techniques of Khrapchenko, Nečiporuk, Koutsoupias, or the quantum adversary
method, which are limited byn2.

1 Introduction

One of the most important open problems in complexity theory is to prove superlinear lower
bounds on the circuit size of an explicit Boolean function. While this seems quite difficult, a
modest amount of success has been achieved in the weaker model of formula size, a formula being
a circuit where every gate has fan-out exactly one. The current best lower bound on the formula
size of an explicit function isn3�o(1) [Hås98].

Besides proving larger lower bounds, many open questions remain about the formula size of
basic Boolean functions—functions which are both very important in practice and are the constant
companions of complexity theorists. One of the most startling such questions is the gap in our
knowledge about the formula size of the majority function: the best lower bound isdn=2e2 while
the best upper bound isO(n4:57) [PPZ92]. Even in the monotone case, where a formula consists
of only AND and OR gates, the best lower bound isbn=2cn [Rad97], while the best upper bound
isO(n5:3) by Valiant’s beautiful construction [Val84].

One obstacle to proving larger formula size lower bounds seems to be what we call then2
barrier—most generic lower bound techniques seem to get stuck aroundn2. The technique of
Nečiporuk [Něc66] is limited to bounds of sizen2= log n; the methods of Khrapchenko [Khr71],
originally used to show an2 lower bound on the formula size of parity, Koutsoupias [Kou93],
and the recent quantum adversary method [LLS06] all cannot prove lower bounds larger than�LRI, Universit́e Paris-Sud. Supported by a Rubicon grant from the Netherlands Organisation for Scientific Re-
search (NWO). Part of this work conducted while at CWI, Amsterdam.
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n2; Karchmer, Kushilevitz, and Nisan [KKN95] introduce a promising technique based on linear
programming but at the same stroke show that it cannot prove lower bounds larger than4n2.

We introduce a new technique for proving formula size lower bounds based on matrix rank.
Karchmer and Wigderson [KW88] show that formula size can be phrased as a communication
complexity game, specifically as the communication complexity of a relation. Although matrix
rank is one of the best tools available for proving lower bounds on the communication complexity
of functionsit has proved difficult to adapt to the relational case. Razborov [Raz90] uses matrix
rank to show superpolynomial lower bounds onmonotoneformula size, but also shows [Raz92]
that his method is limited toO(n) bounds for general formulas.

While in its full generality our method seems difficult to apply, we give a simplified form
which always gives bounds at least as large as the method of Khrapchenko, and even the quantum
adversary method, and whichcanbreak then2 barrier: we apply it to the parity function and give
anexact expressionfor the formula size of parity. Let�n denote the parity function onn-bits, and
letL(f) denote the the number of leaves in a smallest formula which computesf .

Theorem 1 If n = 2` + k where0 � k < 2`, then

L(�n) = 2`(2` + 3k) = n2 + k2` � k2:
In Section 3 we present our method and show that it gives bounds at least as large as those

of Khrapchenko. In Section 4 we apply the method to the parity function to prove Theorem 1.
Finally, in Section 5 we look at the relative strength of different formula size techniques and show
that the linear programming method of Karchmer, Kushilevitz, and Nisan [KKN95] is always at
least as large as the quantum adversary method [LLS06].

2 Preliminaries

We will make use of Jensen’s inequality. We will use the following form:

Lemma 2 (Jensen’s Inequality) Let� : R! R be a convex function andai a set of positive real
numbers fori = 1; : : : ; n. Then

��Pni=1 aixiPni=1 ai
� � Pni=1 ai�(xi)Pni=1 ai :

2.1 Linear algebra

We will use some basic concepts from linear algebra. For a matrixA, let A� be the transpose
conjugate ofA, that isA�[i; j] = A[j; i]. A matrix is Hermitian ifA = A�. We will use� to
refer to entrywise comparision of matrices: that isA � B if A[i; j] � B[i; j] for all (i; j). The
shorthandA � 0 means that all entries ofA are nonnegative. The rank ofA, denoted byrk(A), is

2



the number of linearly independent columns ofA. The trace ofA, writtenTr(A), is the sum of the
diagonal entries ofA. For a Hermitiann-by-n matrixA, let�1(A) � �2(A) � � � � � �n(A) be the
eigenvalues ofA. Let�i(A) =p�i(A�A) be theith singular value ofA.

We will make use of three matrix norms. The Frobenius norm is the`2 norm of a matrix thought
of as a long vector—that is kAkF =sXi;j A[i; j]2:
Notice also thatkAk2F = Tr(A�A) = Pi �2i (A). We will also use the trace norm,kAktr =Pi �i(A). Finally, the spectral normkAk = �1(A). A very useful relationship between Frobenius
norm, trace norm, and rank is the following:

Lemma 3 LetA be an-by-m matrix withn � m.�kAk2trkAk2F
� � rk(A):

Proof: The rank ofA equals the number of nonzero singular values ofA. Thus by the Cauchy–
Schwarz inequality,  nX

i=1 �i
!2 � rk(A) � nX

i=1 �2i :
As rank is an integer, we obtain �kAk2trkAk2F

� � rk(A):
2

A useful tool to lower bound the trace norm is the following:

Lemma 4 kAktr = maxB jTr(A�B)jkBk :
This lemma expresses the fact that the trace norm and spectral norm are dual. For Theorem 1 we
need only the following simple bound on the trace norm: if there arek distinct numbersi1; : : : ; ik
andk distinct numbersj1; : : : ; jk such thatA[ir; jr] = 1 for all 1 � r � k, thenkAktr � k.

2.2 Formula size and communication complexity

A formula is a binary tree with nodes labeled by AND and OR gates, and leaves labeled by literals,
that is either a variable or its negation. The size of a formula is its number of leaves. The formula
size of a Boolean functionf , writtenL(f), is the size of a smallest formula which computesf .
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Karchmer and Wigderson [KW88] characterize formula size in terms of a communication
game. Since this characterization, nearly all formula size lower bounds have been phrased in
the language of communication complexity.

Let X; Y; Z be finite sets andR � X � Y � Z a relation. In the communication problem forR, Alice is given somex 2 X, Bob somey 2 Y , and they wish to output somez 2 Z such that(x; y; z) 2 R. A communication protocol is a binary tree with each internal nodev labeled either
by a functionav : X ! f0; 1g if Alice speaks at this node, or by a functionbv : Y ! f0; 1g if Bob
speaks. Each leaf is labeled by an elementz 2 Z. We say that a protocolP computes a relationR
if for every (x; y) 2 X � Y , walking down the tree according to the functionsav; bv leads to a leaf
labeled withz such that(x; y; z) 2 R. We letCP (R) denote the number of leaves in a smallest
protocol which computesR.

For a Boolean functionf : f0; 1gn ! f0; 1g, letX = f�1(0) andY = f�1(1). We associate
with f a relationRf � X � Y � [n], whereRf = f(x; y; i) : x 2 X; y 2 Y; xi 6= yig.

Theorem 5 (Karchmer–Wigderson) L(f) = CP (Rf )
An important notion in communication complexity is that of a combinatorial rectangle. A

combinatorial rectangle ofX � Y is a set which can be expressed asX 0 � Y 0 for someX 0 � X
andY 0 � Y . A setS � X � Y is called monochromatic for the relationR if there is somez 2 Z such that(x; y; z) 2 R for all (x; y) 2 S. Let CD(R) be the number of rectangles in a
smallest partition ofX � Y into combinatorial rectangles monochromatic forR. We will often
refer to this informally as the rectangle bound. A basic fact, which can be found in [KN97], is
thatCD(R) � CP (R). The rectangle bound is also somewhat tight—Karchmer, Kushilevitz, and

Nisan [KKN95] show thatCP (R) � CD(R)logCD(R).
3 Rank technique

One of the best techniques for showing lower bounds on the communication complexity of a func-
tion f : X � Y ! f0; 1g is matrix rank, originally used by [MS82]. IfMf is a matrix with
rows labeled fromX, columns labeled fromY and whereMf [x; y] = f(x; y), thenrk(Mf ) lower
bounds the number of leaves in a communication protocol forf .

LetX; Y; Z be finite sets andR � X � Y �Z a relation. In order to apply the rank bound, we
first restrict the relation to a (non-Boolean) function by means of what we call a selection function.
A selection functionS : X � Y ! Z for the relationR takes input(x; y) and outputs somez such
that (x; y; z) 2 R. That is, it simply selects one of the possible valid outputs of the relation on
input (x; y). We letRjS = f(x; y; z) : S(x; y) = zg.

Theorem 6 CP (R) = minS CP (RjS):
Proof: For any selection functionS, we haveCP (R) � CP (RjS), as a protocol forRjS is in
particular a protocol forR.

To seeCP (R) � minS CP (RS), let P be an optimal protocol forR. We define a selection
function based on this protocol, that is, letS(x; y) = z if and only if (x; y) lead to a leaf labeledz
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by P . Now the protocolP also solvesRjS and the claim follows. 2

With the help of selection functions, we can now use rank as in the functional case.

Theorem 7 LetR � X � Y � Z be a relation. To a selection functionS, we associate a set of
matricesfSzg overX � Y whereSz[x; y] = 1 if S(x; y) = z andSz[x; y] = 0 otherwise. Then

CD(R) � minS X
z2Z rk(Sz):

Proof: Let R be an optimal rectangle partition ofR satisfyingjRj = CD(R). We letR define
a selection function in the natural way, settingS(x; y) = z wherez is the lexicographically least
color of the rectangle inR which contains(x; y).

We now show for this particular choice

CD(R) �Xz2Z rk(Sz);
which gives the theorem. ClearlyCD(R) is equal to the sum over allz of the number of rectangles
labeledz by the partitionR. Thus it suffices to show thatrk(Sz) lower bounds the number of
rectangles labeled byz. Consider somez and say that there arek monochromatic rectanglesB1; : : : ; Bk labeledz. As eachBi is a combinatorial rectangle we can write it asBi = Vi �Wi
for Vi � X andWi � Y . Let vi be the characteristic vector ofVi, that isvi[x] = 1 if x 2 Vi andvi[x] = 0 otherwise, and similarly forwi with Wi. Then we can expressSz asSz =Pki=1 viw�i and
sork(Sz) � k. 2

In general, this bound seems quite difficult to apply because of the minimization over all se-
lection functions. We will now look at a simplified form of this method where we get around this
difficulty by using Lemma 3 to lower bound the rank.

Corollary 8 Let f : f0; 1gn ! f0; 1g be a Boolean function, and letX = f�1(0); Y = f�1(1).
Let ci be the number of pairs(x; y) 2 X � Y which differ only in positioni, and lets1; : : : ; sn ben nonnegative integers which sum tojXjjY j. Then

CD(Rf ) � min
siP

i si=jXjjY j

X
i
�c2isi

� :

Proof: By Theorem 7 and Lemma 3

CD(Rf ) � minS X
i rk(Si) � minS X

i
�kSik2trkSik2F

� : (1)
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For theci many(x; y) pairs which differ only in positioni, any selection functionS must choosei. As the stringy differing fromx only in positioni is unique, this means that we can permute the
rows and columns ofSi to obtain a matrix with trace at leastci, and sokSiktr � ci. The Frobenius
norm squared of a zero/one matrix is simply the number of ones, thuskSik2F is simply the number
of (x; y) pairs for which the selection functionS choosesi. As the selection function is total,Pi kSik2F = jXjjY j. The claim follows. 2

The simplified version of the rank method given in Corollary 8 is already strong enough to
imply Khrapchenko’s method, which works as follows. Letf be a Boolean function, and as before
letX = f�1(0); Y = f�1(1). LetC be the set of(x; y) 2 X � Y which have Hamming distance
one. Khrapchenko’s bound is thenjCj2=jXjjY j.
Theorem 9 The bound given in Corollary 8 is at least as large as that of Khrapchenko.

Proof: Let ci be the number of(x; y) 2 X�Y which differ only in positioni, and letfsig be such
that

Pi si = jXjjY j and which minimize the bound given in Corollary 8. We now apply Jensen’s
inequality, Lemma 2, with�(x) = 1=x; xi = si=ci, andai = ci to obtain

X
i c2isi � (Pi ci)2Pi si = jCj2jXjjY j :

2

4 Application to parity

In this section, we look at an application of the rank technique to the parity function. For both
the upper and lower bounds, we will use the communication complexity setting of Karchmer and
Wigderson. In this setting, Alice is given somex with even parity, Bob somey with odd parity,
and they wish to find somei such thatxi 6= yi. We first show the upper bound.

Proposition 10 Letn = 2` + k, where0 � k < 2`. ThenL(�n) � 2`(2` + 3k).
Proof: The basic idea is binary search. First imagine thatn is a power of two. Bob begins by
saying the parity of the left half ofy. Alice then says the parity of the left half ofx. If these parities
differ, then they continue playing on the left half, otherwise they continue playing on the right half.
With each round they halve the size of the playing field, and use two bits of communication. Thus
after log n rounds and2 log n bits of communication they determine ani on whichx andy differ.
This gives a formula of sizen2.

Whenn is not a power of two, then at some point Alice and Bob will not be able to split the
playing field evenly between left and right halves. To govern how Alice and Bob decomposen,
consider a binary tree with the following properties:
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� The root is labeled byn.

� The label of a node equals the sum of its sons

� Each leaf is labeled by 1.

Any such tree gives a protocol of the above type in the following way:

� Alice and Bob begin at the root, Alice playing withx and Bob withy. If the left son of the
root isn1, then Alice and Bob exchange the parities of the firstn1 bits ofx andy respectively.
If these disagree, then they continue playing with the substrings consisting of the firstn1 bits
of x andy respectively. If these agree then they continue playing on the lastn� n1 bits ofx
andy respectively.

� Say that Alice and Bob have arrived at nodev playing with stringsx0 andy0 respectively,
and that the left son ofv is labeled byn1. Alice and Bob exchange the parities of the firstn1
bits ofx0 andy0. If these agree then they continue playing on the lastn� n1 bits ofx0 andy0
respectively.

The following claim gives the number of leaves in such a protocol.

Claim 11 LetT be a binary decomposition ofn as above. Then

L(�n) �X`2T 2depth(`);
where the sum is taken over the leaves` of T .

Proof: We count the number of transcripts. Consider a path from root to a leaf. At each step in this
path, there are two messages that could lead to taking that step. Namely, if the step is a left step,
then Alice and Bob disagree in parity at this step and thus the message exchange leading to this is
either 01 or 10. Similarly, if the step is a right step then Alice and Bob agreed in parity at this step
and the messages which could be exchanged are 00 or 11. Thus the total number of transcripts in
the parity protocol from a given tree is

P`2T 2depth(`). 2

We use this claim to prove Proposition 10. Consider a binary decomposition ofn where the
sons of any node labeled by an even number have the same value and the sons of any node labeled
by an odd number differ by one. This decomposition will have2k many leaves at depth̀+ 1 and2` � k many leaves at depth̀. The claim then gives

L(�n) � 2k(2`+1) + (2` � k)2` = 2`(2` + 3k)
2

Proposition 12 Letn = 2` + k, where0 � k < 2`. ThenL(�n) � 2`(2` + 3k).
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Proof: Let S be any selection function. For everyi, there are2n�1 entries of the matrixSi which
mustbe one, namely the entriesx; y which differ only on positioni. If S only assigns these entries
to have the labeli, thenSi is a permutation matrix and so has rank2n�1. Thus to reduce the rank
of Si, the selection functionS must therefore assign more(x; y) pairs to also have the labeli. The
catch is thatS must do this for alli simultaneously, and we will bound how well it can do this.

Notice that for parity onn-bits, jXj = jY j = 2n�1. For everyi there are2n�1 pairs (x; y)
which differ only in positioni. Thus applying Corollary 8 withci = 2n�1 for all i, we obtain

CD(R) � minsi:Pi si=22n�2

nX
i=1
�22n�2si

� : (2)

Notice that if we were to ignore the ceilings, then we are minimizing over a convex function�(x) = 1=x and so Jensen’s inequality gives that the minimum is obtained when allsi are equal.
In this casesi = 22n�2=n and so

Pi 22n�2=si = n2.
To get bound larger thann2 we need to take the ceiling functions into account. Ifn is not a

power of two, then22n�2=n will not be an integer, whereas eachsi is an integer—this means that
it is no longer possible to have allsi values equal and

Pi si = 22n�2. It is this imbalance that will
lead to a larger lower bound.

We transform (Equation (2)) in a series of steps. First, notice that

minsi:Pi si=22n�2

nX
i=1
�22n�2si

� = mins0i:Pi s0i�22n�2

nX
i=1
�22n�2s0i

� : (3)

The right hand side is clearly less than the left hand side as the minimization is taken over a larger
set. The left hand side is less than the right hand side as given a solutionfs0ig to the right hand
side, we can obtain a solution to the left hand side which is not larger by settingsi = s0i fori = 1; : : : ; n� 1, andsn = 22n�2 �Pn�1i=1 s0i � s0n.

Now we observe that there is an optimal solutionfsig to (eqnrefmin2) where each22n�2=si is
an integer, and so eachsi is a power of two. If22n�2=si is not an integer, then we can sets0i to the
largest power of two less thansi andd22n�2=sie = 22n�2=s0i, and the sum ofs0i does not increase.

Thus assume that eachsi is a power of two, saysi = 2ai . We can now rewrite (Equation (3)) as

min
aiP

i 2
ai�22n�2

X
i 22n�2�ai

The valuesfaig which achieve this minimum will maximize

max
aiP

i 2
ai�22n�2

X
i ai:

We now show that there is an optimal solution to this maximization problem wherejai � ajj � 1
for all i; j. If ai � aj > 2 then we can leta0i = ai � 1 anda0j = aj + 2, so thata0i + a0j > ai + aj
and2a0j � 2aj + 2ai�1 so2a0i + 2a0j � 2ai + 2aj . If ai � aj = 2 then by settinga0i = ai � 1 anda0j = aj + 1 then we still havea0i + a0j = ai + aj, and have saved on weight,2a0i + 2a0j < 2ai + 2aj .
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By performing these transformations, we can turn any solution into one wherejai � ajj � 1
and whose value is at least as good. Now if we havejai � ajj � 1 and

Pi 2ai = 22n�2, it follows
thatai = 2n� `� 2 for 2`� k many values ofi andai = 2n� `� 3 for 2k many values ofi. This
gives

minai
nX
i=1 22n�2�ai = (2` � k)2` + 2k2`+1

= 2`(2` + 3k):
2

5 Hierarchy of techniques

In this section, we present two results clarifying the hierarchy of available techniques for proving
lower bounds on formula size. Laplante, Lee, and Szegedy [LLS06] show that the quantum adver-
sary method gives bounds at least as large as the method of Koutsoupias [Kou93] which is in turn
at least as large as the bound of Khrapchenko. Here we show that the linear programming bound
of Karchmer, Kushilevitz, and Nisan [KKN95] and a slight variation of our bound, as presented in
(Equation (1)), are both always at least as large as the quantum adversary method.

We first describe the methods in question. Karchmer, Kushilevitz, and Nisan notice that for a
relationR � X�Y �Z the rectangle boundCD(R) can be written as an integer program. Indeed,
let R be the set of all rectangles which are monochromatic with respect to the relationR. To
represent the relationship between inputs(x; y) and the rectangles ofR we use ajXj � jY j-by-jRj
incidence matrixA, where for(x; y) 2 X � Y andS 2 R we letA[(x; y); S] = 1 if (x; y) 2 S.
Now a set of rectangles can be described by ajRj-length vector�, with each entry�[S] 2 f0; 1g.
If � represents a partition, thenA� = ~1, and the number of rectangles in such a partition is simplyPS �[S]. Karchmer, Kushilevitz, and Nisan relax this integer program to a linear program by
replacing the condition�[S] 2 f0; 1g with 0 � �[S] � 1.

Definition 13 (Linear programming bound [KKN95]) Let f : f0; 1gn ! f0; 1g be a Boolean
function,Rf the relation corresponding tof , and� a vector indexed by rectangles monochromatic
with respect toRf . The linear programming bound, denotedLP(f), is then

LP(f) = min
�:A�=~1
0��[S]�1

X
S �[S]:

Ambainis [Amb02, Amb03] developed the quantum adversary method to prove lower bounds
on bounded-error quantum query complexity. Laplante, Lee, and Szegedy show that the square
of the adversary bound is lower bound on formula size. The adversary bound can be phrased as a
maximization problem of the spectral norm of a matrix associated withf [BSS03].
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Definition 14 (Adversary bound) Let f : f0; 1gn ! f0; 1g be a Boolean function, andX =f�1(0) andY = f�1(1). Let� be ajXj-by-jY jmatrix, and let�i be the matrix such that�i[x; y] =�[x; y] if xi 6= yi and�i[x; y] = 0 otherwise, for1 � i � n. Then

ADV(f) = max
��0
�6=0

k�kmaxi k�ik :
First we show that a slightly more sophisticated version of our bound (Equation (1)) is always

at least as large as the quantum adversary method. A problem with (Equation (1)) is that it cannot
take advantage of the fact that certain inputs to a function might be harder than others. To give a
concrete example, the bound given by (Equation (1)) on the functionf : f0; 1g2n ! f0; 1g on 2n
bits which is just the parity of the firstn bits is worse than the bound for parity onn bits. To remedy
this, we letu be a unit vector of lengthjXj andv be a unit vector of lengthjY j and consider the
matrixSi � uv� instead of the matrixSi. As rk(Si � uv�) � rk(Si), we can again apply Theorem 7
and Lemma 3 to obtain

CD(Rf ) � minS max
u;v

kuk=kvk=1

X
i kSi � uv�k2trkSi � uv�k2F : (4)

Theorem 15 The bound given by (Equation (4)) is at least as large asADV(f)2.
Proof: Starting from (Equation (4)) we first apply Jensen’s inequality with�(x) = 1=x, xi =kSi � uv�k2F=kSi � uv�ktr, andai = kSi � uv�ktr to obtain:

minS max
u;v

kuk=kvk=1

X
i kSi � uv�k2trkSi � uv�k2F � minS max

u;v
kuk=kvk=1

(Pi kSi � uv�ktr)2Pi kSi � uv�k2F :
As the selection function is total we have

Pi kSi � uv�k2F = kuv�k2F = 1.
Now we use (Lemma 4) to lower boundkSiktr. One can think of the weight matrix� in the

adversary bound as the matrix from (Lemma 4) which witnesses that the trace norm of theSi’s is
large:

minS max
u;v

kuk=kvk=1

 X
i kSi � uv�ktr

!2 � minS max
��0
� 6=0

max
u;v

kuk=kvk=1

 X
i jTr((� � Si)vu�jk� � Sik

!2

� minS max
��0
� 6=0

max
u;v

kuk=kvk=1

 X
i jTr((� � Si)vu�jk�ik

!2 :
This step follows as0 � � � Si � �i and for matricesA;B if 0 � A � B thenkAk � kBk. We
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can now continue

minS max
��0
�6=0

max
u;v

kuk=kvk=1

 X
i jTr((� � Si)vu�jk�ik

!2 � minS max
��0
�6=0

max
u;v

kuk=kvk=1

�PiTr((� � Si)vu�)maxi k�ik
�2

= max
��0
� 6=0

max
u;v

kuk=kvk=1

� Tr(�vu�)maxi k�ik
�2

= max
��0
� 6=0

� k�kmaxi k�ik
�2 :

2

Now we show that the bound given by the linear programming method is also always at least
as large as that given by the adversary method.

Theorem 16 LP(f) � ADV2(f):
Proof: Let � be a solution to the linear program associated withf . By definition we havePS:(x;y)2S �[S] = 1 for every (x; y). Let u; v be unit vectors such thatju��vj = k�k. We
will need some notation to label submatrices of� and portions ofu; v. For a combinatorial rect-
angleS = U � V , let �S[x; y] = A[x; y] if (x; y) 2 S and�[x; y] = 0 otherwise. Similarly, letuS[x] = u[x] if x 2 U anduS[x] = 0 otherwise, and similarly forvS. Now

k�k = X
x;y �[x; y]u[x]v[y]

= X
x;y

X
S:(x;y)2S �[S]�[x; y]u[x]v[y]= X

S �[S] X(x;y)2S �[x; y]u[x]v[y]� X
S �[S]k�SkkuSkkvSk

�  X
S �[S]k�Sk2

!1=2 X
S �[S]kuSkkvSk

!1=2 ;
where the first inequality follows from the definition of spectral norm, and the second uses the
Cauchy–Schwarz inequality. Notice thatX

S �[S]k�Sk2 =Xx;y �[S]ju[x]j2jv[y]j2 = 1:
Thus k�k2 �XS �[S]k�Sk2 � maxS k�Sk2XS �[S];
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and so X
S �[S] � max� k�k2maxS k�Sk2 � max� k�k2maxi k�ik2 :

2
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