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Abstract

We introduce a new technique for proving formula size lower bounds based on matrix
rank. A simple form of this technique gives bounds at least as large as those given by the
method of Khrapchenko, originally used to provergnlower bound on the parity function.
Applying our method to the parity function, we are able to give an exact expression for the
formula size of parity: ifn = 2¢ + k, where0 < k < 2¢, then the formula size of parity on
n bits is exactly2’(2¢ + 3k) = n? + k2¢ — k2. Such a bound cannot be proven by any of the
lower bound techniques of Khrapchenko,dmruk, Koutsoupias, or the quantum adversary
method, which are limited by?.

1 Introduction

One of the most important open problems in complexity theory is to prove superlinear lower
bounds on the circuit size of an explicit Boolean function. While this seems quite difficult, a
modest amount of success has been achieved in the weaker model of formula size, a formula being
a circuit where every gate has fan-out exactly one. The current best lower bound on the formula
size of an explicit function ig*—°") [H&s98].

Besides proving larger lower bounds, many open questions remain about the formula size of
basic Boolean functions—functions which are both very important in practice and are the constant
companions of complexity theorists. One of the most startling such questions is the gap in our
knowledge about the formula size of the majority function: the best lower bou(mﬁé2 while
the best upper bound &(n*>7) [PPZ92]. Even in the monotone case, where a formula consists
of only AND and OR gates, the best lower bound+g2|» [Rad97], while the best upper bound
is O(n>?) by Valiant’s beautiful construction [Val84].

One obstacle to proving larger formula size lower bounds seems to be what we cail the
barrier—most generic lower bound techniques seem to get stuck ardundhe technique of
Neciporuk [N&£66] is limited to bounds of size?/ log n; the methods of Khrapchenko [Khr71],
originally used to show a? lower bound on the formula size of parity, Koutsoupias [Kdu93],
and the recent quantum adversary method [LL.S06] all cannot prove lower bounds larger than
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n?; Karchmer, Kushilevitz, and Nisah [KKN95] introduce a promising technique based on linear
programming but at the same stroke show that it cannot prove lower bounds largénthan

We introduce a new technique for proving formula size lower bounds based on matrix rank.
Karchmer and Wigderson [KW88] show that formula size can be phrased as a communication
complexity game, specifically as the communication complexity of a relation. Although matrix
rank is one of the best tools available for proving lower bounds on the communication complexity
of functionsit has proved difficult to adapt to the relational case. Razbarov [Raz90] uses matrix
rank to show superpolynomial lower bounds monotongormula size, but also shows [Raz92]
that his method is limited t@(n) bounds for general formulas.

While in its full generality our method seems difficult to apply, we give a simplified form
which always gives bounds at least as large as the method of Khrapchenko, and even the quantum
adversary method, and whiclanbreak thes? barrier: we apply it to the parity function and give
anexact expressiofor the formula size of parity. Leb,, denote the parity function om-bits, and
let L(f) denote the the number of leaves in a smallest formula which computes

Theorem 1 If n = 2¢ + k where0 < k < 2¢, then

L(®,) = 252" + 3k) = n® + k2" — k”.

In we present our method and show that it gives bounds at least as large as those

of Khrapchenko. I Section 4 we apply the method to the parity function to prove The¢rem 1.
Finally, in[Section b we look at the relative strength of different formula size techniques and show

that the linear programming method of Karchmer, Kushilevitz, and Nisan [KKN95] is always at
least as large as the quantum adversary method [LLS06].

2 Preliminaries

We will make use of Jensen’s inequality. We will use the following form:

Lemma 2 (Jensen’s Inequality) Let¢ : R — R be a convex function ang a set of positive real
numbers fori = 1,...,n. Then

Z?zl ai$i> < Z?zl az¢($z)
¢ ( Z?:l a; /) Z?;l a

2.1 Linear algebra

We will use some basic concepts from linear algebra. For a mdtribet A* be the transpose
conjugate ofA, that isA*[i, j] = A[j,¢]. A matrix is Hermitian ifA = A*. We will use< to
refer to entrywise comparision of matrices: thatdis< B if A[i, j| < Bl[i, j] for all (i,j). The

shorthand4 > 0 means that all entries of are nonnegative. The rank df denoted byk(A), is
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the number of linearly independent columnsffThe trace ofd, writtenTr(A), is the sum of the
diagonal entries ofl. For a Hermitiam-by-n matrix A, let \;(A) > Ao (A) > --- > A\, (A) be the
eigenvalues ofl. Leto;(A) = /)\;(A*A) be thei®" singular value of4.

We will make use of three matrix norms. The Frobenius norm igtinerm of a matrix thought

of as a long vector—that is
1Alr = > Ali, 12
irj

Notice also thaf|A||7. = Tr(A*4) = >, 07(A). We will also use the trace nornjA|l;, =

Y ;. 0i(A). Finally, the spectral norfpA|| = o, (A). A very useful relationship between Frobenius
norm, trace norm, and rank is the following:

Lemma 3 Let A be an-by-m matrix withn < m.

H@\Eﬂ < rk(d).

Proof: The rank ofA equals the number of nonzero singular valuesiofThus by the Cauchy—

Schwarz inequality,
n 2 n
(Z 0i> <rk(A) - Za?.
i=1 i=1

As rank is an integer, we obtain
IAlZ w
— | < rk(A).
[HAH%

A useful tool to lower bound the trace norm is the following:

Lemma 4
|Tr(A*B)|

1B

1AL = max

This lemma expresses the fact that the trace norm and spectral norm are diial. For Theorem 1 we
need only the following simple bound on the trace norm: if theretadistinct numbers,, . . ., i
andk distinct numbers, .. ., j, such thatd[i,, j,] = 1 forall 1 < r < k, then|| 4], > k.

2.2 Formula size and communication complexity

A formula is a binary tree with nodes labeled by AND and OR gates, and leaves labeled by literals,
that is either a variable or its negation. The size of a formula is its number of leaves. The formula
size of a Boolean functioffi, written L( f), is the size of a smallest formula which compufes



Karchmer and Wigderson [KW88] characterize formula size in terms of a communication
game. Since this characterization, nearly all formula size lower bounds have been phrased in
the language of communication complexity.

Let X, Y, 7 be finite sets an®® C X x Y x Z arelation. In the communication problem for
R, Alice is given somer € X, Bob somey € Y, and they wish to output somee Z such that
(xz,y,z) € R. A communication protocol is a binary tree with each internal notigbeled either
by a functiona, : X — {0, 1} if Alice speaks at this node, or by a function: Y — {0, 1} if Bob
speaks. Each leaf is labeled by an elemeatZ. We say that a protocd? computes a relatio®
if for every (z,y) € X x Y, walking down the tree according to the functiensb, leads to a leaf
labeled withz such that(z,y,z) € R. We letC”(R) denote the number of leaves in a smallest
protocol which computeg.

For a Boolean functiorf : {0,1}* — {0,1}, letX = f~1(0) andY = f~'(1). We associate
with f arelationRy C X x Y x [n], whereR; = {(z,y,i) : v € X,y € Y, z; # y;}.

Theorem 5 (Karchmer-Wigderson) L(f) = C*(Ry)

An important notion in communication complexity is that of a combinatorial rectangle. A
combinatorial rectangle o x Y is a set which can be expressed¥sx Y’ for someX’' C X
andY’ C Y. AsetS C X x Y is called monochromatic for the relatidn if there is some
z € Z such that(z,y,z) € Rforall (z,y) € S. LetCP(R) be the number of rectangles in a
smallest partition ofX x Y into combinatorial rectangles monochromatic for We will often
refer to this informally as the rectangle bound. A basic fact, which can be found in [KN97], is
thatC”(R) < C”(R). The rectangle bound is also somewhat tight—Karchmer, Kushilevitz, and

Nisan [KKN95] show that'” (R) < P (R)s¢" .

3 Ranktechnique

One of the best techniques for showing lower bounds on the communication complexity of a func-
tion f : X x Y — {0,1} is matrix rank, originally used by [MS82]. I}, is a matrix with
rows labeled fromX, columns labeled fromy” and whereM [z, y| = f(x,y), thenrk(M;) lower
bounds the number of leaves in a communication protocof for

Let X, Y, Z be finite sets an&k C X x Y x Z arelation. In order to apply the rank bound, we
first restrict the relation to a (non-Boolean) function by means of what we call a selection function.
A selection functiort : X x Y — Z for the relationR takes inpu{z, y) and outputs somesuch
that (z,y,2) € R. That s, it simply selects one of the possible valid outputs of the relation on
input (z,y). We letR|s = {(z,y,2) : S(z,y) = z}.

Theorem 6 C*(R) = ming C*(R|s).

Proof: For any selection functios, we haveCT(R) < CP(R|s), as a protocol fo?|5 is in
particular a protocol forz.

To seeC”(R) > ming C*(Rys), let P be an optimal protocol foRz. We define a selection
function based on this protocol, that is, &tz, y) = z if and only if (x, y) lead to a leaf labeled
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by P. Now the protocolP also solvesk|s and the claim follows. O

With the help of selection functions, we can now use rank as in the functional case.

Theorem 7 Let R C X x Y x Z be a relation. To a selection functigfy we associate a set of
matrices{S,} over X x Y whereS,[z,y] = 1if S(x,y) = z and S, [z, y] = 0 otherwise. Then

CP(R) > msinz rk(S,).

2€Z

Proof: Let R be an optimal rectangle partition & satisfying|R| = CP(R). We letR define
a selection function in the natural way, settifiz, y) = 2z wherez is the lexicographically least
color of the rectangle iR which containgz, y).

We now show for this particular choice

CP(R) > 3 rk(S.),

2€Z

which gives the theorem. Clearly” (R) is equal to the sum over allof the number of rectangles
labeledz by the partitionR. Thus it suffices to show thak(S.) lower bounds the number of
rectangles labeled by. Consider some and say that there are monochromatic rectangles
By, ..., By labeledz. As eachB; is a combinatorial rectangle we can write itBs= V; x W;
for V; C X andWW; C Y. Letw; be the characteristic vector df, that isv;[x] = 1 if z € V; and
v;[z] = 0 otherwise, and similarly fow; with ;. Then we can express assS, = Zf:1 v;w; and
sork(S,) < k. O

In general, this bound seems quite difficult to apply because of the minimization over all se-
lection functions. We will now look at a simplified form of this method where we get around this

difficulty by usinglLemma[3 to lower bound the rank.

Corollary 8 Let f : {0,1}* — {0,1} be a Boolean function, and l&f = f~!(0),Y = f(1).
Letc; be the number of pairge, y) € X x Y which differ only in positioni, and letsy, ..., s, be
n nonnegative integers which sum|t6||Y|. Then

2
o)z min Y0|L
Sisi=IXIY] 4

Proof: By[Theorem  and Lemma 3

CP(Ry) > miank(Si) > minz [ | 5
S 45 s 1 SillE
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For thec; many (z, y) pairs which differ only in position, any selection functior$ must choose

i. As the stringy differing from z only in position: is unique, this means that we can permute the
rows and columns aof; to obtain a matrix with trace at least and sd|.S;||+» > ¢;. The Frobenius
norm squared of a zero/one matrix is simply the number of ones||thill$ is simply the number

of (z,y) pairs for which the selection functiofi chooses. As the selection function is total,
> 1S:l1% = | X]]Y|. The claim follows. 0

The simplified version of the rank method given[in Corollaly 8 is already strong enough to
imply Khrapchenko’s method, which works as follows. lfdbe a Boolean function, and as before
let X = f1(0),Y = f~!(1). LetC be the set ofz,y) € X x Y which have Hamming distance
one. Khrapchenko’s bound is th&fi|? /| X ||Y].

Theorem 9 The bound given ih Corollary] 8 is at least as large as that of Khrapchenko.

Proof: Let¢; be the number ofz, y) € X x Y which differ only in position, and let{s;} be such
that) ", s; = |X||Y| and which minimize the bound given|in Corollary 8. We now apply Jensen’s

inequality[ Lemma 2, withp(z) = 1/, z; = s,/¢;, anda; = ¢, to obtain

s, Sl [P
s s XN

1

4  Application to parity

In this section, we look at an application of the rank technique to the parity function. For both
the upper and lower bounds, we will use the communication complexity setting of Karchmer and
Wigderson. In this setting, Alice is given somewith even parity, Bob some with odd parity,

and they wish to find somesuch thatc; # y;. We first show the upper bound.

Proposition 10 Letn = 2¢ + k, where0 < k < 2°. ThenL(®,) < 24(2¢ + 3k).

Proof: The basic idea is binary search. First imagine thas a power of two. Bob begins by
saying the parity of the left half af. Alice then says the parity of the left half of If these parities
differ, then they continue playing on the left half, otherwise they continue playing on the right half.
With each round they halve the size of the playing field, and use two bits of communication. Thus
afterlog n rounds an@ log n bits of communication they determine ann whichx andy differ.
This gives a formula of size?.

Whenn is not a power of two, then at some point Alice and Bob will not be able to split the
playing field evenly between left and right halves. To govern how Alice and Bob decompose
consider a binary tree with the following properties:



e The root is labeled by.

e The label of a node equals the sum of its sons

e Each leaf is labeled by 1.

Any such tree gives a protocol of the above type in the following way:

¢ Alice and Bob begin at the root, Alice playing withand Bob withy. If the left son of the
rootisny, then Alice and Bob exchange the parities of the firdbits of z andy respectively.
If these disagree, then they continue playing with the substrings consisting of the fortt
of z andy respectively. If these agree then they continue playing on the last, bits of x
andy respectively.

e Say that Alice and Bob have arrived at nadelaying with stringse’ andy' respectively,
and that the left son af is labeled byn,. Alice and Bob exchange the parities of the firgt
bits of 2’ andy/’. If these agree then they continue playing on thenastn, bits of ' andy’
respectively.

The following claim gives the number of leaves in such a protocol.

Claim 11 LetT be a binary decomposition afas above. Then

L(EBn) < Z:Qdepth(f)7

eT
where the sum is taken over the leaved 7.

Proof: We count the number of transcripts. Consider a path from root to a leaf. At each step in this
path, there are two messages that could lead to taking that step. Namely, if the step is a left step,
then Alice and Bob disagree in parity at this step and thus the message exchange leading to this is
either 01 or 10. Similarly, if the step is a right step then Alice and Bob agreed in parity at this step
and the messages which could be exchanged are 00 or 11. Thus the total number of transcripts in
the parity protocol from a given tree J§,_,. 20°Pth(0), 0

We use this claim to proje Proposition|10. Consider a binary decompositiorwbiere the
sons of any node labeled by an even number have the same value and the sons of any node labeled
by an odd number differ by one. This decomposition will hakenany leaves at depth+ 1 and
2¢ — k many leaves at depth The claim then gives

L(D,) < 2k(2°Y) + (2° — k)2° = 2°(2° + 3k)

Proposition 12 Letn = 2° + k, where0 < k < 2°. ThenL(s,) > 2¢(2° + 3k).

7



Proof: Let S be any selection function. For everythere are" ! entries of the matrixs; which
mustbe one, namely the entriesy which differ only on position. If S only assigns these entries
to have the label, thensS; is a permutation matrix and so has rattk!. Thus to reduce the rank
of S;, the selection functio® must therefore assign mote, y) pairs to also have the labelThe
catch is thatS must do this for ali simultaneously, and we will bound how well it can do this.

Notice that for parity om-bits, [ X| = [Y| = 2"~'. For everyi there are2" ! pairs(z,y)
which differ only in positioni. Thus applying Corollary|8 with; = 2"~ for all i, we obtain

b n 227172
C”(R) > i . 2
= i 305 @
Notice that if we were to ignore the ceilings, then we are minimizing over a convex function
#(z) = 1/x and so Jensen’s inequality gives that the minimum is obtained whenak equal.
In this cases; = 22*~%/n and so) _, 2*"72 /s; = n?.
To get bound larger than®? we need to take the ceiling functions into accountn i not a
power of two, ther2?"=2 /n will not be an integer, whereas eaghis an integer—this means that
it is no longer possible to have al values equal anl{", s; = 2** 2. It is this imbalance that will
lead to a larger lower bound.

We transform[(Equation (R)) in a series of steps. First, notice that

min Z [2 = -‘ = min Z [2 nl— -‘ . 3)

sty s;=22n"2 — S; shiy, st <22n—2 '~ S;

The right hand side is clearly less than the left hand side as the minimization is taken over a larger
set. The left hand side is less than the right hand side as given a sofufioto the right hand
side, we can obtain a solution to the left hand side which is not larger by seftirg s for
i=1,...,n—1,ands, =22 - Y"1l > o' .

Now we observe that there is an optimal solut{ap} to (eqnrefmin2) where eact¥*~2/s; is
an integer, and so eachis a power of two. 122"~2/s; is not an integer, then we can séto the
largest power of two less thapand[22"~2/s;] = 22"~2/s!, and the sum of; does not increase.

Thus assume that eaghis a power of two, say; = 2%. We can now rewritg (Equation (3)) as
Hli_n Z 2271—2—%
S 2ai§122n—2 i
The valued a; } which achieve this minimum will maximize
max ) a;
> 2‘11'5122”—2 i

We now show that there is an optimal solution to this maximization problem wherea,| < 1
forall 4, j. If a; — a; > 2 then we can let; = a; — 1 andaj = a; + 2, so thata; + a; > a; + a;
and2% < 2% + 2% 1 s02% + 2% < 2% 4 2%, If a; — a; = 2 then by setting/, = a; — 1 and
a; = a; + 1 then we still haver, + o = a; + a;, and have saved on weight; + 2% < 2% 4 2%,
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By performing these transformations, we can turn any solution into one Werea;| < 1
and whose value is at least as good. Now if we hHaye- a;| < 1 and)_, 2% = 22" 2, it follows
thata;, = 2n — £ — 2 for 2 — k. many values of anda; = 2n — ¢ — 3 for 2k many values of. This
gives

n
min » 277 4 = (20— k)2° 4 2k2
b=l

= 242 + 3k).

5 Hierarchy of techniques

In this section, we present two results clarifying the hierarchy of available techniques for proving
lower bounds on formula size. Laplante, Lee, and Szededy [LLS06] show that the quantum adver-
sary method gives bounds at least as large as the method of Koutséupias|[Kou93] which is in turn
at least as large as the bound of Khrapchenko. Here we show that the linear programming bound
of Karchmer, Kushilevitz, and Nisan [KKN95] and a slight variation of our bound, as presented in
(Equation (1)), are both always at least as large as the quantum adversary method.

We first describe the methods in question. Karchmer, Kushilevitz, and Nisan notice that for a
relation? C X x Y x Z the rectangle boun@” (R) can be written as an integer program. Indeed,
let R be the set of all rectangles which are monochromatic with respect to the reRtidro
represent the relationship between inputsy) and the rectangles ® we use d.X | - |Y|-by-|R|
incidence matrix4, where for(z,y) € X x Y andS € R we letA[(z,y),S] = 1if (z,y) € S.
Now a set of rectangles can be described Iyt plength vectory, with each entryx[S] € {0,1}.
If o represents a partition, thetwe = I, and the number of rectangles in such a partition is simply
Y. sa[S]. Karchmer, Kushilevitz, and Nisan relax this integer program to a linear program by
replacing the condition[S] € {0, 1} with 0 < a[S] < 1.

Definition 13 (Linear programming bound [KKN95]) Let f : {0,1}* — {0,1} be a Boolean
function, R, the relation corresponding td, and« a vector indexed by rectangles monochromatic
with respect taR,. The linear programming bound, denote®( f), is then

LP(f) = min_» afS].

o<alSl<1 S

Ambainis [Amb02| Amb03] developed the quantum adversary method to prove lower bounds
on bounded-error quantum query complexity. Laplante, Lee, and Szegedy show that the square
of the adversary bound is lower bound on formula size. The adversary bound can be phrased as a
maximization problem of the spectral norm of a matrix associated fMBSS03].



Definition 14 (Adversary bound) Let f : {0,1}" — {0,1} be a Boolean function, and =
f71(0)andY = f'(1). Letl’ be a| X |-by-|Y| matrix, and lef"; be the matrix such that;[z, y] =
[z, y] if x; # y; andT;[z, y] = 0 otherwise, forl <i < n. Then

ADV(f) = max T

>0 max; |||

First we show that a slightly more sophisticated version of our bdund (Equation (1)) is always
at least as large as the quantum adversary method. A probleni with (Equation (1)) is that it cannot
take advantage of the fact that certain inputs to a function might be harder than others. To give a
concrete example, the bound given (1)) on the fungtiofn, 1}?* — {0,1} on2n
bits which is just the parity of the first bits is worse than the bound for parity arbits. To remedy
this, we letu be a unit vector of lengthX' | andv be a unit vector of lengthY”| and consider the
matrix S; o uv* instead of the matris;. Asrk(S; o uv*) < rk(S;), we can again apply Theorer 7
andLemmal to obtain

CP(R;) > min max 15 0 vy,

u,v
[lull=llvll=1

Theorem 15 The bound given b 4)) is at least as large\&sV (/).
Proof: Starting from |(Equation (4)) we first apply Jensen’s inequality with) = 1/z, z; =

1Si o uv*||3:./11Si © uv*||sr, @anda; = [|S; o uv*||; to obtain:

(4)

= [15i o uv*||%

2
[Scow (DS 0 w)?
i ||Siouv*HF_ S ullaiol=1 Zz’HSiOUU*H%

min max
S U,V
[lull=llv]|=1

As the selection function is total we ha)€, ||S; o uv*||% = ||uv*||% = 1.

Now we use[(Lemmal4) to lower bouri@;||,.. One can think of the weight matriX in the
adversary bound as the matrix frojn (Lemna 4) which witnesses that the trace normsgétise
large:

) 2
| ' Tr((T" o S;)vu*
msm K (Z HSZ o UU*HW) > méln max  max (Z ‘ (‘(’F o SZZT| ’>

i T

u,
[lull=llvll=1 r£o lull=lv]=1

2
> minmax ma (Z \Tr((FoSi)vu ’) .

S >0 u,v ||1"H
rZo llull=llvll=1 ¢

This step follows a9 < I' o S; < T; and for matricest, B if 0 < A < B then|A|| < ||B||. We
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can now continue

* 2 ) " 2
min max max (Z [Tr((L' 0 Si)vu |) > minmax max (ZZ ({0 S:)vu )>

$ I max; || T

r>0 u,v >0 u,v
r£o |lull=[v|/=1 r£o |lull=llvl=1

Tr(Dvu*) )2

= max max
(maxi T4

r> u,v
rZo llull=llvll=1

2
(Y
rzo \ max; [|T]]

T

O

Now we show that the bound given by the linear programming method is also always at least
as large as that given by the adversary method.

Theorem 16 LP(f) > ADV?(f).

Proof: Let o be a solution to the linear program associated vfith By definition we have
D siayyes @lS] = 1 for every (z,y). Letw,v be unit vectors such that'T'v| = [[T'|l. We
will need some notation to label submatriced’'cand portions ofs, v. For a combinatorial rect-
angleS = U x V, letT'g[z,y] = Alz,y] if (z,y) € S andl'[z,y] = 0 otherwise. Similarly, let
uglz| = ulz] if x € U andug|z] = 0 otherwise, and similarly fors. Now

I = Zfﬂcy
= Z > o« ylulz]oly]

T,y S:(zy)€S

= ZQ[S] Z L[z, y]u[z]v[y]
S (z,y)€S

< > afSIITsllllus]lvs]

<

1/2 1/2
(Z a[S]IIFs||2> (Z Oé[S]HusHHvsH) :

S S

where the first inequality follows from the definition of spectral norm, and the second uses the
Cauchy—Schwarz inequality. Notice that

> alSHIsl? = alSTlulz]Ploly)l® = 1.

S T,y

IT[* < Z [S]ITs[l* < max [T Z

11
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and so ) )
1T 1T

ZaS > max — ——— > —
- [4] I maxg ||[T's||? I max; |||
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